Extended Abstract

AAMAS 2020, May 9-13, Auckland, New Zealand

On-line Estimators for Ad-hoc Task Allocation
Extended Abstract

Elnaz Shafipour Yourdshahi!, Matheus Aparecido do Carmo Alves?,

Leandro Soriano Marcolino!, Plamen Angelov?
! School of Computing and Communications, Lancaster University
2 Institute of Mathematics and Computer Science (ICMC), University of Sdo Paulo (USP)
elnaz.shafipour@lancaster.ac.uk, matheus.aparecido.alves@usp.br,
L. marcolino@lancaster.ac.uk, p.angelov@lancaster.ac.uk

ABSTRACT

It is essential for agents to work together with others to accomplish
common missions without previous knowledge of the team-mates,
a challenge known as ad-hoc teamwork. In these systems, an agent
estimates the algorithm and parameters of others in an on-line
manner, in order to decide its own actions for effective teamwork.
Meanwhile, agents often must coordinate in a decentralised fashion
to complete tasks that are displaced in an environment (e.g., in
foraging, demining, rescue or fire control), where each member
autonomously chooses which task to perform. By harnessing this
knowledge, better estimation techniques would lead to better per-
formance. Hence, we present On-line Estimators for Ad-hoc Task
Allocation, a novel algorithm for team-mates’ type and parameter
estimation in decentralised task allocation. We ran experiments in
the level-based foraging domain, where we obtain lower error in
parameter and type estimation than previous approaches, and a
significantly better performance in finishing all tasks.

ACM Reference Format:

Elnaz Shafipour Yourdshahi, Matheus Aparecido do Carmo Alves, Leandro
Soriano Marcolino, Plamen Angelov. 2020. On-line Estimators for Ad-hoc
Task Allocation. In Proc. of the 19th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2020), Auckland, New Zealand, May
9-13, 2020, IFAAMAS, 3 pages.

1 INTRODUCTION

In ad-hoc teamwork, agents collaborate to accomplish common
tasks without pre-knowledge of each other, nor prior coordination
or communication protocols. Hence, it is a beneficial model for
solving issues in real-world domains, like rescue robots from dif-
ferent organisations which are urgently brought together to aid in
a natural disaster — e.g., earthquakes. In these scenarios, design-
ing coordination/communication protocols would take time, and
resources. Avoiding such delays and funding usage could save lives.

Instead of learning models from scratch, it is common in the liter-
ature to assume a set of possible types [4, 5], reducing the problem
to estimating the type of each agent. This approach is more applica-
ble, as it does not require such a large number of observations, and
can be more easily applied in an on-line manner. Types could be
built based on previous experiences [6] or may be derived from the
domain [1]. Additionally, having parameters for each type allowed

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9-13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

1999

more fine-grained models [2]. However, previous works were not
specifically designed for decentralised task allocation, missing an
opportunity to obtain better performances in this relevant scenario
for multi-agent collaboration.

Note that individual agents do not need to share the same repre-
sentation of the problem as decentralised task allocation, and run
algorithms that explicitly “choose” tasks. They could be developed
by different parties, and could use different paradigms. All we need
are problems that can be modelled as decentralised task allocation
for our ad-hoc agent. Similarly, a global allocation algorithm is
unfeasible in our scenario: agents developed by others would not
necessarily follow commands from a central entity, and we are not
assuming any communication protocol.

Therefore, for better estimation of team-mates types and param-
eters in decentralised task allocation, we introduce our novel algo-
rithm called On-line Estimators for Ad-hoc Task Allocation (OEATA).
We run experiments in a collaborative foraging domain, where
agents collect “heavy” boxes together. We obtain a lower error in
parameter and type estimations in comparison with the state-of-the-
art, leading to significantly better performance in task execution.

2 METHODOLOGY

We consider one agent ¢, in the same environment as a set of agents
Q (¢ ¢ Q). $ must maximise team performance, but it does not know
how agents w € Q may behave at each state. As in previous works
[2], we consider that agents in Q can be defined by a type § € ©,
and by a vector of parameters p, each in a fixed range. Estimating 0
and p allows ¢ to estimate w’s behaviour, leading to better decision-
making. Hence, we introduce OEATA for better parameter and type
estimations in ad-hoc decentralised task allocation.

