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ABSTRACT

We show that adversarial reinforcement learning can be used to
develop market marking strategies that are robust to adversarial
and adaptively chosen market conditions.
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1 INTRODUCTION

Market makers provide liquidity by offering to buy and sell a fi-
nancial instrument, and generate profits when they manage to buy
and sell evenly. However, a market maker (MM) faces inventory
risk, where toxic agents exploit their informational or technological
advantages to preempt or cause prices to move unfavourably for
the MM as it inadvertently builds a (positive or negative) inventory.
This phenomenon has been the subject of much research in the
optimal control [4], artificial intelligence [1], and reinforcement
learning (RL) literature [10].

In this paper, we develop market making agents that are robust
to adversarial and adaptively chosen market conditions by applying
adversarial RL (ARL). We start from a well-known model of mar-
ket making [2], which has been used extensively in quantitative
finance [3–6]. We convert this model to a discrete-time game, with
a “market player,” an adversary that can be thought of as a proxy for
other market participants that would like to profit at the expense
of the market maker. The adversary controls the dynamics of the
market environment in a zero-sum game against the MM.

We evaluate the sensitivity of RL-based strategies to three pa-
rameters of the model dynamics affecting price and execution for
the MM, each of which naturally vary over time in real markets;
this feature has not received much attention so far as existing works
consider a single instantiation of parameters for the underlying
model. We go beyond a fixed parametrisation — henceforth called
the Fixed setting — with two extended learning settings: the Ran-
dom setting initialises each instance of the model with (bounded)
uniformly random values for the three parameters; the Strategic
setting features the previously mentioned “market player”, a learner
whose objective is to minimise cumulative reward in a zero-sum
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game with the market maker. The Random and Strategic settings
are more realistic than the Fixed setting and pose a significantly
more difficult challenge for the market making agent. We show that
MM strategies trained in each of these settings yield significantly
different behaviour, and, moreover, that adversarial training has
benefits beyond its immediately obvious implications.

2 TRADING MODEL

We consider a standard model of market making [2, 3] in which an
MM trades a single asset of price Zn+1 = Zn +bn∆t +σnWn , where
bn and σn are the drift and volatility coefficients. Randomness in
this model derives from a sequence of independent Normal random
variates,Wn , each with zero mean and variance ∆t . The process
begins with initial value Z0 = z and continues until step N is
reached. At each step, the MM places limit orders about Zn at
which it is willing to buy (bid) and sell (ask), denoted by p+n and p−n ,
respectively; these may be updated at each timestep at no cost.

The probability of orders being executed is dictated by market
liquidity and the prices p±n . These interactions are modelled by
independent Poisson processes, denoted by N+n and N−

n for the
bid/ask sides, respectively, with intensities λ±n . The agent’s inven-
tory is then captured by the difference between these two terms,
Hn = (N+n − N−

n ) ∈ [H ,H ], where H0 is known and the values of
Hn are constrained such that trading stops on the opposing side of
the book when either limit is reached. The arrival intensities are
defined by λ±n = A±

ne
−k±

n |p
±
n−Zn | , where A±

n ,k
±
n > 0 describe the

rate of market order arrivals and distribution of volume in the book.
In this framework, the evolution of the market maker’s cash is

given by the difference relation, Xn+1 = Xn + p
−
n∆N

−
n − p+n∆N

+
n ,

where ∆N±
n ≡ N±

n+1 − N±
n . We have that the cash flow is a com-

bination of: the profit due to executing at prices away from Zn ;
and the change in value of the MM’s inventory. The total value
accumulated by the MM by timestep n may thus be expressed as the
sum of the cash held and value invested Π(X ,H ,Z ) = X +HZ . This
is known as the mark-to-market (MtM) value of the MM’s portfolio.

Game formulation. The proposed model can be used to define
a zero-sum stochastic game between an MM and an adversary,
which acts as a proxy for all other market participants.

Definition 2.1. [Market Making Game] The game has N stages.
At each stage, MM chooses p± and the adversary b, A±, and k±.
The stage payoff is given by expected change in MtM value of the
MM’s portfolio, i.e., E[∆Π]. The total payoff paid by the adversary
to MM is the sum of the stage payoffs.

In the full paper [11] we theoretically analyse Nash equilibria
(NE) of the single-stage game (N = 1) for the two cases of variable
{b}with fixedA± andk±; and variableb,A± andk±, and empirically
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show a correspondence between these equilibria and the solutions
to the multi-stage game that we find with adversarial RL.

3 ADVERSARIAL TRAINING

ARL is used to adaptively penalise policies of the MM that are
not robust, i.e., those that are susceptible to exploitation by the
adversary. While there are no guarantees our ARL will reach an NE,
we show that ARL: consistently converges to an approximate NE,
and outperforms past approaches in terms of raw performance and
robustness to model ambiguity. This approach is adapted from [8] to
support incremental actor-critic methods and asynchronous training.
The adversary is trained in parallel with the market maker, and
uses the same state and learning algorithm:
States. The state of the environment s = (tn ,Hn ) contains only
the current time tn =

nT
N = n∆t and the MM’s inventory Hn .

Transitions are governed by the model dynamics in Section 2.
Rewards. The reward function is adapted from the optimisation
objective pioneered by Cartea, Jaimungal, and others, to RL,

Rn = ∆Πn − ζH2
n −

{
0 for t < T ,
ηH2

n otherwise.
(1)

Depending on η and ζ , this formulation can give risk-neutral or
risk-adverse preferences, e.g. if η > 0 and ζ = 0, then the MM is risk
averse and is punished if the terminal inventory HN is non-zero.
Algorithms. Both agents use NAC-S(λ) [13] to learn stochastic
policies, using semi-gradient SARSA(λ) [9] for policy evaluation.
The value functions are represented by compatible [7] radial basis
function networks with accumulating eligibility traces [12].

