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ABSTRACT
Hierarchical Reinforcement Learning (HRL) is a promising ap-
proach to solve more complex tasks which may be challenging
for the traditional reinforcement learning. HRL achieves this by de-
composing a task into shorter-horizon subgoals which are simpler
to achieve. Autonomous discovery of such subgoals is an important
part of HRL. Recently, end-to-end HRL methods have been used to
reduce the overhead from offline subgoal discovery by seeking the
useful subgoals while simultaneously learning optimal policies in a
hierarchy. However, these methods may still suffer from slow learn-
ing when the search space used by a high level policy to find the
subgoals is large. We propose LIDOSS, an end-to-end HRL method
with an integrated heuristic for subgoal discovery. In LIDOSS, the
search space of a high level policy can be reduced by focusing only
on the subgoal states that have high saliency. We evaluate LIDOSS
on continuous control tasks in the MuJoCo Ant domain. The results
show that LIDOSS outperforms Hierarchical Actor Critic (HAC), a
state-of-the-art HRL method, in the fixed goal tasks.
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1 INTRODUCTION
Hierarchical Reinforcement Learning (HRL) is a promising ap-
proach to learn behaviour policies in the long-horizon or sparse
reward tasks, by decomposing the task goals into simpler subgoals
through a hierarchy of policies. A challenging aspect of HRL is
the specification of the candidate subgoals. Traditional approaches
[1, 2, 12] relied on hand-crafted subgoals, which reduce the auton-
omy of aHRLmethod. Subsequent research addresses this limitation
through subgoal discovery [3, 6–8, 10, 11] inwhich the candidate sub-
goals for task decomposition are autonomously extracted through
the interaction of the agent with its environment.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
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Most of the existing subgoal discovery approaches, however,
separate the discovery process from the learning of the policy hier-
archy. This may require more training time and computation due to
the decoupled stages of discovery and learning. On the other hand,
recent end-to-end HRL approaches eschew subgoal discovery in
favour of training a policy hierarchy end-to-end [4, 9, 14]. These
methods do not require explicit subgoals discovery. Instead, an
agent uses a large subgoal space as the output space of a higher
level policy. As this policy is optimized over time, it learns to select
useful subgoals to achieve a given goal. While such approaches
reduce the overhead of a decoupled subgoal discovery stage, the
convergence of a higher level policy may still be slow due to the
use of a large subgoal space.

We propose a method for in situ subgoal discovery with the end-
to-end learning of a policy hierarchy in episodic goal-directed tasks.
This is achieved by calculating the frequency of occurrence of an
intermediate state on the trajectories leading to a goal state. The
states with relatively high frequencies are extracted as salient sub-
goals, with the intuition that reaching these states might improve
the rate of achieving the goal in the future. The subgoal discov-
ery is performed incrementally using the experience trajectories
gathered while the agent learns. Firstly, this approach provides an
iterative integration of subgoal discovery process with the hier-
archical learning and circumvents the need of decoupled stages.
Secondly, the highest level policy can guide the behaviour along the
salient subgoals aligned with the goal-reaching trajectories, rather
than searching subgoals in a large state space.

The proposed method is named Hierarchical Reinforcement
Learning with Integrated Discovery Of Salient Subgoals (LIDOSS).

2 METHOD
The proposed LIDOSS agent consists of a multi-level policy hi-
erarchy and a Subgoal Discovery Module (SDM) working in an
integrated manner (Figure 2). The policy hierarchy generates the
behaviour of the agent, which is observed by the SDM as episodic
trajectories. The SDM uses this as experience data to extract salient
subgoals into a set 𝑔𝑆𝐷𝑀 which is used by the highest level policy
as the output space for the further episodes of learning. This results
in new experience data which is again used by SDM to refine or
expand the subgoal set 𝑔𝑆𝐷𝑀 . This iterative process results in an
in situ subgoal discovery in integration with the training of the
policy hierarchy, rather than decoupled stages. This is essentially
an end-to-end HRL approach, but unlike the existing standard end-
to-end HRL methods [4, 9, 14], LIDOSS explicitly uses an integrated
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(a) Ant Maze fixed goal. (b) Ant Four Rooms fixed goal. (c) Ant Four Rooms multi goal

Figure 1: Success rate in Ant Four Rooms and Ant Maze tasks. Each data point is an average of one test batch of 100 episodes.
The results are averaged over ten randomly initiated trials. Flat DDPG is a non-hierarchical agent with only a primitive policy.

subgoal discovery heuristic to regulate the output space of the
highest-level policy.

