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ABSTRACT
Recent successful deep reinforcement learning algorithms, such as
Trust Region Policy Optimization or Proximal Policy Optimization,
are fundamentally variations of conservative policy iteration. These
algorithms iterate policy evaluation followed by a softened policy
improvement step. As so, they are naturally on-policy. Here, we
propose to combine (any kind of) soft greediness with Modified Pol-
icy Iteration. The proposed abstract framework applies repeatedly:
(i) a partial policy evaluation step that allows off-policy learning
and (ii) any softened greedy step. Our contribution can be seen as
a new generic tool for the deep reinforcement learning toolbox.
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1 INTRODUCTION
Many deep reinforcement learning (RL) algorithms are based on
approximate dynamic programming. For example, the celebrated
DQN [10] is based on approximate value iteration. As a pure critic
approach, it can only deal with finite action spaces. A more versatile
approach, that allows handling both discrete and continuous action
spaces, consists in considering actor-critic architectures, where both
the value function and the policy are represented. Most of such
recent approaches are either variations of policy gradient [7, 9, 18],
inspired by conservative policy iteration [15, 16, 19], or make use
of entropy regularization [3–5].

If approximate policy iteration has already been the building
block of actor-critics in the past [2], it has not been considered with
deep learning approximators, as far as we know. We assume that
this is due to the fact that the greedy operator is unstable (much like
gradient descent with too big step sizes). A clever way to address
this issue has been introduced by Kakade and Langford [6] with
Conservative Policy Iteration (CPI). Instead of taking the greedy
policy, the new policy is a stochastic mixture of the current one and
of the greedy one. This softens greediness and stabilizes learning.

With this classical approach, the current policy is a stochastic
mixture of all past policies, which is not very practical. The core
idea of CPI has been adapted in the deep RL literature by modi-
fying how the greediness is softened. For example, Trust Region
Policy Optimization (TRPO) [15] or Actor-Critic using Kronecker-
factored Trust Region (ACKTR) [19] add a constraint on the greedy
step, imposing that the average Kullback-Leibler (KL) divergence
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between consecutive policies is below a given threshold, and Proxi-
mal Policy Optimization (PPO) [16] modifies the greedy step with
a clipping loss that forces the ratio of action probabilities of con-
secutive policies to remain close to 1. To some extent, even policy
gradient approaches can be seen as such, as following the policy
gradient should provide a softened improvement (see also [13] for
a connection between CPI and policy gradient). Other approaches
consider an entropy penalty [3–5], which effect is also to soften
greediness (but can also modify the evaluation step).

We will call generally “Softened Policy Iteration” (SPI) any ap-
proach that combines policy evaluation with a softened greedy step.
As they require policy evaluation, these approaches are naturally
on-policy. In classical dynamic programming, Modified Policy Itera-
tion (MPI) [12] replaces the full evaluation of the policy by a partial
evaluation. This idea has been extended to the approximate setting
(Approximate MPI [14]), but never with deep learning approxima-
tors, as far as we know. This is probably due to the instability of the
greedy step. Yet, a partial evaluation presents some interest, com-
pared to a full policy evaluation. It allows for an easier extension
to off-policy learning by making use of Temporal Difference (TD)
learning instead of using rollouts. It also draws a bridge between
value and policy iterations (because MPI has these two algorithms
as special cases). In this work, we propose an abstract actor-critic
framework that brings together MPI and SPI, by mixing the partial
evaluation of MPI with the softened greediness of SPI. We name
the resulting approach Modified Soft Policy Iteration (MoSoPI).

