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ABSTRACT
Cooperative cargo transport (e.g., two agents moving a table) is triv-
ial for humans, but poses exceptional challenges to robots. One chal-
lenge is learning the dynamics properties of unknown cargo, which
is critical for safe operations. We present an algorithm to estimate
the inertial parameters of an object grasped by one ormore robots in
real-time. We model each robot’s N sub-body system— considering
external and joint actuation— using the Recursive Newton-Euler
equations. A constrained Unscented Kalman Filter estimates the
grasped object’s mass, center of mass and moments of inertia. Our
approach is validated through simulation using Astrobee, a free-
flying robot.
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1 INTRODUCTION
When a robot grasps any cargo, its dynamics change greatly de-
pending on the cargo’s inertial properties, affecting how the robot
responds to actuation. Thus, explicit methods to estimate cargo
inertial parameters are needed to ensure safe navigation. Supply
delivery missions to the International Space Station (ISS) motivate
our work on the cooperative cargo transport problem. Astrobee [2]
robots could assist in unloading, saving valuable crew time.

We introduce a real-time estimator for the inertial parameters
of an unknown firmly grasped object. Full actuation— including
force, torque and arm joint commands— does not interfere with the
estimation. To the best of our knowledge this is the first approach
to estimate the inertial properties of a grasped object in real-time
for multiple fully actuatable robots with n revolute arm joints.

2 RELATEDWORK
For terrestrial applications and quadcopters, inertial parameter
estimation has previously been explored in [1, 1, 6, 13], and on
vision for on-orbit servicing missions [5, 10].

Estimation based on the Conservation of Momentum has the
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advantage that no acceleration estimation is needed [7, 8, 11]. How-
ever, it does not allow for simultaneous non-conservative actuation,
excluding robots with propulsion. If Conservation of Momentum
is considered, actuation must be conservative, where [14] takes
advantage of the effect of the gravity gradient torque, and in [8],
arm movements are considered.

The Newton-EulerMotion Equations have been used to solve this
estimation problem, such as a single rigid body free-flyer [4] and
a two-body system [8]. A modified formulation models an N sub-
body system with direct arm joint torque sensing [11], which solves
the problem offline. These methods are mostly solved using offline
estimators, optimizing over all the data points [8, 11]. Moreover,
the robots execute excitation trajectories, optimizing solely for the
estimation task [12].

In this work, the estimation is in real-time, where non-conservative
forces are considered and the excitation trajectory is not optimized.

3 ROBOT MODEL
The robot is modeled as N links connected through revolute joints
with an unknown objectU fixed to the last link. Each sub-body can
be subjected to an external force, torque, and the revolute joints.

3.1 Free-Flyer Kinematics
To calculate the forces throughout the sub-body system, one needs
to propagate the accelerations, given that only the base of the
robot contains acceleration sensors. The Kinematic formulation is
depicted in Fig. 1. The positions p and r are the position vectors
of the reference frame origin, and the center of gravity of each
sub-body respectively; a is the relative position from the sub-body
reference frame to the center of gravity and b from the center of
gravity to the next reference frame. Ûω is the angular acceleration.
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Figure 1: Kinematic variables can be propagated through the
sub-body system by knowing the base and joint kinematics.

Given this, one can calculate the acceleration in each sub-body’s
center of mass recursively.
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Starting at the base reference frame where the sensors and actua-
tion is projected, the acceleration at the center of mass can be obtain
through subsequently differentiating the position and velocity, as

0 Ür0 =
0 Üp0 +

0 Ûω0 ×
0a0 +

0ω0 ×
(
0ω0 ×

0a0
)
. (1)

For the subsequent sub-bodies, each acceleration 1 Ür i in the ref-
erence frame

∑
i can be propagated similarly as in [11], arriving to

the last link, the unknown object as:
U ÜpU =

URN
[
NÜpN +

N ÛωN ×NbN +
NωN ×

(
NωN ×NbN

)]
(2)

