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ABSTRACT

Representing unknown and missing knowledge about the environ-
ment is fundamental to leverage robot behavior and improve its
performance in completing a task. However, reconstructing spatial
knowledge beyond the sensory horizon of the robot is an extremely
challenging task. Existing approaches assume that the environment
static and features repetitive patterns (e.g. rectangular rooms) or
that it can be all generalized with pre-trained models. Our goal is
to remove such assumptions and to introduce a novel methodology
that allows the robot to represent unknown spatial knowledge in
dynamic and unstructured environments. To this end, we exploit
generative learning to (1) learn a distribution of spatial landmarks
observed during the robot mission and to (2) generate missing in-
formation in real-time. The proposed approach aims at supporting
planning and decision-making processes needed for robot behav-
iors. In this paper, we describe architecture modeling the proposed
approach and a first validation on a mobile platform.
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1 INTRODUCTION

The representation of the environment and its structural character-
istics, is fundamental to enable effective and autonomous robots
behaviors [16, 20]. Several approaches assume that the map of the
environment is given, or it can be generated before the robot de-
ployment [4, 8]. However, as we want robots to fulfill complex
tasks in different and varying environments, such an assumption
does not always hold; consequently, robots have to explore their
world while completing their tasks. Examples of such environments
are search and rescue [12], door-to-door delivery [13], planetary
exploration [17], visual inspection [1] and mining [15]; in these
applications a map is not typically available to the robot before
deployment. In fact, the robot has to perform SLAM and accom-
plish its mission simultaneously. Hence, the robot has to efficiently
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explore the environment and understand its structure, appearances
and the key landmarks that characterize (and define) it. Such a
skill is particularly well-suited for cognitive robots operating in
unknown environments. We attack the problem of enabling an
autonomous robot to explore an unknown environment, and rep-
resent portion of it not yet perceived through sensors. Several
approaches consider the problem of estimating unknown parts of
environment. These methods usually rely on frontier-based [10, 16]
or gain-based [14, 21] techniques. Only few approaches attempt
to explicitly reconstruct the portion of the environment not (yet)
observable by the robot, either with pre-trained models [2, 18],
spoken instructions [6], or structure prediction, based on geomet-
ric features [3]. These methods require a pre-trained model of the
world that tells the robot how to classify the environment and the
expected structure. However, such approaches are often inaccurate
and hardly generalize to dynamic environment.

In this paper we introduce a novel approach that – in contrast
to methods proposed in the literature – enables a robot to perform
online map prediction and guess the structure of the environment
based upon previous observations collected during operation. To
this end, we introduce GUESs, a generative modeling approach of
unknown environments and spatial abstraction. GUESs is designed
to refine and improve map prediction during the robot operation,
by relying upon a Variational AutoEncoder (VAE) [11] paired with
a Generative Adversarial Network (GAN) [7]. The autoencoding
is used to learn a latent representation of the structure of the en-
vironment, while the GAN is used to generate expected future
observations by the robot sensors.

Our ultimate goal is to provide a robot with the ability to rep-
resent portions of the world beyond its sensory horizon, in order
to support reasoning in partially known environments. This con-
tribution aims at introducing our methodology, and at confirming
the insights upon which we built GUESs. Hence, we describe our
approach, and we show how it can be used to predict laser scans
of a mobile robot. The key contribution is a novel generative ap-
proach to address partial observability and missing knowledge in
robotic applications. GUESs does not assume prior knowledge nor
a pre-trained model of the environment. We perform a validation of
our approach on a mobile robot visiting a simulated environment.

2 GUESS

GUESs is a deep iterative algorithm based on generative learning [7]
and variational autoencoding [11]. Its underlying architecture is
completely agnostic with respect to the type of data and the appli-
cation of deployment. Here, we focus on validating its conceptual
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building blocks and insights on spatial knowledge modeled through
2D laser scans. Hence, we formalize GUESs to tackle the problem
of map prediction by exploiting laser sensor readings collected dur-
ing the robot mission. We configure GUESs to accumulate lasers
scans, while roaming the environment and to predict laser scans,
expected to be perceived at a given point t ′ in the future. The algo-
rithm assumes no prior knowledge about the environment and the
weights of both VAE and GAN are randomly initialized. Then, at
each execution GUESs iteratively refines its estimations as soon as
new observations are available. In fact, it continuously performs
online aggregation [19] of new data samples to allow the robot
to quickly adapt to unpredictable events and to generalize to new
environments.

