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ABSTRACT
Restricted domains have been extensively studied within computa-
tional social choice, initially for voters’ preferences that are total
orders over the set of alternatives and subsequently for preferences
that are dichotomous—i.e., that correspond to approved and disap-
proved alternatives. We contribute to the latter stream of work. We
obtain forbidden subprofile characterisations for various important
dichotomous domains, and we also study profiles with incomplete
information about the voters’ preferences. Specifically, we design
polynomial algorithms to determine whether such incomplete pro-
files admit completions within certain restricted domains.
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1 BACKGROUND
Preferences and their aggregation constitute a central element of
AI research [5]. But well-behaved aggregation mechanisms are not
always easy to find, notably because determining the outcome of
the aggregation is often an intractable task [14]. Luckily, good news
come to light under the assumption that the voters’ preferences
conform to a certain structure, also known as a domain restriction [9].
On a conceptual level, restricted domains represent structures that
arise as natural preference models in many real-life settings.

Restricted domains of preferences that are total orders over the
set of alternatives are well-studied. On the other hand, domains of
dichotomous preferences—although very natural—were developed
only recently by Elkind and Lackner [8]. Suppose that a voter 𝑣 𝑗
either approves or disapproves an alternative 𝑎𝑖 (𝑝𝑖, 𝑗 = 1 or 0, re-
spectively). The dichotomous preferences of all voters are captured
by a profile 𝑃—an𝑚×𝑛 binary matrix for𝑛 voters and𝑚 alternatives.
Elkind and Lackner showed that the following structures of dichoto-
mous preferences—performing some ordering of the voters—admit
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polynomial algorithms in the context of two popular approval-
based multiwinner rules for which determining the winning com-
mittee is known to be NP-hard, namely Proportional Approval
Voting (PAV) [10] and Maximin Approval Voting (MAV) [3]:1

©«
0 1 0
1 0 0
0 1 1

ª®¬
(a) Vote Interval
(VI): for every
alternative, voters
approving it form
an interval of the
ordering.

©«
1 1 0
1 0 0
0 1 1

ª®¬
(b) Vote External In-
terval (VEI): for ev-
ery alternative, vot-
ers approving it are
a prefix or a suffixof
the ordering.

©«
1 1 0
1 0 0
1 1 0

ª®¬
(c) Single-sided VEI
(SVEI): for every al-
ternative, voters ap-
proving it are a pre-
fix of the ordering.

We provide characterisation theorems for the above domains (and
straightforwardly for their dual ones concerning orderings of the
alternatives instead of the voters), by identifying the patterns that
prevent a profile from exhibiting a certain structure. The literature
on domains of total orders contains characterization results using
forbidden patterns, reminiscent to ours [1, 4, 13]. It is also worth
stressing here that, for any domain characterised by a finite number
of forbidden patterns, it is computationally easy to check whether a
preference profile conforms to it. Bartholdi III and Trick [2] designed
the original algorithm for detecting whether a profile is single-
peaked, while Elkind et al. [7] and Bredereck et al. [4] solved the
same exercise for single-crossing preferences.

However, one important aspect has not been considered in the
literature to date: our information about the dichotomous prefer-
ences of the voters will often be incomplete. Either because it is
costly for the voters to report all their preferences, or because they
have not yet formed full preferences when they are asked to express
them, we may have no access to the complete preference profile.
LetM𝑚×𝑛 be the set of all complete𝑚 × 𝑛 matrices with entries “0”
or “1”, and I𝑚×𝑛 the set of all incomplete matrices with entries “0”,
“1”, or “?”. Given matrices 𝑋 ∈ I𝑚×𝑛 and 𝑌 ∈ M𝑚×𝑛 , we say that 𝑌
is a completion of 𝑋 if every cell of known value in 𝑋 has the same

1Although not studied by Elkind and Lackner [8], SVEI is logically stronger than
VEI, and hence also allows for efficiency regarding both PAV and MAV. SVEI embodies
a reasonable restriction in voting scenarios: Assume that the alternatives constitute
the candidates of a specific political party. We may then order the voters from the
most loyal party supporter to the most adversary one so that each candidate firstly
wins the support of the most loyal voter, then possibly also gets a vote from the next
most loyal voter (depending on how convincing she is), and so on.
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value in 𝑌 . It is important to know whether a certain structure can
potentially be manifested in a given incomplete profile, for instance
to understand whether an aggregation method has the chance to
be efficiently applied. We design two polynomial algorithms that
perform this task, and also subsume the analogous algorithms for
the complete case by Elkind and Lackner [8].2

2 COMPLETE PROFILES
For two matrices 𝑋,𝑌 ∈ I𝑚×𝑛 , we say that 𝑋 and 𝑌 are equivalent
if 𝑋 equals 𝑌 after some permutation of rows and columns. The
matrix 𝑋 occurs as a pattern in the matrix 𝑌 if for some submatrix
𝑍 ∈ I𝑘×ℓ of 𝑌 it is the case that 𝑋 is equivalent to 𝑍 . If 𝑋 does not
occur as a pattern in 𝑌 , we say that 𝑌 avoids 𝑋 .