The subgoal discovery heuristic used in LIDOSS is based on the
frequency/count of occurrence of a state on the successful trajecto-
ries which lead to the goal state 𝐺 . Implicitly, a higher frequency
implies a higher conditional probability 𝑝 (𝑠 |𝐺) of observing a state
𝑠 on the successful trajectories. To facilitate counting in a contin-
uous state space S, the state space is first discretized. Then, the
discrete states with higher 𝑝 (𝑠 |𝐺) are treated as salient subgoals.
This requires ranking of the states using 𝑝 (𝑠 |𝐺) values to find the
salient ones. This ranking is done locally and a saliency value𝜓 (𝑠)
is calculated using equation 1. Here, 𝐿𝑀𝑋 (𝑠) is a Local Max kernel
of size |𝐿𝑀𝑋 |, which when centered on a state 𝑠 , consists of its
|𝐿𝑀𝑋 | neighbouring states. We use a spatial neighbourhood to
constitute LMX. max𝐿𝑀𝑋 (𝑠) = max𝑠′∈𝐿𝑀𝑋 (𝑠) 𝑝 (𝑠 ′ |𝐺).

𝜓 (𝑠) =


0, if 𝑝 (𝑠 |𝐺) < max𝐿𝑀𝑋 (𝑠)
0, if max𝐿𝑀𝑋 (𝑠) <=

𝑝 (𝑠 |𝐺) < 𝑙𝑜𝑐𝑎𝑙 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

1, otherwise

(1)

We use |𝐿𝑀𝑋 | = 24 and 𝑙𝑜𝑐𝑎𝑙 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.3. The SDM updates
the salient subgoal set 𝑔𝑆𝐷𝑀 periodically based on the𝜓 values, by
adding the states with𝜓 (𝑠) = 1 and removing those with saliency
of zero. 𝑔𝑆𝐷𝑀 is used as the output space of the highest level policy
(as mentioned above).

3 EXPERIMENTS
We compare LIDOSS against a state-of-the-art HRL method Hierar-
chical Actor Critic (HAC) [4]. The comparison is done in terms of
the success rate of achieving the goal. Three tasks, in the MuJoCo
Ant continuous control domain [13], are used in the experiments.
These are Ant Four rooms multi goal [4], Ant Four Rooms fixed
goal, and Ant Maze. In the multi goal tasks, the goal state is changed
in the beginning of each episode in a trial. In the fixed goal tasks,
the goal is kept fixed for all episodes during a trial and changed
only at the beginning of each trial. The results are shown in Figure
1.

We observe that the success rate of our LIDOSS agent increases
faster than the baseline HAC agent in the first two tasks with

Figure 2: The structure of the LIDOSS agent. Subgoal discov-
ery is performed at the highest level. The subgoal 𝑔𝐻𝐿 cho-
sen by the highest level Deep Q-Network (DQN) 𝜇𝐻𝐿 is taken
as input by the intermediate-level DDPG [5] actor-critic 𝜇2

which generates a subgoal 𝑔2 for the primitive DDPG actor-
critic 𝜋 . We follow the three-level structure similar to the
baseline HAC three-level agent.X andY are sub-spaces of S.

fixed goals (Figure 1(a,b)). In these tasks, the space of the feasible
successful trajectories in constrained due to both the topology of
the environment (consisting of walls/obstacles) and the fixing of
the goal state. Hence, an early discovery of salient subgoals (using
the heuristic in LIDOSS) may result in faster convergence of the
highest level policy 𝜇𝐻𝐿 in contrast to the use of the entire state
space as the output space of 𝜇𝐻𝐿 (as in HAC). Whereas, the space of
successful trajectories are less constrained in the Ant Four Rooms
multi-goal task (Figure 1(c)) due to the goals being distributed over
a larger space. Hence, useful subgoals, corresponding to various
goals, effectively lie over the entire state space. This is possibly
why the baseline method shows slightly better performance than
LIDOSS because it learns a policy over the entire state space as
subgoal space.

In conclusion, the proposed method, LIDOSS, with an integrated
subgoal discovery heuristic may outperform a standard end-to-end
HRL approach without explicit subgoal discovery when the task
goals are fixed or lie in constrained regions of the state space.
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