Learning settings. We investigate three multi-stage variants
of the Market Making Game, each with different restrictions on
the adversary’s strategy. The following three types of adversary in
turn increase the freedom to control the market’s dynamics:
Fixed. The adversary sets bn = 0, A±

n = 140 and k±n = 1.5; these
are chosen to match settings in [2]. This amounts to a single-agent
learning setting with stationary transition dynamics.
Random. Each episode has parameters chosen independently and
uniformly at random from: bn = b ∈ [−5, 5], A±

n = A ∈ [105, 175]
and k±n = k ∈ [1.125, 1.875]. These are chosen at the start of each
episode and remain fixed until termination. This is analogous to
single-agent RL with varying transition dynamics.
Strategic. The adversary choosesbn ,A±

n ,k
±
n at each intra-episode

step of the game (bounded as in Random). This is a fully adversarial
and adaptive learning environment where, unlike e.g. [3], the source
of risk is exogenous and reactive to the policy of the MM.

4 EXPERIMENTS

Training was conducted by initialising each episode with a starting
time t0 chosen uniformly at random from [0.0, 0.95], starting price
Z0 = 100, and inventory H0 ∈ [H = −50,H = 50]. Prices Zn have
fixed volatility σ = 2 between [t0, 1] with increment ∆t = 0.005.

Table 1 shows the performance of MMs trained across all three
learning settings and combinations of η and ζ . We find a strict
ordering of strategies in terms of the Sharpe ratio (E[ΠN ]/V[ΠN ]),
where Fixed < Random < Strategic. For example, when η = ζ = 0,
the MM in Table 1c generates approximately the same mean profit

Table 1: Performance of MM policies learnt in the three different

settings. Reported means and standard deviations were computed

from 105 test episodes against a Fixed adversary.

(a) Market makers trained against the Fixed adversary.

η ζ Term. wealth Sharpe Term. inventory Avg. spread

0.0 0.0 67.0 ± 12.0 5.57 0.56 ± 7.55 1.42 ± 0.02

1.0 0.0 61.3 ± 8.5 7.25 −0.04 ± 1.19 1.76 ± 0.02
0.5 0.0 63.0 ± 9.9 6.34 0.03 ± 1.24 1.67 ± 0.03
0.1 0.0 66.4 ± 9.4 7.06 −0.16 ± 1.86 1.42 ± 0.02

0.0 0.01 63.4 ± 6.8 9.36 0.01 ± 1.45 1.60 ± 0.02
0.0 0.001 66.1 ± 7.4 8.94 0.15 ± 2.97 1.44 ± 0.02

(b) Market makers trained against the Random adversary.

η ζ Term. wealth Sharpe Term. inventory Avg. spread

0.0 0.0 66.7 ± 11.8 5.65 0.38 ± 7.14 1.36 ± 0.05

1.0 0.0 59.4 ± 7.6 7.79 0.02 ± 1.09 1.87 ± 0.02
0.5 0.0 62.9 ± 8.4 7.51 −0.04 ± 1.21 1.68 ± 0.02
0.1 0.0 65.8 ± 9.3 7.07 −0.18 ± 1.57 1.46 ± 0.03

0.0 0.01 64.0 ± 6.7 9.54 −0.06 ± 1.31 1.60 ± 0.02
0.0 0.001 65.9 ± 7.2 9.11 −0.07 ± 2.62 1.44 ± 0.02

(c) Market makers trained against a Strategic adversary.

η ζ Term. wealth Sharpe Term. inventory Avg. spread

0.0 0.0 65.1 ± 6.7 9.78 −0.05 ± 1.94 1.44 ± 0.02

1.0 0.0 60.5 ± 6.8 8.88 −0.02 ± 0.97 1.75 ± 0.02
0.5 0.0 63.3 ± 6.8 9.32 −0.07 ± 1.05 1.60 ± 0.01
0.1 0.0 64.8 ± 6.7 9.72 −0.06 ± 1.37 1.49 ± 0.02

0.0 0.01 62.9 ± 6.7 9.43 −0.03 ± 1.19 1.65 ± 0.02
0.0 0.001 64.3 ± 6.5 9.85 0.0 ± 1.71 1.44 ± 0.01

as in Table 1a, but with half the standard deviation. Interestingly,
we note that in Table 1c the MM achieves this with much lower
variance on terminal inventory, even in the risk-neutral case. These
observations are shown to hold when the MMs are evaluated in
the Random and Strategic environments, suggesting improved
invariance to model specification. We also verify, using empirical
best response computation, that the solutions found by ARL are
(approximately) Nash equilibria of the corresponding game.

5 CONCLUSIONS

We have introduced a new approach for deriving trading strategies
with ARL that are robust to the discrepancies between the market
model in training and testing. We show that our approach leads
to strategies that outperform previous methods in terms of PnL
and Sharpe ratio, and have comparable spread efficiency. This is
shown to be the case for out-of-sample tests in all three of the
proposed settings. In other words, our MMs are not only more
robust tomisspecification, but also dominate in overall performance,
regardless of the reward function used. We verify empirically that
ARL finds equilibria of the multi-stage stochastic game, and that
in some special cases that these correspond to equilibria in the
corresponding single-stage game.
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