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ABSTRACT
Online advertising campaigns are typically launched for a customer
across multiple touch points (scenarios) before the conversion of his
final purchase. To maximize the advertisers’ revenue, it requires the
platform to develop its advertising strategy based on the consumers’
behavioral trajectories in the previous scenarios. Meanwhile, it is
also critical to maintain the interpretability of the models on the
conversion rate; however, modern reinforcement learning based so-
lutions fail to do so due to their black-boxmodeling on the consumer
intents. In this paper, we model consumer’s purchase intention as a
latent variable, and formulate the advertising problem as a partially
observed Markov Decision Process (POMDP). We incorporate the
expectation maximization (EM) algorithms for solving the optimal
POMDP. Our extensive experiments based on large-scale real-world
data demonstrate that our method provides superior performance
over several baselines. Apart from the improved advertising perfor-
mance, our method is able to offer interpretation on the attribution
of the conversion.
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1 INTRODUCTION
Online advertising is a marketing paradigm that leverages the In-
ternet, either through PC or mobile phones, to target the audience,
with the goal to motivate their conversion of purchases [13]. Typi-
cally, advertising campaigns interact with the consumers multiple
times until the conversion of purchase across different scenarios.
To maximize the total advertising income, it is of merchant’s great
interest to jointly optimize the sequential advertising strategies
across different scenarios for each individual consumer.

As Fig.1 depicted, we show an example of the sequential adver-
tising strategy on an advertisement (hereafter ad), launched by an
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Figure 1: Consumer trajectories on certain advertising cam-
paign across different scenarios.

advertiser X . In the beginning, the consumer saw X ’s display ad
at time t1 in scenario No.1, and then he clicked on the same ad
for details at time t2. When the consumer switched to the scenario
No.2 and saw X ’s ad again, he finally made a purchase at time t3 to
t4. How do we attribute the final conversion to the displayed ads?
Does the advertising effects in scenario No.2 contribute to that in
scenario No.1? In this paper, we try to figure out these questions so
that the future advertising strategies with similar user trajectories
could be improved.

So far, the solutions to the multi-scenario advertising have been
focused on the attribution-based methods and the optimization-
based methods [5, 13]. Attribution-based methods pay attention to
the analysis of how to assign the credits to the previous ad displays
before the conversion, while without optimizing their advertising
strategies. Optimization methods usually formulate the problem
with reinforcement learning (RL) [1–4, 6]. But they do not explicitly
model the interacting environment, i.e., users’ purchase intentions;
this may incur difficulties in interpreting the attribution of the
conversions.

In this paper, we consider not only the optimization of the ad-
vertising strategy but also the attribution through modeling the
consumer conversion intentions. Obviously, this intention cannot
be directly observed, but we consider it as a latent variable that
can be inferred from large historical observation data. As such, we
formulate the problem as a Partially Observable Markov Decision
Process (POMDP). The significant advantage over the previous
methods [2–4, 6] is that our POMDP-based approach offers more
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interpretability by inferring how probable a user will be in each
hidden state and which state the user will transit to; this helps us
analyze the attribution of certain ads exposure, and improves the
future advertising policies.

Optimizing advertising strategy by POMDP is, however, difficult
since the POMDP model in e-commerce platform is not available
in advance. To tackle this issue, we derive an EM-based method to
estimate the parameters of POMDPs by learning from large-scale
real online data. Given the learned parameters, we now can infer
the probability distribution of the latent states (defined as beliefs),
and then optimize the advertising policy based on those beliefs.
However, exact methods for the policy learning are intractable [10],
so we adopt a variant of Smooth Partially Observable Value Ap-
proximation (SPOVA) [11] to approximate the belief value function.
In this manner, we can implement SPOVA with neural networks to
improve the generalization and the learning efficiency of the adver-
tising decisions. Based on these, we propose a POMDP-based ap-
proach, namely Deep Intents Sequential Advertising (DISA), which
extends and adapts POMDP to a real-world advertising problem.
While the majority of the previous studies on POMDPs are mostly
theoretical in nature, [7, 8, 12], our study is developed in the context
of a realistic industrial setting. The results of simulations and online
experiments demonstrate our method’s superiority over several
baselines.

