
Verification-Guided Tree Search
Extended Abstract

Alvaro Velasquez
Air Force Research Laboratory

Rome, New York
alvaro.velasquez.1@us.af.mil

Daniel Melcer
Northeastern University
Boston, Massachusetts

melcer.d@northeastern.edu

ABSTRACT
Monte-Carlo Tree Search (MCTS) algorithms have been adopted
by the artificial intelligence planning community for decades due
to their ability to reason over long time horizons while providing
guarantees on the convergence of the solution policy. In recent
years, such algorithms have been modernized through the integra-
tion of Convolutional Neural Networks (CNNs) as part of the state
evaluation process. However, both traditional and modern MCTS
algorithms suffer from poor performance when the underlying re-
ward signal of the environment is sparse. In this paper, we propose
a verification-guided tree search solution which incorporates a re-
ward shaping function within modernMCTS implementations. This
function leverages the mathematical representation of the underly-
ing objective by leveraging techniques from formal verification.

KEYWORDS
Monte Carlo search, zero learning, reward shaping, sparse rewards
ACM Reference Format:
Alvaro Velasquez and Daniel Melcer. 2020. Verification-Guided Tree Search.
In Proc. of the 19th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2020), Auckland, New Zealand, May 9–13, 2020,
IFAAMAS, 3 pages.

1 INTRODUCTION
In recent years, powerful MCTS variants using deep CNNs have
been proposed for the game of Go and other board games [1] [8]
[10] [9] [7]. However, these modern MCTS implementations, some-
times referred to as zero learning [3], are not yet capable of handling
arbitrary objectives with sparse reward signals. We seek to mitigate
this by collecting statistics over the objective representation (i.e. the
automaton which encodes the objective) as opposed to the implicit
statistics collected in traditional reinforcement learning approaches
over a state-action representation. These statistics capture the util-
ity of individual transitions in the automaton that were particularly
conducive to accomplishing the underlying objective. This is useful
as a complement to existing MCTS approaches by reasoning over
both the representation of agent-environment dynamics through
deep convolutional neural networks as well as the representation
of the underlying objective via automata. We call this Verification-
Guided Tree Search (VGTS) and argue that this is useful due to
the low dimensionality of the automaton that represents the objec-
tive. This means that individual transitions within the automaton
correspond to many transitions within the Monte Carlo tree.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

2 METHODOLOGY
We assume that the agent-environment dynamics are modeled by a
Markov Decision Process (MDP)M = (S, s1,A,T ,R), where S is a
set of states, s1 is the initial state, A is a set of actions, T (s ′ |s,a) ∈
[0, 1] denotes the probability of transitioning from state s to state s ′
when action a is taken, and R : S ×A× S 7→ R is a reward observed
when action a is taken in state s leading to state s ′. We denote by
L : S 7→ 2AP a labeling function mapping a state in the MDP to a
set of atomic propositions AP which hold for that given state.

An LTLf [5] formula ϕ is defined inductively by the logical con-
nectives and operators p, !ϕ,ϕ |ψ ,Xϕ, Fϕ,Gϕ,ϕUψ , where p ∈ AP is
an atomic proposition, !, | denote logical negation and disjunction,
and ϕ,ψ are LTLf formulas. The operator semantics are defined
as follows: Xϕ holds iff ϕ holds in the next time step, Fϕ holds
iff ϕ holds at some point in the future, Gϕ holds iff ϕ holds in all
time steps in the future, ϕUψ holds iff ψ holds in some time step
in the future and ϕ holds until ψ holds. Any LTLf specification
can be equivalently represented as a deterministic finite automaton
A = (Ω,ω1, Σ,δ , F) [4], where Ω is the set of nodes with initial
node ω1 ∈ Ω, Σ = 2AP is an alphabet defined over a given set of
atomic propositions AP , δ : Ω × Σ 7→ Ω is the transition function,
and F ⊆ Ω is the set of accepting nodes. We use (ω,σ ,ω ′) ∈ δ to
denote that σ ∈ Σ causes a transition from node ω to ω ′.

