
Mitigating the Negative Side Effects of Reasoning with
Imperfect Models: A Multi-Objective Approach

Extended Abstract

Sandhya Saisubramanian
University of Massachusetts Amherst

Ece Kamar
Microsoft Research

Shlomo Zilberstein
University of Massachusetts Amherst

ABSTRACT
Agents often operate using imperfect models of the environment
that ignore certain aspects of the real world. Reasoning with such
models may lead to negative side effects (NSE) when satisfying the
primary objective of the available model, which are inherently
difficult to identify at design time. We examine how various forms
of feedback can be used to learn a penalty function associated with
NSE during execution. We formulate the problem of mitigating the
impact of NSE as a multi-objective Markov decision process with
lexicographic reward preferences and slack. Empirical evaluation of
our approach on three domains shows that the proposed framework
can successfully mitigate NSE.

KEYWORDS
Negative side effects; Multi-objective reasoning; Agent adaptation
ACM Reference Format:
Sandhya Saisubramanian, Ece Kamar, and Shlomo Zilberstein. 2020. Mit-
igating the Negative Side Effects of Reasoning with Imperfect Models: A
Multi-Objective Approach. In Proc. of the 19th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2020), Auckland, New
Zealand, May 9–13, 2020, IFAAMAS, 3 pages.

1 INTRODUCTION
Agents acting in the open world typically operate based on imper-
fect models of the environment in which they are situated [3, 5, 6].
In general, models are carefully designed and tested with respect
to a given primary objective, but some details in the environment
that are unrelated to the agent’s primary objective are ignored. In
this work, we consider an imperfect model, denoted by M̃ , which
does not fully represent the real world but is sufficient to achieve
the agent’s primary assigned objective. Consequently, the agent
may not be aware that its actions may result in negative side effects
(NSE) in some states [1]. How could deployed agents respond to
feedback about NSE and learn to avoid them?

A naive approach to avoiding NSE is to entirely redesign the
agent’s model every time negative side effects are identified, which
requires exhaustive evaluation before redeploying the agent. Prior
works on minimizing NSE in a model-based reasoning setting as-
sume that the agent is aware of the model incorrectness [2] and
that all negative side effects are avoidable [1, 2, 4, 9]. Real-world
situations, however, tend to violate these assumptions.

We introduce a multi-objective formulation that optimizes the
agent’s primary objective, while mitigating NSE. The agent’s model

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

is augmented with a secondary reward function that represents the
penalty for NSE. The problem is formulated as a multi-objective
Markov decision process with lexicographic reward preferences
(LMDP) and slack [8]. The agent’s primary objective o1 is to achieve
its assigned task, while the secondary objective o2 is to minimize
NSE. The slack denotes the acceptable deviation from the optimal
expected reward of o1, in order to minimize NSE. The agent does not
have knowledge about the NSE initially. Our solution framework
utilizes a three-step approach to detect and mitigate NSE.

2 PROBLEM FORMULATION
Consider an agent reasoning using its acquired model, an MDP
M̃ = ⟨S̃, Ã, T̃ , R̃⟩ with a single objective, which is the primary task
of the agent. The agent, however, is situated in a more complex
environment, denoted byM∗, which is an extension of M̃ with an
additional secondary objective, initially unknown to the agent. The
two objectives inM∗ are: assigned task (o1) and mitigate NSE (o2),
with o1≻o2. We assume that an optimal policy of M̃ for o1 is also
optimal inM∗ with respect to o1. A primary policy is an optimal
policy for M̃ , optimizing o1 defined by R̃.

Executing a primary policy may result in NSE in some states,
since it optimizes for o1 alone. Let Ω : S̃×Ã→R denote the severity
of the expected NSE produced by executing ã in s̃ . The agent does
not have any prior knowledge about o2, which reflects the NSE and
its associated penalty denoted by RN . The agent may not be able
to observe the NSE except for the penalty, which is proportional
to the severity of the NSE, provided by the feedback mechanism.
The effectiveness of our approach to avoid NSE will depend on the
fidelity of S̃ . While perfect information is not required, we assume
in this work that the occurrence of NSE correlates with the features
in S̃ . This allows the agent to learn RN using its current model M̃ .