2 BACKGROUND
A Markov Decision Process (MDP) is a tuple {S,A, P , r ,γ }, with S
the state space,A the action space, P the transition kernel (P(s ′ |s,a)
denotes the probability to go from s to s ′ under action a), r ∈ RS×A

the reward function and γ ∈ (0, 1) the discount factor. A (stochastic)
policy π is a mapping from states to distribution of actions (π (a |s)
denotes the probability of choosing a in s). The quality of a policy is
quantified by the value function, vπ (s) = Eπ [

∑
t ≥0 γ

t r (st ,at )|s0 =
s],where Eπ denotes the expectation respectively to the trajecto-
ries sampled by the policy π and the dynamics P . Write Tπ the
Bellman operator, defined for any v ∈ RS as ∀s ∈ S , [Tπv](s) =
Ea∼π (. |s)[r (s,a)+γv(s

′)]. The value functionvπ is the unique fixed
point of the operator Tπ . The aim of RL is to maximize either the
value function for each state or an average value function. To do
so, the notion of Bellman optimality operator is useful:∀v ∈ RS ,
Tv = maxπ Tπv . The optimal value function v∗ is the unique fixed
point of T . The notion of greedy operator can be derived from T .
We say that π is greedy respectively to v ∈ RS (that is not nec-
essarily a value function) if π ∈ G(v) ⇔ Tv = Tπv . The value
function might not be convenient from a practical viewpoint, as
applying the operatorsT and G requires knowing the dynamics. To
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alleviate this issue, a classical approach is to consider a Q-function,
that adds a degree of freedom on the first action to be chosen,
Qπ (s,a) = Eπ [

∑
t ≥0 γ

t r (st ,at )|s0 = s,a0 = a]. Similarly to the
value function, we can define the associatedTπ ,T and G operators.
Value and Q-functions are linked by vπ (s) = Ea∼π (. |s)[Qπ (s,a)],
and the advantage function is defined as the state-wise centered
Q-function, Aπ (s,a) = Qπ (s,a) −vπ (s).

3 MODIFIED SOFTENED POLICY ITERATION
Policy iteration (PI) alternates improvement and evaluation:{

πk+1 = G(vk )

vk+1 = vπk+1
. (1)

In the exact case, everything can be computed analytically (given
finite and small enough state and action spaces), and this PI scheme
will converge in finite time. In an approximate setting, one has
to approximate both the value function and the policy (possibly
implicitly), and to learn them from samples.

We start by discussing the approximation of policy evaluation.
First, as explained before, it is more convenient to work with Q-
functions. Let Qθ be a parameterized Q-function, Qπ can be esti-
mated using rollouts. Write generally Ê for an empirical estimation,
assume that a set of state-action couples (si ,ai )1≤i≤n is available,
and that we can simulate the return Ri (the cumulative discounted
reward from a rollout starting in (si ,ai ) and following the policy
afterwards), then the Q-function can be estimated by minimizing
J (θ ) = Ê[(Ri −Qθ (si ,ai ))

2]. There exist approaches for estimating
Q-functions directly from transitions, such as LSTD [1], but they
usually assume a linear parameterization.

If the action space is finite, the greedy policy can be deduced from
the estimated Q-function Q̂k : πk+1(a |s) = 1

{a=argmaxb Q̂k (s,b)}
.

Generally, one can also adopt a parameterized policy πw and solve
the greedy step as maximizing the following optimization problem:
J (w) = Ê

[
Ea∼πw (. |si )[Q̂k (si ,a)]

]
. Notice that this would corre-

spond to solving Es∼µ [[Tπwv](s)] for some distribution µ instead
of the greedy step in (1). Adding a state-dependant baseline to
Q̂k does not change the minimizer, and one consider usually an
estimated advantage function Âk to reduce the variance of the gra-
dient. With discrete actions, this corresponds to a cost-sensitive
multi-class classification problem [2].