A trace is defined as a sequence of nodes ω1,ωi1 ,ωi2 , . . . start-
ing in the initial node ω1 such that, for each transition, we have
(ωik , ·,ωik+1) ∈ δ . An accepting trace is one which ends in some
node belonging to the accepting set F . Such a trace is said to satisfy
the LTLf specification being represented by the automaton. Our fo-
cus is on deriving a policy for a given MDP such that it is conducive
to satisfying a given LTLf specificationϕ, where both of these share
the same set of atomic propositions. As a result, transitions in the
MDP can cause transitions in the automaton representation of ϕ.

At a high-level, MCTS functions by (i) simulating experience
in a given state st and (ii) taking an action in said state based
on the value estimates obtained from the simulated experience.
See Figure 1. In order to accelerate convergence and mitigate the
problem of sparse rewards, we extend the tree policy within MCTS
by integrating information about A. In particular, we keep track
of how often each transition in A has been part of a trace which
satisfies the underlying LTLf objective of the agent.
πtree(st ,ωt) = argmaxa∈A (Q(st ,a) +U (st ,a) + Y (st ,a,ωt)) (1)

U (st ,a) = cUCBπCNN(a |st)

√∑
b ∈A(st) N (st ,b)

1 + N (st ,a)
(2)

Y (st ,a,ωt) = max
s ∈subtree(st+1)

(
max

ω→ω′∈traces(ωt+1)
VLTL(ω,ω

′)

)
(3)

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

2026

Figure 1: Assume the automaton A = (Ω,ω1, Σ =

2{a, b},δ , F = {ω4}) encodes the objective. (a) Given the cur-
rent state s1 with L(s1) = {a}, a transition (ω1, {a},ω1) ∈ δ
in the automaton occurs and an action is selected accord-
ing to the tree policy (1), where U (s,a) (2) is an exploration
function known as the Upper Confidence Bound [2]; Q(s,a)
denotes the ratio of (i) the number of times the state-action
pair s,a has led to a trajectory which satisfies the underlying
objective to (ii) the total number of timesN (s,a) that s,a have
been encountered; and Y (s,a,ω) searches through the tree
(automaton) starting in state s (nodeω) and returns the great-
est VLTL value observed in the automaton. Here, VLTL(ω,ω ′)

is the ratio of (i) the number of times the automaton tran-
sition (ω, ·,ω ′) has led to a trace which satisfies the under-
lying objective to (ii) the total number of times (ω, ·,ω ′) has
been encountered. Another state s2 and its label L(s2) = ∅

are observed and the transition (ω1, ∅,ω2) ∈ δ occurs. (b) If a
new leaf node is added to the tree, its expected value is de-
termined via a rollout policy or neural network inference.
We adopt the latter and use a deep convolutional neural net-
work to obtain the values πCNN(a |s) and VCNN(s) denoting
move probabilities and predicted value of the input state, re-
spectively. A new state is observed and a transition in the
automaton may occur. If the automaton reaches the accept-
ing node ω4, the objective has been satisfied and a positive
reward is observed. (c) The value estimates are propagated
up the tree in order to update previous value estimates for
existing states. After some number of expansions have oc-
curred, (d) the agent takes an action in the real environment
following the play policy πplay(a |s) ∝ N (s,a)/

∑
b N (s,b). Sam-

ples of the form (st ,πplay(·|st), r) are stored in order to train
the CNN, where r = 1 if and only if the trajectory corre-
sponds to a satisfying trace of the automaton of the given
LTLf specification and r = 0 otherwise.

Figure 2: Performance of VGTS and MCTS as a function
of the number of play steps executed in the environment
described in Section 3. Both VGTS and MCTS are imple-
mented with tree uncertainty backups ([6], Section 3.1) to
improve exploration. Average rate and variance with which
play steps were part of a trajectory that satisfied the LTLf
objective are reported for 100 random instances of the envi-
ronment.