U ÛωU =
U RN N ÛωN (3)

U ÜrU =
U ÜpU +

U ÛωU ×U aU +
UωU ×

(
UωU ×U aU

)
. (4)

3.2 Free-Flyer Dynamics
Forces: The expected actuation force can be obtained, considering
that i f̂ i = mi

i Ür i , as the sum of the reaction forces from all the
sub-bodies, where the term f̂U incorporates inertial parameters as

I f Act =
N∑
i=0

IRi i f̂ i +
IRU U f̂U . (5)

Torque Using the cross-product distributive property in which
a × c + b × c = (a + b) × c , and using the geometrical definition in
which the cross product is invariant under proper rotations, we can
obtain the actuated torque as

AnA =
N∑
i=0

ARi i n̂i + ARU U n̂U +
N∑
i=1

(Ir i −
Ip0) × (IRi i f̂ i )

+ (IrU − Ip0) × (IRU U f̂U ), (6)

where the term U n̂U incorporates the inertial parameters U IU , and
f̂U incorporates the terms au andmU .

4 UNSCENTED KALMAN FILTER
The Unscented Kalman Filter (UKF) samples several points(sigma
points) around the current state estimate, based onthe covariance,
propagating them through the nonlinear map.

This estimation implies that the robot’s geometry, BpB , B ÛωB ,
BpB , BωB , Üθi , Ûθi , θi , where i = 1, ...,N , is calculated or estimated
from measurements beforehand. The states of the filter are the iner-
tial parameters, the prediction model considers that the states are a
constant, and the measurement model is defined by the dynamic
equations in 3.2.

5 MULTI-ROBOT ESTIMATION
To estimate inertial parameters withmultiple robots, a tree structure
with the cargo as the origin node is considered. Each branch is
comprised of one robot interacting only with the cargo. Each robot
considers that all the grasping forces and torques performed by
other robots are external forces on the on the cargo, considered in
the update step of the UKF and communicated.

6 RESULTS
The described algorithms were tested using Astrobee, a free-flying
robotic system currently on the International Space Station.

Astrobee uses electric fans as a propulsion system that allows
free flight through the microgravity environment of the station and
localizes itself by using visual
landmarks [2], [3]. Astrobee can
incorporate different payloads,
one of them being a perching arm,
which we use to grasp into cargo
[9]. The robot and arm system
is comprised of three sub-bodies,
the robot base, the proximal arm
link and the distal arm link. Exper-
iments can be seen at https://youtu.
be/iY_nuyLe26E.

Figure 2: Multiple Astrobee
carrying a cargo in the ISS

simulation

The testbed consists of one or two Astrobees grasping a cargo
containing a handrail Fig. 2 in the ISS simulation. To test the algo-
rithms proposed, we execute a figure-eight trajectory for position,
yaw ramp for attitude and pan ramp for arm. The estimation for the
trajectory is depicted in Fig. 3, where convergence occurs towards
the end. It can be seen that when the robot turns suddenly in yaw
(40s), the estimation convergence is faster.

Time [s]
Figure 3: Estimation of the inertial parameters of the grasped

cargo.
Comparing all scenarios, the convergence rate is comparable

when using the same filter parameters, this shows that arm move-
ment and multiple robots grasping does not deteriorate the estima-
tion due to added actuation, sensor noise and synchronization.

Estimation in all the scenarios tested was successful, obtaining
the correct parameters. As expected, in all cases, the mass, as the
most consequential inertial parameter, converges faster and more
accurately than the remaining inertial parameters. The estimation
converges quicker when there is more actuation present, e.g. change
of direction.

7 CONCLUSIONS
This paper proposes a solution for the estimation of the inertia
parameters for a cargo grasped by fully actuated free-flying robots.
It was proven that inertial parameter estimation is successful for
single and multiple robot grasp, even under sensor noise and un-
certainty.
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