Softened Policy Iteration. The greedy step can be unstable
in an approximate setting. To alleviate this problem, Kakade and
Langford [6] proposed to soften it by mixing the greedy policy
with the current one. Let αk ∈ (0, 1), the greedy step πk+1 ∈ G(vk )
is replaced by πk+1 = (1 − αk )πk + αkG(vk ). This comes with a
monotonic improvement guarantee, given a small enough αk . How-
ever, it is not very practical, as the new policy is a mixture of all
previous policies. To alleviate this problem, Schulman et al. [15]
proposed to soften the greediness with a KL penalty between con-
secutive policies, that leads to minimize: Ê[Ea∼πw (. |si )[Q̂k (si ,a)]]

s.t. Ê[KL(πw (.|si )| |πk (.|si ))] ≤ ϵ . Other approaches are possible.
For example, PPO combines the previous approximate greedy step
with importance sampling and a clipping of the ratio of proba-
bilities: J (w) = Ê[Ea∼πk (. |si )[clipϵ (

πw (a |si )
πk (a |si )

Âk (si ,a))]]. The clipϵ
operator saturates the ratio of probabilities when it deviates too

from 1 (at 1 + ϵ if the advantage is positive, 1 − ϵ else), without
it it would be equivalent to the initial greedy step. In this work,
we call SPI any policy iteration combined with a softened greedy
step, that we frame as satisfying Tπk+1vk ≥ Tπkvk (so, we ask the
policy to provide some improvement, without being necessarily
the greedy one). In that sense, even a policy gradient step can be
seen as softened greediness.

Modified Policy Iteration. If SPI modifies the greedy step,
MPI [12] modifies the evaluation step. The operator Tπk being
a contraction, we can write vπk = (Tπk )

∞v , for any v ∈ RS , so
notably for v = vk−1. MPI does partial evaluation by iterating the
operator a finite number of times. Letm ≥ 1, MPI iterates{

πk+1 = G(vk )

vk+1 = (Tπk+1 )
mvk

. (2)

Form = ∞, we retrieve PI, and form = 1we retrieve value iteration
(VI): as TG(v)v = Tv , withm = 1 it reduces to vk+1 = Tvk .

We have that (Tπ )mv = Eπ [
∑m−1
t=0 γ t r (st ,at )+γ

mv(sm )|s0 = s].
This suggests two ways of estimating a value function (or next,
directly a Q-function). First, consider the casem = 1 and a parame-
terized Q-function. The classical approach consists in solving the
following regression problem: J (θ ) = Ê

[
(yi −Qθ (si ,ai ))

2] with
yi = ri + γEa′∼πk+1(. |s ′)[Q̂k (s

′,a′)]. With m > 1, a solution is
to perform an m-step rollout (using πk+1) and to replace yi by
ymi =

∑m−1
t=0 γ t ri+t + γ

mEa′∼πk+1(. |st+m )[Q̂k (st+m ,a
′)]. This can

be corrected for off-policy learning, using for example importance
sampling or Retrace [11].

Another approach is to solvem times the previous regression
problem, replacing Q̂k by the newly computedQθ after each regres-
sion but keeping the policy πk+1 fixed over them regressions. In
other words, solving for J (θ ) is one application of an approximate
Bellman evaluation operator, and this amounts to applying it m
times. Although usingm-step returns is pretty standard in deep RL
(even if its relation to the classical MPI is rarely acknowledged), the
second approach is less usual and has never been experimented in
a deep RL context, to the best of our knowledge.

Modified Soft Policy Iteration. MoSoPI simply consists in
bringing together a softened policy step of SPI (so, any kind of
softened greediness) and the partial evaluation step of MPI:{

find πk+1 s.t. Tπk+1vk ≥ Tπkvk
vk+1 = (Tπk+1 )

mvk
. (3)

To get a practical algorithm, one just has to choose a soft greedy
step and to estimate the partial evaluation of the Q-function.

4 TO GO FURTHER
The full version of this article [8] provides additional things. To
justify the proposed approach (mixing softened greedy step with
partial evaluation), we also propose and discuss a convergence anal-
ysis of MoSoPI in an ideal case (no approximation error). As a proof
of concept of this general simple idea, we also instantiate in details
this framework with the PPO greediness. Empirical comparisons
to the original PPO on various Mujoco tasks [17] shows that the
resulting Modified PPO (MoPPO) is much more sample efficient,
despite a loss of stability. We also show that it is competitive with
the state-of-art off-policy algorithm Soft Actor Critic (SAC) [4].
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