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1 INTRODUCTION
The sample efficiency and convergence time of a Reinforcement

Learning (RL) algorithm depend heavily on the exploration method

used by the agent. In this work, we formulate an explorationmethod

that uses prior experiences of an agent at similar tasks in other envi-

ronments for improving the efficiency of exploration in the current

task-environment. We show that given an optimal policy in a re-

lated task-environment, its bisimulation distance from the current

task-environment gives a lower bound on the optimal advantage

of state-action pairs in the current task-environment. Bisimula-
tion, first introduced for MDP by Givan et al. [4], is a relation that

draws equivalence between the states of a Markov Decision Process

(MDP) that have the same long-term behavior. It is equivalent to

MDP homomorphism [5, 6]. Ferns et al. [3] proposed bisimulation
metric as a quantitative analogue of the bisimulation relation that

can be used as a notion of distance between states of an MDP. This

was extended by Taylor et al. [10] as the lax bisimulation metric in
order to measure the distance between state-action pairs of differ-

ent MDPs. This metric was later used by Castro and Precup [2] for

policy transfer between MDPs which motivated this paper.

2 PROPOSED FRAMEWORK
Let us consider twoMDPs,M1 = ⟨S1,A1, P1,R1⟩ andM2 = ⟨S2,A2,

P2,R2⟩, where Si , Ai , Pi and Ri respectively denote the state space,

action space, transition probability function and reward function

of the ith MDP. Let V ∗i and Q∗i denote the optimum state and state-

action value functions and π∗i denote the optimum policy of the

ith MDP. Let d≈ : S1 × S2 ×A2 → R and d ′≈ : S1 × S2 → R denote

the state-action lax bisimulation and state lax bisimulation metrics

∗
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Algorithm 1 ϵ-greedy Q-learning with Transfer-guided Explo-

ration (ExTra)

1: Compute d≈(s1, (s2,a2))
2: step = 0

3: while step < MAXSTEPS do
4: with probability ϵ
5: a2 ∼ πExT ra (·|s2,M1, π

∗
1
)

6: with probability 1 − ϵ
7: a2 ← arдmaxa Q2(s2,a)
8: reward = take_step(a2)
9: update_Q(Q2(s2,a2), reward)
10: step = step + 1

11: end while

respectively [2]. Then the following results hold true. Please refer

to the full paper [7] for the proofs.

Lemma 2.1. ∀s1 ∈ S1, ∀s2 ∈ S2, ∀a2 ∈ A2, |V ∗
1
(s1) −Q

∗
2
(s2,a2)| ≤

d≈(s1, (s2,a2)).
Corollary 2.2. ∀s1 ∈ S1,∀s2 ∈ S2, |V ∗

1
(s1)−V

∗
2
(s2)| ≤ d≈(s1, (s2,

π∗
2
(s2))).

This leads us to the following theorem that forms the backbone of

our proposed exploration algorithm.

Theorem 2.3. Given MDPs, M1 = ⟨S1,A1, P1,R1⟩ and M2 =

⟨S2,A2, P2,R2⟩ and bisimulation metric d≈ : S1 × S2 ×A2 → R
we have ∀s2 ∈ S2,∀a2 ∈ A2

A∗
2
(s2,a2) ≥ −d≈(smatch, (s2,a2)) − β(s2),

WhereA∗
2
(s2,a2) is the optimumadvantage function inM2, smatch =

arдmaxs1∈S1 V
∗
1
(s1)−d

′
≈(s1, s2) and β(s2) = d≈(smatch, (s2, π

∗
2
(s2))).

Thus, given a related MDPM1, its bisimulation distance from

the current MDPM2 gives a lower bound on the optimal advantage

of state-action pairs in the current MDP. We define bisimulation
advantage of an action a2 ∈ A2 in a state s2 ∈ S2 as this bound.

Definition 2.4. Bisimulation Advantage: Given MDPs,M1 =

⟨S1,A1, P1,R1⟩ andM2 = ⟨S2,A2, P2,R2⟩ and bisimulation metric

d≈ : S1 × S2 ×A2 → R we define the bisimulation advantage of an

action a2 ∈ A2 in a state s2 ∈ S2 as:

A≈(s2,a2) = −d≈(smatch, (s2,a2)) − β(s2)
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In Transfer-guided Exploration (ExTra), the agent samples actions

from a maximum entropy distribution [12] over the bisimulation

advantages, defined as follows:

πExTra(a2 |s2,M1, π
∗
1
) =

eA≈(s2,a2)∑
a∈A2

eA≈(s2,a)
(1)