Given M̃ and feedback data regarding side effects, the agent is
expected to compute a policy that optimizes o1, while avoiding
NSE, subject to a slack value. Our formulation can hence handle
settings with both avoidable and unavoidable negative side effects.
To achieve this, the corresponding LMDP of the agent’s M̃ is defined
by augmenting it with objective o2 and a penalty function for NSE.

Definition 2.1. The augmentedMDP of a given simplifiedmodel
M̃ is a lexicographic MDP, denoted byM = ⟨S,A,T ,RRR,o,δ ,γ ⟩ with
state space S = S̃ ; action space A = Ã; a transition function T = T̃ ;
reward vector RRR= [R1,R2] with R1= R̃ denoting the reward associ-
ated with o1 and R2=RN denoting the penalty for NSE; o = [o1,o2]
denotes the objectives in the LMDP with o1 denoting the primary
objective of the agent and o2 denotes minimizing NSE in the lexico-
graphic order o1 ≻ o2; δ ≥ 0 indicates the allowed deviation from
the optimal expected reward for o1 in order to minimize the NSE;
and γ ∈ [0, 1) is the discount factor.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1984

Our framework for minimizing the NSE involves the following:
(1) since the agent is unaware of the side effects of its actions, it
collects data about NSE through various forms of oracle feedback
or by exploring the environment; (2) a predictive model is trained
using the gathered data to generalize the agent’s observations to
unseen situations, represented as a reward function RN ; and (3)
the agent then computes a policy by solving the augmented MDP
optimally with the given δ and learned RN .
Slack Estimation. The slack denotes the maximum allowed loss
in the expected reward of the agent’s primary objective in order
to minimize NSE. Typically the slack value is based on user tol-
erance towards NSE. We present an approach to determine the
minimum slack required to avoid NSE altogether, when feasible
(once knowledge about NSE is obtained). The slack is determined
as the difference between the expected reward of the model before
and after disabling all the actions that lead to NSE (Algorithm 1). If
no solution exists after the actions are disabled, δ =∞ is returned,
indicating that it is impossible to completely avoid NSE and still ac-
complish the task. Slack values are specified by the user when NSE
are unavoidable or the δ estimated is beyond the user tolerance.

3 LEARNING NEGATIVE SIDE EFFECTS
We consider the following forms of feedback that correlate with
features in S̃ to learn about NSE.
Learning from Random Queries The agent randomly selects
an (s,a) pair for querying an oracle, given a budget and without
replacement, and receives the exact penalty, RN (s,a). The agent
can hence learn the true underlying RN as the budget for querying
increases. Despite the benefits offered by this type of feedback, it
is often unrealistic to expect exact penalty specification for ran-
domly selected (s,a). Hence we also consider the following feedback
mechanisms where the oracle provides signals to identify accept-
able actions. Since such feedbacks do not provide the exact penalty
for NSE, feedbacks indicating acceptable actions are mapped to
zero penalty and others are mapped to a fixed, non-zero penalty
denoted by k , thereby producing RN .
HumanApproval (HA)The agent randomly selects (s,a), without
replacement, to query the human, who in turn either approves or
disapproves the action in a state. The agent assigns RN (s,a) = 0
to approved actions and RN (s,a) = k for disapproved actions. We
consider two types of human approval: strict (HA-S) and lenient
(HA-L). Strict feedback disapproves all actions that result in NSE.

Algorithm 1 Slack Estimation (M̃,Ω)
1: δ ←∞
2: Ṽ ∗1 (so) ← Solve M̃ optimally with respect to o1
3: Compute NSE-free transition (T̂) by disabling all actions that

result in negative side effects, ∀(s̃, ã, s̃ ′):
4: T̂ (s̃, ã, s̃ ′) ←

{
T̃ (s̃, ã, s̃ ′), if Ω(s̃, ã) = 0
0, otherwise

5: if solution exists for ⟨S̃, Ã, T̂ , R̃⟩ with respect to o1 then
6: V̂ ∗1 (so) ← Solve ⟨S̃, Ã, T̂ , R̃⟩ optimally for o1
7: δ ← |Ṽ ∗1 (so) − V̂

∗
1 (so)|

8: return δ ;

(a) Human feedback (b) Exploration

Figure 1: Effect of various feedback techniques on NSE.

