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ABSTRACT
Defenders in security problems often use anomaly detection (AD)
to examine effects of (adversarial) actions and detect malicious be-
havior. Attackers seek to accomplish their goal (e.g., exfiltrate data)
while avoiding the detection. Game theory can be used to reason
about this interaction. While AD has been used in game-theoretic
frameworks before, we extend the existing works to more realistic
settings by (1) allowing players to have continuous action spaces
and (2) assuming that the defender cannot perfectly observe the
action of the attacker. We solve our model by (1) extending existing
algorithms that discretize the action spaces and use linear program-
ming and (2) by training a neural network using an algorithm based
on exploitability descent, termed EDA. While both algorithms are
applicable for low feature-space dimensions, EDA produces less
exploitable strategies and scales to higher dimensions. In a data
exfiltration scenario, EDA outperforms a range of classifiers when
facing a targeted exploitative attacker.
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1 PROBLEM DESCRIPTION
Anomaly detection is used to detect malicious behavior in com-
puter networks [8], fraud in financial transactions [1], or malicious
behavior of software [5]. Attackers want to achieve some goal (e.g.,
exfiltrate data, commit fraud), but have their actions undetected.
This can be modeled by integrating anomaly detection and game
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theory [3, 6, 7]. The existing works assume discrete features or per-
fect observability of the effects of attacker’s actions by the defender.
It limits their usability in realistic settings, e.g., if an attacker’s net-
work traffic is mixed with the traffic of benign users, or transactions
misusing a credit card mix with its regular usage.

In our two-player game, the defender is a stochastic classifier
which observes events—points in n-dimensional feature space—and
estimates a probability of inspecting the event for maliciousness.
The attacker chooses an action that generates an event in the same
feature space. If the event gets undetected, the attacker receives a
corresponding reward.

Generalized Classification Game is a tupleG = (F ,C,R, PD ,ϕ,T)
where F is the n-dimensional real-valued feature space, each fea-
ture f i is bounded by [Li ,U i ], i = 1, . . . ,n. C is a set of all classi-
fiers of the defender and c ∈ C is a function c : F → [0, 1], c(f )
is the probability that an event f ∈ F gets inspected. An unin-
spected attacker’s action fa ∈ F yields a non-negative reward
R(fa ) ≥ 0 for the attacker. ϕ ∈ [0, 1] is the maximal allowed false-
positive rate (FPR) of the classifier. We assume that the benign
events are samples from a distribution PD , hence the expected FPR
of a classifier c , denoted ΦD (c), satisfies ΦD (c) = Ef ∼PD c(f ). Fi-
nally, T corresponds to an observation transformation function:
the defender observes feature vectors fo sampled from a proba-
bility distribution T(fa ) ∈ ∆(F ) for attacker’s action fa ∈ F .
There are no restrictions on function T but we focus on two spe-
cific cases: an identity, and an additive combination of effects of
attacker’s and benign actions fb ∼ PD , i.e. T(fa ) = fa + PD , i.e.,
PrT [f = fa + fb | fa ] = PrPD [fb ].

Attacker’s utility in the game corresponds to ua (c, fa ) = (1 −
ρc (fa )) ·R(fa )where ρc (fa ) = Ef ∼T(fa )[c(f )] is the expected prob-
ability that c classifies action fa (based on observations f ∼ T(fa ))
as anomalous. We assume the zero-sum game, hence the attacker
maximizes the value and the defender minimizes. The solution cor-
responds to a maximin (or a Stackelberg equilibrium). The defender
seeks a classifier c∗ that minimizes the attacker’s utility under a
FPR constraint assuming that the attacker plays a best response:

c∗ = arg min
c ∈C
{max
fa ∈F

ua (c, fa )} s.t. ΦPD (c) ≤ ϕ (1)

We use BRa (c) to denote the best response (BR) of the attacker to
the classifier c , where BRa (c) = arg maxfa ua (c, fa ).
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Figure 1: (left) Relative regret of LP and EDA compared to the optimal game-values in case of identity transformation function
T ; (middle) Relative regret of EDA compared to LP for general transformation function T ; (right) Evaluation of variance of
sampled best response with 30, 000 samples used for data exfiltration experiments.