Since the optimal policy in the target MDP, π∗
2
, is not known during

learning, β(s2) can not be known exactly. Since β(s2)(≥ 0) is the

same for all actions in a given state s2, replacing β(s2) with a real

positive number preserves the order of probability values assigned

to different actions by πExTra. If the transfer is successful, πExTra
would assign higher probabilities to the optimal actions and thus

help the agent arrive at the optimal policy quickly. However, in the

event of an unsuccessful transfer, πExTra may be biased away from

the optimal actions. This may cause the agent to remain stuck with

the wrong actions for long periods. To help the agent recover from

the effect of unsuccessful transfer, we set β = αn, where α ∈ R+

is a tunable hyperparameter and n is the current step number. As

n grows, πExTra(·|s2,M1, π
∗
1
) tends to a uniform distribution over

actions, thus annealing the influence of transferred knowledge on

exploration with time. This does not hurt the agent’s learning in

states where the transfer was successful because the agent happens

to have explored the optimal actions early on in training in those

states. Note that changing β does not affect the rate of exploration;

instead, it merely changes the shape of the probability distribution

from which the agent samples actions during exploration.

3 EMPIRICAL EVALUATION
In this section, we evaluate the viability of ExTra through empirical

analysis of its performance on stochastic grid-world environments.

Please refer to the full paper [7] for details of the environments. We

use Area under the Mean Average Reward curve (AuC-MAR) as an

objective measure of the rate of convergence [11]. We address the

following questions:

How does ExTra compare against traditional exploration
methods?
We compare ϵ-greedy ExTra (Algorithm 1) with traditional ap-

proaches namely ϵ-greedy, MBIE-EB [8], Pursuit [9] and Softmax

[9] for navigation in four, six and nine large room environments.

The source environment for ExTra has four small rooms. Each large

room in the target environments has six small rooms inside it. We

observe that the ExTra agent consistently achieves faster conver-

gence in all the three environments. This corroborates our claim

that ExTra can achieve faster convergence and hence superior sam-

ple efficiency if we have access to the optimal policy in a related

task-environment.

How sensitive is ExTra to the choice of source task?
In our first study, we consider transfer between tasks that share

the same state-action space and reward structure but differ in goal

positions. We train source policies for five different goal positions,

each in a different room, in the six large room environment and

transfer to a sixth goal position. We observe that each of our ExTra

agents fetch higher AuC-MAR values than any of the traditional

methods, thus demonstrating the efficacy of ExTra. Also, there is

a rough trend of the AuC-MAR values decreasing with increasing

distance of goal in the source task which demonstrates graceful

degradation of performance.

In our second study, we compare transfer from source tasks that

differ in state space, action space, reward structure, goal structure,

goal distribution and transition dynamics. We observe that ExTra

is able to leverage knowledge about the transition dynamics of the

source MDP even when the reward structures and goal distributions

are different. Also, ExTra is more sensitive to the reward structure

of the source MDP than transition dynamics or goal distribution

and source MDPs with the same action space as the target are more

preferable even if the state spaces are different.

Can ExTra enhance the performance of other exploration
algorithms that only use local information?
We formulate ϵ-greedy versions of each of our baseline algorithms

in the first experiment (ϵ = 0.5), where the agent samples actions

from πExT ra with probability ϵ = 0.5 and follows the main algo-

rithm rest of the time. The source environment has four small rooms,

and the target has six large rooms. We observe that ExTra achieves

gains in performance of traditional exploration algorithms when

used in conjunction, which proves its viability as a complementary

exploration method for accelerating the rate of convergence of

traditional RL algorithms.

How does ExTra compare against Bisimulation Transfer?
We answer this by comparing the rates of convergence of ϵ−greedy
Q-learning with ExTra and the bisimulation transfer algorithm of

Castro et al. [2] that initializes the Q-matrix with the Q-value of

the transferred policy. We choose navigation in four small rooms

as the source task. The target tasks are navigation in four large

rooms (similar to the source task) and a modified version of the

Taxi-v2 environment of OpenAI Gym [1] (drastically different

from the source task). We observe that when the source and tar-

get tasks are similar and bisimulation policy transfer is successful,

Q-learning initialized with transfer gets an initial jumpstart while

ExTra catches up later. But when the source and target tasks are

drastically different, it converges slower than ExTra. Since bisimula-

tion distances are larger for dissimilar environments, πExT ra tends

to a uniform distribution over target actions. As a result, ExTra

falls back to vanilla ϵ−greedy Q-learning with uniform sampling.

On the other hand, Q-learning initialized with bisimulation trans-

fer has to first recover from the effect of negative transfer using

ϵ−greedy uniform exploration before it can start learning. While

bisimulation transfer can be both effective and detrimental depend-

ing on how the source and target tasks are related, ExTra does not

negatively affect the learning process even when the source and

target task-environments are drastically different.

4 CONCLUSION
In this work, we present a novel transfer guided exploration algo-

rithm, ExTra, that achieves faster convergence compared to tradi-

tional explorationmethods that only use local information, is robust

to source task selection with predictable graceful degradation of

performance and can compliment traditional exploration methods

by improving their rate of convergence. In our future work we

plan to extend ExTra to larger state-action spaces and continuous

control tasks.
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