In OEATA, we have a set of estimators for each agent w and
each type 6 (Ef)) which have a fixed size N. An estimator e is
a tuple, (Pe, Se» Te» Ce» fe): Pe is @ parameter vector; s, is the last
choose target state (choose target state is the state s; when o tries
to choose a new task 7’ after completing the task 7); 7, is the task
that o would try to complete when having parameter p, and type
0; ce holds the number of times that e was successful in predicting
w’s next task; f, holds the number of consecutive failures. The s,
states are updated when another agent collects the predicted task
Te. The choose target state of the agent is then estimated as the one
stored in the estimator e with highest c, across all sets Ef) These
will be used to compose the agent’s history, when updating c.

All estimators e are initialised in the first step, and p, of each
e can be initialised with random values (e.g., from the uniform
distribution). For all estimators e, se is set as the initial state of

Extended Abstract

the environment. Since each e has a certain type 6 and a certain
parameter vector pe, it allows ¢ to estimate w’s task decision process
in the initial state. The estimated chosen task is assigned as ze.

When w completes a task 7,,, we start evaluating its estimators.
For every e in Ef), we check if 7, is equal to 7,,. If they are equal,
we set ¢ as the number of successes across the whole history so far,
and set f, to 0. Additionally, we store each p; in p, in a bag b;. Note
that each position i of the parameter vector has a corresponding
bag b; to keep successful values, and there are sets of bags for each
Ef) If 7, is not equal to 7,,, we increase f, and decrease c. If fe is
greater than a threshold &, we remove e. We also update the choose
target state (se) and 7. of all e.

We generate new estimators for each one removed, in order to
again have |E2)| = N. A proportion m of the new estimators are
created by randomly sampling from the uniform distribution in the
corresponding parameter’s range; and the remaining proportion
are created from the Ef, bags. That is, for each position i of pe,
we randomly sample a value from the corresponding bag b;. We
then use the average p. across all e in Ef) as the current estimated
parameter for o, when assuming type 6.

We also estimate the probabilities P(6),, of each agent w hav-
ing type 6. To do so, we use the success rate of all estimators
of the corresponding type. For each 6, we first calculate: kf) =

0
. 170 kw
max(0, ZeeEi ce). These are then normalised as: k/; := Soak?

Finally, we update the type estimation: P’(0),, o k’¢ xP(6),,, where
P(0), is the previous estimation. In the first iteration, we need prior
probabilities for P(6),. These would normally be initialised with
the uniform distribution, in the absence of previous information.

3 RESULTS

We evaluate OEATA in level-based foraging (Figure 1) [2, 3] . Agents
collect items displaced in the environment (which corresponds
to the “tasks”). Each item has a weight, and each agent has an
(unknown) skill-level. If the sum of the skill-levels of the agents
surrounding a target is greater than or equal the item’s weight, the
item is “loaded” by the team. The visibility region of each w has an
angle and a maximum radius, which are unknown. Hence, there are
3 parameters to be learnt: Skill-level, Angle and Radius. According
to @’s type and parameters, its target item will be selected. We
executed 100 runs for each experiment, and plot the average results
and the confidence interval (p = 0.01). When we say that a result is
significant, we mean statistically significant considering p < 0.01.
We compare our algorithm

(OEATA) against two state-of- PRl
the-art parameter estimation - AN .
approaches in ad-hoc team- / \ 0.5 I ‘oz i N
il o 7 —
work: AGA and ABU [2]. Both ,‘ @g \1=° g@, :
approaches also sample sets \ = 'l Ph= o
. N ’
of parameters (for a gradient AN Yoot
7’

ascent step or a Bayesian esti- AN ‘

; OO\ T~ --|"
mation), and we use the same .w.
set size as estimator sets (N). 06

Additionally, we compare our
approach against using Par-
tially Observable Monte-Carlo

Figure 1: Level-based forag-
ing domain.

AAMAS 2020, May 9-13, Auckland, New Zealand

v ABU oo OEATA o o POMCP
06
Sogh ¢ ¢ ©° 0 o000 0 o0
| g 04FTE T e e
> 203 - A
A An See S S A N
®° 6 6 6 o a a 0.2 ®e-0- -0 -0 o0 ¢

80 100 120 0 20 40 60 80 100 120
Number of Iterations

Figure 2: Parameter and type estimation errors for Q| = 5.