2 PROBLEM DEFINITION
Formally, given a sequence of requests from a consumer, our prob-
lem is defined as a sequential decision process to determine the
appropriate ad items to maximize the advertisers’ revenue with
fewer budgets. At each time-step t , the agent infers a probability
distribution bt (belief) over all user hidden states and decides on
the optimal action at based on bt . The current belief bt is produced
with the previous bt−1 and at−1 using the Bayes rule:

bt (s
′) = ρO(s ′,at−1,ot )

∑
s ∈S

T (s, s ′,at−1)bt−1(s) (1)

where T (s, s ′,a) is the transition function, O(s ′,a,o) is the observa-
tion function, ρ is the normalized factor, and b(s) represents the
probability that a consumer hidden state is in state s . After esti-
mating bt , the agent has to learn the mappings from beliefs to
actions, denoted by a policy at = π (bt ), and the Bellman equation
for POMDP [10] is defined as:

V ∗(bt ) = max
at

[rt + γ
∑
o∈O

T (ot |at ,bt )V
∗(bt+1)] (2)

whereV ∗(bt ) is the belief value function with an optimal policy π∗.
The reward is defined as the advertiser’s revenue subtracting the
budget cost, given by rt ,i = λpriceiyt −bidixt where λ is a positive
hyper-parameter to adjust the weight between earned revenue
and cost. The objective of learning is to find optimal policies to
maximize the expected return of each ad item.

3 EXPERIMENT
Our experiments are conducted over the dataset collected from
Taobao display ad system. The following algorithms are compared
with our method (DISA) with the same settings: 1) Manual bid [6]: it
is the real bid strategy conducted according to humans’ experience,
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Figure 2: The learning curves of cost and ROI.

2) DQN [9]: it is a model-free RL algorithm, 3) ADRQN [14]: it is a
model-free POMDPwhere the latent state is implicitly captured and
modeled by the LSTM, 4) EM-DQN: it is a variant of DQN where
its input is the beliefs of DISA rather than observations.

Each method is evaluated by the ROI indicator (revenue/cost)
and the average rewards (the advertisers’ profits). Fig.2 shows that
DISA outperforms all the others in ROI while achieving almost
the same cost as other baselines. These results indicate the supe-
riority of DISA as it not only helps advertisers earn more income
per budget cost but also improve profits. Compared with DQN, a
higher ROI of EM-DQN shows the benefits of inferring beliefs over
the behavior-action mappings (black-box) in model-free fashion.
Furthermore, DISA also demonstrate its advantage of the belief
value approximation in SPOVA over the general neural network
(pure belief-action mappings) in EM-DQN.

Interpretability. Essentially, the EM in our DISA learns a map-
ping from high-dimensional historical observations to a compressed
belief state, and this mapping is reflected in the learned parameters.
By analyzing theT (s ′ |si ,a),O(o |si ,a) and b0(si ) parameters, we can
know how each state connects with different observations, so as
to further interpret the property of each state si . According to our
experiments, we explain the characteristics of each state: 1) state
s3 is an awareness state since the users under s3 are observed to
have little advertising exposure and clicks, 2) state s2 is an interest
state because we observe a large number of user browsing and click
behaviors in this state, 3) compared with state s2, users in s1 start to
actively search for their interested items across different scenarios,
thus we label s1 as an active state.

Based on the interpretable state, we cast light on the learned
strategies by a few case studies, through which we find that our
DISA successfully learns to select the ad item with a potentially
higher reward to win the bidding. In addition, we also get important
insights from DISA that: 1) users under an active state are more
likely to convert than an interest state as well as an awareness state,
and 2) for a category of items, an optimal advertising strategy is to
guide a user to the active state while he/she switches to a certain
scenario.

4 CONCLUSIONS
In this paper, we proposed a POMDP-based solution to the problem
of multi-scenario sequential advertising. Our method incorporates
the consumers’ latent intentions in optimizing the advertising strat-
egy. We evaluated our models in the context of realistic production
setting; the results have validated the superiority of the proposed
algorithm on performance against several RL baselines. We found
that the model can correctly infer users’ latent intentions.
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