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Multi-agent decision making is prevalent in many real-world ap-
plications, such as wind farm control [11], traffic light control [12]
and warehouse commissioning [5]. In these settings, agents need
to cooperate to maximize a shared team reward [3].

Coordination in multi-agent settings is challenging, due to the
combinatorial increase in terms of the number of agents. Therefore,
it is computationally intractable to consider all agents’ actions
jointly. Fortunately, in many real-world settings, an agent is only
directly influenced by a small subset of neighboring agents. In
this case, the team reward can be factorized over the groups of
agents that influence each other. Such a sparse factorization must
be exploited to keep multi-agent decision problems tractable.

In this work, we consider learning to coordinate in multi-agent
multi-armed bandit problems (Section 1), and propose the Multi-
Agent Thompson Sampling (MATS) algorithm (Section 2), which
exploits sparse interactions in multi-agent systems. We assume that
the groups of interacting agents are known beforehand, which is
often the case in real-world applications.

Our method uses the exploration-exploitation mechanism of
Thompson sampling (TS). TS has been shown to achieve high em-
pirical performance [4]. Moreover, TS is a Bayesian method, which
allows for the specification of prior knowledge through belief dis-
tributions. We argue that this is an important property to have in
many practical applications, such as influenza mitigation [7, 8].
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We compareMATS against Sparse Cooperative Q-Learning (SCQL)
and Multi-Agent Upper Confidence Exploration (MAUCE) on two
synthetic settings, i.e., Bernoulli 0101-Chain and Gem Mining (Sec-
tion 3). MATS improves upon the state of the art with respect to
accuracy, learning speed and computational speed.

1 PROBLEM DESCRIPTION
In this work, we adopt themulti-agentmulti-armed bandit (MAMAB)
setting [2]. A MAMAB is similar to the multi-armed bandit formal-
ism [10], but considers multiple agents factored into groups. When
the agents have pulled a joint arm, each group receives a reward.
The goal shared by all agents is to maximize the total sum of re-
wards. Formally,

Definition 1.1. A multi-agent multi-armed bandit (MAMAB) is a
tuple ⟨D,A, f ⟩ where
• D is the set ofm enumerated agents. This set is factorized
into ρ, possibly overlapping, subsets of agents De .
• A = A1 × · · · × Am is the set of joint actions, or joint arms,
which is the Cartesian product of the sets of actions Ai for
each of them agents in D. We denote Ae as the set of local
joint actions, or local arms, for the group De .
• f (a) is a stochastic function providing a global reward when
a joint arm, a ∈ A, is pulled. The global reward function is
decomposed into ρ noisy, observable and independent local
reward functions, i.e., f (a) =

∑ρ
e=1 f

e (ae ). A local function
f e only depends on the local arm ae of the subset of agents
in De .

We denote the mean reward of a joint arm as µ (a) =
∑ρ
e=1 µ

e (ae ).
For simplicity, we refer to the ith agent by its index i .

The objective is to minimize the expected cumulative regret [1],
which is defined as:

E [R (T ,π )] ≜ E


T∑
t=1

µ (a∗) − µ (at )
������
π


(1)

where a∗ is the optimal joint arm and at is the joint arm pulled at
time t .

Cumulative regret can be minimized by ignoring the factored
structure of the MAMAB, e.g., by using vanilla TS. This leads to
a combinatorial problem with respect to the number of agents.
Therefore, it is highly beneficial to consider the sparse structure to
tractably solve coordination in multi-agent systems.
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2 METHODS
We propose the Multi-Agent Thompson Sampling (MATS) algo-
rithm for decision making in factored multi-agent multi-armed
bandit problems. Consider a MAMAB with groups De . First, we
define a set of priors over the local mean rewards µe (ae ) of each
action a. Next, at each time step t , MATS draws a sample θet (a

e )
from the posterior for each group and local arm given the history
of all past observations, Ht−1. In the case of TS, we choose the
arm with the highest sample. However, in our case, as the expected
reward is decomposed into several local means, we have to pick the
joint action a that maximizes the sum over samples θet (a

e ). Note
that a single agent may have conflicting local optimal arms over the
groups it is part of. To this end, we use variable elimination (VE),
which computes the maximizing joint action without enumerating
over all joint actions [6]. Finally, the joint arm that maximizes the
total expected reward is pulled and a reward f et (a

e
t ) will be ob-

tained for each group. MATS is formally described in Algorithm 1.

Data: Prior Qe
ae per group De and local action ae

H0 ← {}
for t ∈ [1..T ] do
∀e ∈ [1..ρ] ,ae ∈ Ae :

θet (a
e ) ∼ Qe

ae ( · | Ht−1)

at ← argmaxa
∑ρ
e=1 θ

e
t (a

e ) using VE
⟨f et (a

e
t )⟩

ρ
e=1 ← Pull joint arm at

Ht ← Ht−1 ∪
{
⟨aet , f

e
t (a

e
t )⟩

ρ
e=1

}

end
Algorithm 1: MATS

3 RESULTS
We demonstrate the performance of MATS on two benchmark set-
tings, i.e., Bernoulli 0101-Chain and Gem Mining [2]. Bernoulli
0101-Chain is a coordination problem that considers a chain of
agents with actions in {0, 1}, where the optimal joint action is an
alternating sequence of zeroes and ones. Gem Mining considers
a set of mines and nearby villages, where the village workers are
sent to excavate the mines. As villages can be connected to the
same mine, coordination between the villages is necessary to op-
timally allocate workers to mines. In both settings, the rewards
are Bernoulli-distributed, per group of agents. We compare MATS
against the state-of-the-art methods, MAUCE and SCQL, as well
as against a random policy baseline (rnd). For MAUCE and SCQL,
we set the exploration parameters to the values previously deter-
mined for our experimental settings [2]. For MATS, we use non-
informative Jeffreys priors [9] to the Bernoulli likelihoods used
in the experimental settings, which lead to Beta posteriors. The
results are shown in Figure 1. We observe that in both settings,
MATS consistently outperforms MAUCE as well as SCQL. We can
see that MATS solves the Bernoulli 0101-Chain problem in only a
few time steps, while MAUCE still pulls many sub-optimal actions
after 10000 time steps (see Figure 1(a)). In the more challenging
Gem Mining problem, the cumulative regret of MAUCE is three
times as high as the cumulative regret of MATS around 40000 time
steps (see Figure 1(b)).
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Figure 1: Cumulative normalized regret averaged over 100
runs for (a) Bernoulli 0101-Chain and (b) GemMining. Both
the mean (line) and standard deviation (shaded area) are
plotted.

We argue that MATS performs well due to the additional in-
formation about the reward and prior distributions. In contrast to
MAUCE, which has fixed symmetric exploration bounds, MATS can
adapt exploration of the arms based on the shape of the posteriors—
in this case, a Beta distribution, which can be skewed. Additionally,
exploration parameters need to be determined for MAUCE, which
are challenging to choose based on prior knowledge about the
data. In contrast, MATS uses direct general descriptions of the data,
which are often available.
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