Algorithm 1: Exploitability Descent for Adversarial Anom-
aly Detection (EDA).
1 θ 0 ← initial random NN, λ0 ← 1.0, i ← 0
2 while termination condition is not met do
3 fa ← BRa (c i ) ; ϕ̂i ← ΦD (c i )
4 Li ← −Ef ∼T(fa )[log(c i (f ))] + λi (ϕ̂i − ϕ)
5 θ i+1 ← θ i − α∇θ Li ; λi+1 ← max{0, λi + β∇λLi }
6 i ← i + 1
7 θ ← OutputClassif ier ({θ 0, θ 1, . . . }, ϕ)
Output: θ

2 ALGORITHMS
Linear Programming (LP) has been used for solving simpler
models [7]. Below, we propose a more general formulation. We
uniformly discretize the feature space F into dn grid cells f̄ ⊂ F
(each dimension with d bins), creating the set Fd containing all
grid cells. Now both players have a finite number of actions – at-
tacker chooses a grid cell f̄a (assuming attacker chooses the action
that maximizes the reward function within each grid cell), the de-
fender chooses a probability of inspection of each grid cell (variables
c( f̄o )). Let Pr[ f̄ |A] denote the probability density in a cell f̄ given
the probability distribution A, the LP is:

min
{c(f̄o ):f̄o ∈Fd }

V (2)

s.t.:(∀ f̄a ∈ Fd ) :R( f̄a )
∑

f̄o ∈Fd

Pr[ f̄o |T ( f̄a )](1 − c( f̄o )) ≤ V (3)∑
f̄o ∈Fd

Pr[ f̄o |PD ]c( f̄o ) ≤ ϕ (4)

(∀ f̄o ∈ Fd ) : 0 ≤ c( f̄o ) ≤ 1, (5)

where V is the value of the game, Eqs. (3) are best-response con-
straints, and Eq. (4) ensures maximal FPR of ϕ. To overcome overfit-
ting to a data sample D, we approximate the distribution PD from
D using Kernel Density Estimation (KDE) with kernel bandwidth
parameter h (selected using a binary search). The approximated
distribution is then used in (4).
Exploitability Descent for Adversarial Anomaly Detection
(EDA) (see Algorithm 1) is based on exploitability descent [9, 11].
EDA iteratively solves the problem in Eq. (1) – in each iteration,
EDA first estimates the BR of the attacker (fa ) to the current
classifier (c) and, second, it updates the classifier c with stochastic
gradient descent w.r.t. the FPR constraint ϕ. We model the classifier
with a neural net cθ , parametrized by weights θ .

To overcome the problem of vanishing gradients, we construct
an upper bound of the outer minimization problem of (1) by taking
the logarithm of the criterion and minimize the upper bound in-
stead (−Ef ∼T(fa )[log(cθ (f ))]). We use Lagrangian (L) relaxation
procedure [2, 4] to move the FPR constraint into the objective to
obtain unconstrained problem as follows:

max
λ≥0

min
θ ∈Θ
−Ef ∼T(fa )[log(cθ (f ))] + λ · (ΦD (cθ ) − ϕ) (6)

EDA stores all pareto-optimal classifiers in the space of the FPR and
the attack value. Therefore, final classifier is selected as a convex
combination such that the value is minimal for the desired FPR ϕ.

3 EXPERIMENTAL VALIDATION
In our experiments, EDA uses an NN with 3 fully-connected layers
with 32 + 2n, 32 + 2n, 16 + 2n, and 1 (output) neurons (n is the di-
mension of the feature space). Sigmoid function is used for the last
neuron, ReLU activation function is used for all other neurons. For
the comparison, we need to approximate BR of the attacker. We
use random sampling with hill-climbing in EDA, but we use ran-
dom sampling without hill-climbing for the algorithm comparison
due to discretization in LP. Figure 1 (right) shows a histogram of
values of 10, 000 repeated estimations based on sampled BR with
30, 000 samples used for real-world experiments demonstrating a
low variance and stability of this approximation.

Figure 1 (left) and (middle) show that EDA achieves smaller
regret (i.e. more robust strategies) than LP for both transformation
function on synthetic data and that EDA is able to scale to higher
dimensions than LP.

With the real-world data, we compare against standard anomaly
detectors. We focus on the data exfiltration case via DNS protocol
and use 20,000 anonymized real-world DNS queries. We consider
three features – the sum of lengths of all queries in a group within
the time interval, the sum of entropy, and the number of special
symbols. Reward function of the attacker is a multiplication of val-
ues of the first two features, corresponding to the amount of leaked
information. We compare EDA with Principal Component Analysis
(PCA), Isolation Forest, K-nearest neighbors with largest distances
to the k-th neighbor as the outlier score and cluster-based local
outlier factor algorithm implemented in [10]. In our experiments,
EDA found the least exploitable strategy (attacker’s best-response
value 58.75), while the best traditional anomaly detector, PCA, has
higher exploitability (attacker’s best-response value 85.83).

We have shown a method EDA, not requiring discretization, that
beats PCA and other baselines in exploitability while maintaining
scalability on higher dimensional problems.
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