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ABSTRACT

In this paper, we propose a general approach that uses online
human demonstrations to directly shape an agent’s behav-
iors. This approach can alleviate the uncertainties caused
by human critiques, while at the same time, removing the
offline pre-training in most existing learning from demonstra-
tion approaches. Using this approach, we also investigate the
interplay among different shaping methods for more robust
and efficient interactive learning between humans and agents.
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1 INTRODUCTION

Interactive Reinforcement Learning (InterRL) provides a
human-in-the-loop computing paradigm that enables the in-
tegration of human knowledge (in terms of advice, preference
or demonstrations) into agent learning process such that the
overall learning cost can be reduced [11]. Thus far, plenty of
work has investigated how humans can help RL agents to
learn more efficiently through different assumptions of inter-
action modes, combination methods or transferred knowledge
[3, 5–7, 10, 12]. However, these approaches require constantly
monitoring and labeling the agent’s behaviors, which is effort-
consuming due to human’s cognitive burdens, as well as the
complexity of states and actions. Compared to observing and
critiquing an agent’s behaviors, a more direct way is to let
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humans provide more explicit examples of desired behaviors.
Learning from demonstration (LfD) [14] enables an agent
to learn a complex task by using human demonstrations in
solving the same task. However, most existing LfD methods
often rely on sophisticated supervised learning techniques
to fit the demonstrator’s behavior, but typically do not use
environmental reward signal to improve the agent’s learning
policy. While some studies combine human demonstrations
with RL rewards [4] , it requires a prior offline process to
collect human demonstrations in order to derive a potential
function for reward shaping. This assumption is not always
possible in agent-human interaction settings, when an agent
must interact with humans in a timely online manner.

The other common issue of current research is the gener-
alization problem. The human knowledge is integrated into
agent learning process by shaping a specific component of RL,
i.e., the value function, action, reward or policy [1]. While
this specific design can leverage explict learning algorithm
or representation to derive powerful InterRL methods, it
inevitably faces generalization and interpretation problems.
The methods may perform well for some types of algorithms
or domains, but poorly on others, thus, general observation-
s or conclusions claimed may not hold consistently. Thus,
due to lack of deep and consistent understanding of their
benefits and shortcomings, existing InterRL methods usually
cannot be readily applied in various domain settings without
substantial effort and further hand-engineering.

To this end, this paper proposes a new InterRL approach
that resorts to direct human demonstrations to speed up
learning efficiency by biasing the agent’s exploration process,
but at the same time, uses the agent’s environmental reward
signals to guarantee final learning performance. A human
trainer provides immediate demonstrations using the same
environmental inputs as the agent. Then, these demonstra-
tions are directly integrated into the agent’ learning process
in order to shape its behaviors. Using this approach, this
paper then proposes an adaptive shaping algorithm that is
capable of combining the benefits of several shaping methods
for more robust and efficient interactive learning between the
agent and human. By implementing the algorithm in two

Extended Abstract  AAMAS 2020, May 9–13, Auckland, New Zealand

2065



classic RL domains and analyzing the interplay dynamics
among different InterRL methods, some interesting conclu-
sions can be achieved, which provide valuable insights into
understanding the role and impact of various shaping meth-
ods and human factors (the likelihood, correctness and weight
of human feedbacks) in human-agent interactive learning.

2 DESIGN

In the existing InterRL methods, human trainers perceive
the agents’ states, actions or trajectories and provide scalar
numeric feedbacks or preferences that indicate how good of
the current behavior. The agent, in response, tries to learn
a policy directly based on the human feedback signals, or
estimate a hidden function that approximates the human
feedback such that its behavior can be adjusted to align with
this estimate. Unlike these observing-and-critiquing InterRL
methods, we let human trainers step in the agent’s learning
process while providing demonstrations at the same time.
At each time step, with certain possibility, a human trainer
makes decisions based on the same environmental inputs and
action choices as the agent. A reward vector is employed to
indicate the human’s reward signals regarding all the action
choices in a state. When the human has chosen an action at
this time step, the corresponding value in the reward vector
is filled with a positive value of 𝑟ℎ, and the values for other
actions are filled with−𝑟ℎ. Therefore, the value of 𝑟ℎ indicates
the influcence magnitude of human’s demonstrations on the
agent’s learning process. The reward vector is then applied
to update the accumulated human reward function 𝐻, which
is then intergraded into the agent’s learning process in order
to shape its behaviors using various InterRL methods.