3 EXPERIMENTAL SETUP
We evaluate VGTS using a 10x10minecraft-like environment similar
to [11]. The environment contains a home base, 3 randomly placed
wood resources, and a randomly placed factory. The agent has 6
possible actions corresponding to moves in any of the cardinal
directions, an action to interact with the environment, or no-op. If
the agent is standing on a wood tile and chooses the interact action,
the wood inventory is increased by 1 and the tile disappears. If the
agent is on top of a factory tile and interacts, the wood inventory
decreases by 1 and the finished product, or tool, inventory increases
by 1. Otherwise, the interact action does nothing. Each instance has
an object layout that is randomly generated at the start of training.

The goal of the agent is to return home with three tools in
order to build a house. We define the objective of the agent as:
eventually satisfy the goal of building a house, and every time a
wood is collected, eventually go to a factory. This is denoted by the
LTLf formula G(wood =⇒ Ff actory) & F(tools ≥ 3 & house).
The agent can only carry 2 woods at a time. Thus, it must alternate
between collecting wood and going to the factory. A reward is
observed upon completion of the task, thereby ending the episode.
Alternatively, the episode ends with no reward after 100 play steps.

The CNN used during the expansion phase of VGTS to obtain
πCNN,VCNN consists of a shared trunk with separate policy and
value heads. The input to the neural network is a number of stacked
2D layers that are the size of the board. One layer contains a one-hot
representation of the position of the agent. There is a layer for every
tile type (i.e. wood, factory, etc.) with a value of 1 in the positions
where that tile is placed in the environment and 0 otherwise. Lastly,
there is a constant-valued layer for each inventory item type (i.e.
wood, tool) with a value between 0 and 1 as determined by the
current number of held item type divided by the maximum capacity
of that item. These maximum capacities are 2 for the wood items
and 3 for the tools. These layers are all stacked together and used
as input to the neural network. In a similar manner to [10], we
optimize the loss function L = (r −VCNN)

2 −πTplay logπCNN. Figure
2 demonstrates the benefit of VGTS over MCTS in this case.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

2027

REFERENCES
[1] Thomas Anthony, Zheng Tian, and David Barber. 2017. Thinking fast and slow

with deep learning and tree search. In Advances in Neural Information Processing
Systems. 5360–5370.

[2] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of
the multiarmed bandit problem. Machine learning 47, 2-3 (2002), 235–256.

[3] Tristan Cazenave, Yen-Chi Chen, Guan-Wei Chen, Shi-Yu Chen, Xian-Dong Chiu,
Julien Dehos, Maria Elsa, Qucheng Gong, Hengyuan Hu, Vasil Khalidov, et al.
2020. Polygames: Improved Zero Learning. arXiv preprint arXiv:2001.09832
(2020).

[4] Giuseppe De Giacomo andMoshe Vardi. 2015. Synthesis for LTL and LDL on finite
traces. In Twenty-Fourth International Joint Conference on Artificial Intelligence.

[5] Giuseppe De Giacomo and Moshe Y Vardi. 2013. Linear temporal logic and linear
dynamic logic on finite traces. In Twenty-Third International Joint Conference on
Artificial Intelligence.

[6] Thomas M Moerland, Joost Broekens, Aske Plaat, and Catholijn M Jonker. 2018.
Monte Carlo Tree Search for Asymmetric Trees. arXiv preprint arXiv:1805.09218
(2018).

[7] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,
Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,

Thore Graepel, et al. 2019. Mastering atari, go, chess and shogi by planning with
a learned model. arXiv preprint arXiv:1911.08265 (2019).

[8] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. 2016. Mastering the game of Go with deep neural
networks and tree search. nature 529, 7587 (2016), 484.

[9] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. 2017. Mastering chess and shogi by self-play with a general reinforcement
learning algorithm. arXiv preprint arXiv:1712.01815 (2017).

[10] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja
Huang, Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton,
et al. 2017. Mastering the game of Go without human knowledge. Nature 550,
7676 (2017), 354.

[11] Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A McIlraith.
2018. Teaching multiple tasks to an RL agent using LTL. In Proceedings of the
17th International Conference on Autonomous Agents and MultiAgent Systems.
International Foundation for Autonomous Agents and Multiagent Systems, 452–
461.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

2028

	Abstract
	1 Introduction
	2 Methodology
	3 Experimental Setup
	References