Planning (POMCP) [7] for type and parameter estimations. In this
case, we still consider that the agent is able to see the whole envi-
ronment; however, agent type and parameters are not observable,
and hence are estimated using POMCP’s particle filter. We use
N % |Q| X |©| particles, matching the total number of estimators in
our approach (since we have N per agent, for each type).

OEATA used the follow-
ing parameters: N = 100,
& = 2, m = 0.2 Type
and parameters of agents
in Q are chosen uniformly
randomly, and the weight
of each item is chosen uni-
formly randomly (between 0
and 1). Each scenario is also
randomly generated, with
20 items. Agent ¢’s skill-
level is fixed at 1, so every generated instance is solvable. We ran
UCT-H (a variant of UCT [8]) for 100 iterations per time step, and
maximum depth 100. We fix the scenario size as 20 X 20.

We show examples of the parameter and type error for |Q| =5
(Figure 2). We evaluate the mean absolute error for the parameters,
and 1 — P(0%) for type (where 0* is the true type); and we show
here the average error across all parameters. As we can see, our
parameter estimation error is consistently significantly lower than
the other algorithms from the second iteration, and it monotonically
decreases as the number of iterations increases. AGA, ABU, and
POMCP, on the other hand, do not show any sign of converging
to a low error as the number of iterations increases. We can also
see that our type estimation becomes quickly better than the other
algorithms, significantly overcoming them after a few iterations.

We demonstrate the performance of each estimation method
in Figure 3, where we show the number of iterations to collect all
items. As we can see, OEATA completed all tasks significantly faster
than the other algorithms (in the case of POMCP, p = 0.017).

AGA ABU OEATA POMCP

Number of lterations

Figure 3: Performance for
|Q] = 5.

4 CONCLUSION

We study ad-hoc teamwork for decentralised task allocation. One
ad-hoc agent learns about the decision-making algorithms of its
team-mates, in order to better take decisions concerning overall
team performance. By focusing on decentralised task allocation, we
propose On-line Estimators for Ad-hoc Task Allocation, a novel algo-
rithm which obtains lower error in parameter and type estimation
than previous works, leading to better performance.
Acknowledgements: We thank AUSPIN and the School of Com-
puting and Communications for their support. We also thank the
High End Computing facility at Lancaster University.

Extended Abstract

REFERENCES

[1] S. Albrecht, J. Crandall, and S. Ramamoorthy. 2015. An empirical study on the
practical impact of prior beliefs over policy types. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI).

[2] S. Albrecht and P. Stone. 2017. Reasoning about Hypothetical Agent Behaviours
and their Parameters. In Proceedings of the 16th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS’17).

[3] Stefano V. Albrecht and Subramanian Ramamoorthy. 2013. A Game-Theoretic
Model and Best-Response Learning Method for Ad Hoc Coordination in Multiagent
Systems. Technical Report. The University of Edinburgh.

[4] S.V. Albrecht and S. Ramamoorthy. 2016. Exploiting causality for selective belief
filtering in dynamic Bayesian networks. Journal of Artificial Intelligence Research
55 (2016).

2001

AAMAS 2020, May 9-13, Auckland, New Zealand

[5] Samuel Barrett, Peter Stone, and Sarit Kraus. 2011. Empirical evaluation of ad

hoc teamwork in the pursuit domain. In Proceedings of the 10th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS’11), Vol. 2.
567-574.

Samuel Barrett, Peter Stone, Sarit Kraus, and Avi Rosenfeld. 2013. Teamwork
with limited knowledge of teammates. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI).

David Silver and Joel Veness. 2010. Monte-Carlo Planning in Large POMDPs. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).

E. S. Yourdshahi, T. Pinder, G. Dhawan, L. S. Marcolino, and P. Angelov. 2018.
Towards Large Scale Ad-hoc Teamwork. In Proceedings of the IEEE International
Conference on Agents (ICA).

	Abstract
	1 Introduction
	2 Methodology
	3 Results
	4 Conclusion
	References