Tucker [15] obtained a combinatorial characterisation for VI
with infinitely many forbidden patterns. We present original char-
acterisations for VEI and SVEI. The former uses Tucker’s result,
while the latter relies on a lemma showing that SVEI is satisfied by
a profile if and only if its consecutive order graph is acyclic.3

Proposition 1. A profile 𝑃 ∈ M𝑚×𝑛 satisfies the VEI property if

and only if it avoids the patterns 𝑍1 =

( 0 1 1
1 0 1
1 1 0

)
, 𝑍2 =

( 1 0 0
0 1 0
0 0 1

)
, 𝑍3 =( 1 1 0

1 0 1
1 0 0

)
, 𝑍4 =

( 0 0 1
0 1 0
0 1 1

)
, and 𝑍5 =

( 1 1 0 0
1 0 1 0

)
.

Proposition 2. A profile 𝑃 ∈ M𝑚×𝑛 satisfies the SVEI property if
and only if it avoids the pattern 𝑋 =

( 1 0
0 1

)
.

The presented characterisation results are also important in that
they guarantee the detection in polynomial time of whether a given
incomplete profile will necessarily conform to a certain restriction.

3 INCOMPLETE PROFILES
Given an incomplete profile 𝑃 ∈ I𝑚×𝑛 , can we detect easily whether
𝑃 admits a completion that conforms to a specific structure? And if
such a completion exists, can we find it?

We know that the problem of detecting whether an incomplete
profile can be completed in a way such that VI is satisfied is NP-
complete [11]. In this work we design polynomial algorithms that
answer our question for SVEI and VEI.

SVEI. The algorithm SVEI-INCOMPLETE is based on the sub-
algorithm FILLING, described below (see Figure 2 for an example).

FILLING(𝑃 ): For an arbitrary cell of unknown value in 𝑃 , check
whether it needs to be filled with “0” or “1” in order to avoid the
forbidden pattern 𝑋 for SVEI. If both values need to be filled, an-
nounce “invalid” and exit; if only one does, then fill it; if neither
does, continue to the next cell. Return the filled profile 𝑃𝑓 .

SVEI-INCOMPLETE(𝑃 ): Apply FILLING(𝑃 ). If “invalid” is announced,
exit with failure. Otherwise, extend the the consecutive order graph
of 𝑃 to a linear order 𝐿 and obtain an ordered profile using 𝐿.

Proposition 3. SVEI-INCOMPLETE detects in polynomial (in𝑚 ×𝑛)
time whether a profile of dichotomous preferences possibly satisfies

2Regarding incomplete profiles of total orders, Lackner [12] and Elkind et al. [6]
were among the first to address the problem of extending partial preferences to full
preferences that respect a given restriction.

3The consecutive order graph of a profile 𝑃 consists of 𝑛 nodes, one for each
voter, and of directed edges from 𝑣𝑗 to 𝑣ℓ whenever there exists alternative 𝑎𝑖 such
that 𝑣𝑗 approves 𝑎𝑖 and 𝑣ℓ disapproves 𝑎𝑖 .

©«
1 ? ? 0
? 0 1 1
0 ? 1 ?

ª®¬
(a) original profile

©«
1 ? 1 0
1 0 1 1
0 ? 1 ?

ª®¬
(b) filling

𝑣1

𝑣2

𝑣3

𝑣4

(c) graph

𝑣3 𝑣1 𝑣4 𝑣2

(d) linearisation

©«
1 1 0 ?
1 1 1 0
1 0 ? ?

ª®¬
(e) ordering

©«
1 1 0 0
1 1 1 0
1 0 0 0

ª®¬
(f) completing

Figure 2: SVEI-INCOMPLETE: An example.

SVEI. If it does, SVEI-INCOMPLETE also finds an appropriate order of
the voters that we can easily complete in polynomial time.

VEI. The key intuition regarding the property of VEI is that a
profile 𝑃 satisfies it if and only if it also satisfies SVEI after having
all values of certain rows flipped. But how can we know which
values may need to be flipped? This problem is solved by the algo-
rithm VEI-INCOMPLETE, which we informally explain here.

First, for any two rows that contradict each other, i.e., contain
the pattern

( 1 0
0 1

)
, we know that exactly one of them needs to be

flipped. Similarly, if two rows match, i.e., contain the pattern
( 1 0
1 0

)
,

then either both or neither of them should be flipped.
Starting from an arbitrary row 𝑖 , the algorithm EXPANDING gath-

ers together those rows that match 𝑖 and—after flipping them—those
that contradict 𝑖 . Next, the same process is repeated for rows that
are not related to 𝑖 in any of the aforementioned ways, until a
partition of all rows is obtained.

The algorithm COARSENING applies the same idea, but on sets
of rows instead of single ones: Two such sets 𝑋 and 𝑌 are merged
if some row from 𝑋 matches some row from 𝑌 ; and if some row
from 𝑋 contradicts some row from 𝑌 , then 𝑋 is merged with all
rows in 𝑌 after their values are flipped. Continuing this way, the
coarsest possible partition of the rows of a given profile is formed.
If at any point two rows in the same set contradict each other, then
we exit with failure. Otherwise, we can apply SVEI-INCOMPLETE.

Proposition 4. VEI-INCOMPLETE detects in polynomial (in𝑚 × 𝑛)
time whether a profile of dichotomous preferences possibly satisfies
VEI. If it does, VEI-INCOMPLETE also finds an appropriate order of
the voters that we can easily complete in polynomial time.

4 CONCLUSION
We have initiated the study of restricted domains of dichotomous
preferences under settings of incomplete information. We have
characterised two important such domains via forbidden patterns
and have designed polynomial algorithms for detecting whether a
profile’s completion will possibly belong to a given domain. These
results are potentially interesting for scenarios of judgment aggre-
gation as well, where analogous restrictions to the ones investigated
in this paper guarantee majority-consistent outcomes.
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