Lenient approval only disapproves actions with severe NSE. The
severity threshold for HA-L is a tunable parameter.
Corrections (C) In this form of feedback, the agent performs a
trajectory of its primary policy, with the oracle monitoring the
process. If the oracle observes an unacceptable action at any state,
it stops the agent and specifies an acceptable action to execute
in that state. If all actions in a state lead to NSE, then the oracle
specifies an action with the least NSE. The agent proceeds until the
goal is reached or until interrupted again.
Demo-action mismatch (D-AM) In D-AM, the human provides
limited demonstrations, which are trajectories from start to the goal.
The agent collects these trajectories and compares them with its
primary policy. For all states in which there is an action mismatch,
the agent assumes its policy leads to NSE and assigns RN (s,a) = k .
Learning from Exploration This feedback type uses ϵ-greedy
action selection—the agent either follows its primary policy or
explores a random action to learn about NSE. The agent executes
an action and observes the corresponding NSE penalty, RN (s,a).
We consider three exploration strategies, each with varying degrees
of exploration (ϵ): conservative—action exploration with probability
0.1,moderate—action exploration with probability 0.5, and radical—
the agent predominantly explores with probability 0.9, allowing it
to possibly identify more NSE than the other exploration strategies.

4 RESULTS AND CONCLUSION
Figure 1 plots the results on a modified puddle world [7] domain.
The agent’s o1 is to minimize the expected cost of navigation from
start to a goal. The agent can move in all 4 directions at low or
high speeds, with costs 2 and 1 respectively. Navigating over a
puddle at high speed spatters water, which is undesirable. If puddles
have pedestrians in the vicinity, splashing water on them results
in severe NSE with a penalty of 10 and a mild NSE with a penalty
of 5, otherwise. States are represented by ⟨x ,y, l ,p,h⟩ where x ,y
denote the agent’s location, l is the speed, p,h indicate the presence
of a puddle or a pedestrian in the vicinity. The agent is trained on a
15×15 grid using ⟨l ,p,h⟩ for NSE model learning. Five test instances
are generated by randomly varying the start, goal, puddle, and
pedestrian locations. Values averaged over 100 trials of planning and
execution, along with their standard errors, are reported. Overall,
our approach significantly reduces the occurrence of NSE.

ACKNOWLEDGMENTS
Support for this work was provided in part by the Semiconductor
Research Corporation under grant #2906.001.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1985

REFERENCES
[1] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and

Dan Mané. 2016. Concrete problems in AI safety. arXiv preprint arXiv:1606.06565
(2016).

[2] Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J. Russell, and Anca
Dragan. 2017. Inverse reward design. In Advances in Neural Information Processing
Systems.

[3] Subbarao Kambhampati. 2007. Model-lite planning for the web age masses: The
challenges of planning with incomplete and evolving domain models. In Proceed-
ings of the 22nd AAAI Conference on Artificial Intelligence.

[4] Victoria Krakovna, Laurent Orseau, Miljan Martic, and Shane Legg. 2019. Penaliz-
ing side effects using stepwise relative reachability. In IJCAI AI Safety Workshop.

[5] Ramya Ramakrishnan, Ece Kamar, Debadeepta Dey, Julie Shah, and Eric Horvitz.
2018. Discovering Blind Spots in Reinforcement Learning. In Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent Systems.

[6] Sandhya Saisubramanian and Shlomo Zilberstein. 2019. Adaptive outcome selec-
tion for planning with reduced models. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems.

[7] Richard S. Sutton. 1996. Generalization in reinforcement learning: Successful
examples using sparse coarse coding. In Advances in Neural Information Processing
Systems.

[8] Kyle Hollins Wray, Shlomo Zilberstein, and Abdel-Illah Mouaddib. 2015. Multi-
objective MDPs with conditional lexicographic reward preferences. In Proceedings
of the 29th Conference on Artificial Intelligence.

[9] Shun Zhang, Edmund H. Durfee, and Satinder P. Singh. 2018. Minimax-regret
querying on side effects for safe optimality in factored Markov decision processes.
In Proceedings of the 27th International Joint Conference on Artificial Intelligence.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

1986

	Abstract
	1 Introduction
	2 Problem Formulation
	3 Learning Negative Side Effects
	4 Results and Conclusion
	Acknowledgments
	References