Since different kinds of InterRL methods embody vari-
ous characteristics and advantages in different domains, it is
natural to explore the combinatoric space of these learning
methods in order to derive more robust InterRL methods.
Using the above design methodology, we then investigate how
different kinds of InterRL methods can interact with each
other, and how this interplay can impact the final learning
performance. Assuming a set of InterRL methods, in each
learning episode, we choose an InterRL method based on
its weight. Then, the chosen InterRL method runs for one
episode and returns the similarity value for each method
in the portfolio and the total accumulated reward for the
current running method. Since the similarity maintains the
policy similarity between each method and the current run-
ning method, the weights of all methods can be updated
proportionally to the similarity between these two methods.

3 EXPERIMENT

We evaluate our method in the two benchmark RL domains
Pac-Man and Cart-Pole. Following [9], four explicit Inter-
RL methods are considered: the Action Biasing (AB), the
Control Sharing (CS), the Reward Shaping (RS) and the Q
Augmentation (QA). In order to quantitatively study the
advantages and disadvantages of different methods in vari-
ous parameter settings, we first obtained the optimal policy

using standard Q-learning to simulate completely correct
human guidance, and introduced two extra parameters: 𝐿
(the likelihood of feedback) which represents the probability
that the human provides guidance at each time step, and 𝐶
(the consistency of feedback) which represents the probability
that the human provides the optimal instructions correct-
ly [2, 5, 8, 13]. Results under different settings of 𝐿 and 𝐶
show that none of the four individual InterRL methods can
achieve a parameter-independent performance. Especially,
human factors such as correctness and influence of human
guidance play a crucial role in biasing the performance of each
InterRL method. Generally, when the correctness of human
guidance is not high enough, the individual InterRL methods
are more likely to fail and may lead to divergence of learn-
ing process. Moreover, for the value-based and reward-based
methods to be more efficient, human reward should be set to
a relatively low value to reduce its influence. The proposed
adaptive shaping algorithm, due to the interplay between
different methods, can take the benefits of each method to
achieve a more robust and efficient learning performance.

We then report how real human trainers will perform using
the proposed InterRL approach and the adaptive shaping
algorithm. Results show that AB and CS are generally more
efficient than RS and QA in real human scenarios. Although
the individual InterRL methods perform variously in the same
parameter setting, the dynamic interplay of these methods
can greatly promote learning performance. The interplay of
InterRL methods presents an interesting phenomenon. In
Pac-Man, although AB alone can already guarantee a good
performance, it still faces the problem that an occasional
error action given by the human can potentially bias the
agent’s learning process. By slightly choosing other InterRL
methods during the early stage, particularly those indirectly
affecting the actions and policies (RS and QA), the learning
performance can be greatly promoted. Situations are a bit
different in Cart-Pole where the four individual methods
perform similarly and only slightly better than Q-learning.
Since the benefit of human learning is not as apparent as that
in simpler discrete domains, no specific InterRL methods can
dominate the dynamic interplay process.

Results also show that the simulated oracle produces lower
quality performance than the real human. The result is a
bit surprising since it is believed that the optimal strategy
generated by the oracle should be more useful than the
flawed data by the human. This phenomenon suggests the
important role of human factors in an agent’s RL process,
that is, although human reinforcement is generally flawed, the
informationally rich knowledge of human learning can bring
about significant benefits over the flawless yet poor agent
learning. Compared to agents, humans optimize for outcomes
(e.g., exploration, novelty, or near-danger experiences), which
are not always directly related to task performance [7].
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