To infer missing knowledge not (yet) perceivable through robot
sensors, we exploit generative adversarial learning. It has been
demonstrated that GANs achieve remarkable results in learning
data distributions to generate new samples and/or completing miss-
ing knowledge [5, 9]. However, since they need to be fed with large
datasets and configured with complex networks with high dimen-
sionality inputs and outputs, GANs cannot be easily deployed in
dynamic and real-time applications. In robotic settings, for example,
large datasets and computational costs are assumptions that cannot
always be satisfied. Thus, in order to exploit the potential of GANs
in robotics, we need to alleviate dimensionality constraints and
network complexity – yet guaranteeing robust performance. To
meet such a compelling requirement, we reduce the dimensionality
of the generative network input by learning a lower-dimensionality
latent representation of it. We exploit a autoencoder [11] to learn
the latent – and more compact – representation of the input data.
Specifically, a variational autoencoder is used to learn the distribu-
tion of input data over the latent space, which allows us to perform
sampling directly in the latent space and to generate batches of
inputs of lower dimensionality to be fed to the generative network.

In fact, to enable GUESs to evaluate sequencesT of time-correlated
inputs xt :t+T (e.g. 2D laser scans) and to predict a future observa-
tion x ′, we substitute raw sensor dataxt :t+T with sequences of their
latent representation zt :t+T that are iteratively learned through
variational autoencoding. This allows for a significant reduction
in the dimensionality of the input, yet preserving an informative
representation used to predict missing knowledge.

3 EXPERIMENTAL EVALUATION

The goal of the experimental evaluation conducted in this section is
to validate the key insights of GUESs, and to demonstrate that our
approach is feasible and practical in robotics. We validate GUESs
in an indoor office environment where a robot is tasked to navi-
gate while collecting data in real-time and refining its predictions
iteratively.

We simulated a training session where the system is randomly
initialized and ran for 600 iterations. Figure 1 shows the inference
of the VAE and GAN over samples collected by the robot during
its mission at the 600th iteration. In Figure 1(a), from left to right,
samples represent a corner of a large room and the end of a corridor.
The blue line represents the original laser scan x , while the orange
line represents the VAE reconstructed scan x ′. It is worth remarking

(a) VAE encodings

(b) GAN generations

Figure 1: GUESs inference samples. 1(a) and 1(b) show

the performance and generalization capabilities of the two

networks after 600 iterations. In 1(a) the original scans

(blue) and VAE reconstructed (orange) are reported, while

1(b) pairs of reference scans (top-row) and generated scans

(bottom-row).

that the latent encodings used in this experiment reduce the dimen-
sionality of the inputted laser scans to L=16 and – as shown in the
figure – yet maintain an informative representation. As for the VAE
encodings, Figure 1(b) reports two laser scan samples. The top-row
shows the original laser scan, while the bottom-row the generator
predictions – samples are associated columnwise. From left to right,
scans represent a corridor and a large room. As shown in the figure,
even though predictions are cluttered, the generator successfully
learns the target distributions and it is able to generalize to different
areas of the environment. Most importantly, Figure 1(b) confirms
that a more compact – but equally informative – representation of
the input data, can be used as a surrogate to significantly reduce
dimensionality of data and dimension of the networks of the GAN.

4 CONCLUSION

In this paper we introduced a novel architecture to achieve online
training and inference of missing spatial knowledge for a mobile
robot. We validated the ability of GUESs to (1) exploit a learned
latent representation of environment and to (2) extend the robot
sensory horizon at real-time. However, the performance of the
approach is still limited, and it has to be further improved in order
to support decision-making. Our ultimate goal is to extend the robot
horizon to predict complete spatial entities and to generalize the
architecture to objects in the environment.
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