
Learning to Cooperate: Application of Deep Reinforcement
Learning for Online AGV Path Finding

Extended Abstract

Yi Zhang, Yu Qian, Yichen Yao, Haoyuan Hu, Yinghui Xu
Cainiao Network

{shuding.zy,qianyu.qy,eason.yyc,haoyuan.huhy}@cainiao.com,renji.xyh@taobao.com

ABSTRACT
Multi-agent path finding (MAPF), naturally exists in applications
like picking-up and dropping-off parcels by automated guided ve-
hicles (AGVs) in the warehouse. Existing algorithms, like conflict-
based search (CBS), windowed hierarchical cooperative A* (WHCA),
and other A* variants, are widely used to find the shortest paths
in different manners. However, in real-world environments, MAPF
cases are dynamically generated and need to be solved in real time.
In this work, a decentralized multi-agent reinforcement learning
(MARL) framework with multi-step ahead tree search (MATS) strat-
egy is proposed to make efficient decisions. Through performing
experiments on a 30 × 30 grid world and a real-world warehouse
case, our proposed MARL policy is proved to be capable of: 1) scal-
ing to a large number of agents in real-world environment with
online response time within acceptable levels; 2) outperforming
existing algorithms with shorter path length and solution time, as
the number of agents increases.

KEYWORDS
Multi-agent path finding; Multi-agent reinforcement learning

ACM Reference Format:
Yi Zhang, Yu Qian, Yichen Yao, Haoyuan Hu, Yinghui Xu. 2020. Learning to
Cooperate: Application of Deep Reinforcement Learning for Online AGV
Path Finding. In Proc. of the 19th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2020), Auckland, New Zealand, May
9–13, 2020, IFAAMAS, 3 pages.

1 INTRODUCTION
In the modern warehouses and factories, automated guided vehicles
(AGVs) are widely utilized to perform end-to-end transportation
tasks [17]. Variants of multi-agent path finding (MAPF) problems
are raised for optimizing the efficiency of AGVs [7, 8]. In the litera-
ture, two categories of algorithms are popular for solving MAPF:

A*-based algorithms: rely on complete observations and uti-
lize A* to calculate full paths for agents, which could work in both
centralized (e.g. conflict-based search (CBS) [5, 12], windowed hier-
archical cooperative A* (WHCA) [12, 13], ORCA [15]) and decen-
tralized manners.

Learning-based algorithms: take local observations as input
to decide one-step or limited length of paths for decentralized agents
(e.g. a learning method called PRIMAL [10]).

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

The former methods allow AGVs to continuously control speeds
and guarantees no conflict if the environment is determined, while
the latter approaches are more robust to the changing world and
more practical for real-time decision making scenario.

In recent years, there has been some seminal work on using deep
architectures to automatically learn heuristics for combinatorial
problems [1, 3, 4, 6, 9, 16]. These advances motivated us to propose
a multi-agent reinforcement learning framework to parameterize
the policy to obtain a stronger heuristic algorithm for path finding
problem. Different from PRIMAL [10], we allow agents closely
following the others, which is promising to fulfill more jobs in AGV
path finding cases. However, to the best of our knowledge, there
is no evidence to prove that a purely-decentralized MARL policy
could perfectly avoid conflicts between agents.

2 LEARNING TO COOPERATE
2.1 MDP Definition
From a decentralized point of view, MDP is defined as:

State skt ∈ S: The state of AGV k at time step t considers in-
formation in the 5 × 5 neighboring grids of the AGV k , each grid
consists of the positions of obstacles and other AGVs, the goal
information of current AGV and other observable AGVs.

Action akt ∈ A: Action space of each AGV is divided into two
parts: move in four cardinal directions or stay still.

Reward Function rkt ∈ R ← S × A: The one step reward is
designed as -0.2 and -0.4 when an AGV moves towards or away
from its target, -0.5 for staying still, -20 for colliding with obstacles
or the other AGVs, +40 for arriving at the target grid.

2.2 MARL framework
Value Network. The state-value function is learned by minimizing
the following loss function derived from Bellman equation:

Lθv =
(
Vθv

(
skt

)
−Vtarдet

(
skt+1;π

))2
(1)

Vtarдet
(
skt+1;π

)
= rkt +Vθ ′v

(
skt+1

)
(2)

Policy Network. In this paper, we use the same objective in the
actor-critic algorithm from Proximal Policy Optimization [11]:

Lθ = Et [min (rt (θ) , clip (rt (θ) , 1 − ϵ, 1 + ϵ))At] (3)

At = −Vθv (st) +
T−1∑
τ=t

rτ γ
τ−t + γT−tVθv (sT) (4)

where θ , θv denotes the parameters of policy network and value
network.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

2077

Algorithm 1: Multi-agent Training with Searching
1: form = 1 to Nepisode do
2: Reset environment and get initial state
3: Stage 1: Sampling
4: while t < T do
5: for k=1 to K do
6: Calculate probability weights π (akt |skt)
7: Create root node v0 with Q0 = 0,N0 = 0
8: while n < N do
9: if any node vl ∈ V is not fully-expanded then
10: Expand v0 → vl by choosing an action sequence

{at ,at+1, . . . at+τ } according to policy π
11: Estimate st+τ and rt+τ by simulating actions
12: Add new child vl to V with
13: else
14: Sample a node vl with the maximum UCB
15: Backward propagation of parent and ancestor

nodes by Ql = Ql + ql , Nl = Nl + 1
16: end if
17: end while
18: Choose v0 with the largest Ql /Nl and its action akt
19: Execute akt and observe reward rkt , next state skt+1
20: end for
21: Store the transitions (skt ,akt , rkt , skt+1) intoM
22: end while
23: Stage 2: Learning
24: Sample a batch of experience: skt , Vtarдet (skt+1;π)
25: Update by minimizing the value loss Eq.(1) over the batch
26: Update as θ ← θ + ∇θLθ according to Eq.(3)
27: end for

2.2.1 Multi-step ahead tree search (MATS) strategy. As shown in
Line 7-18 in Algorithm 1, a tree in depth τ is created to enumerate
possible states of AGV k by randomly sampling actions in the next
τ timesteps from the root node v0. The node depth (time level) τ ,
action from the father node at+τ , state st+τ , cumulated reward
from the root node ql = rt+τ , cumulated score after rounds of
samples Ql , sample times Nl will be stored at each node. N rounds
of Monte-Carlo samples will be performed on all the paths. In each
round, the terminal node with the highest upper confidence bound
(UCB) will be chosen, which is calculated by Eq.(5). Here, Cp is a
positive constant denoting exploration rate.

UCBl =
Ql
Nl
+Cp

p(st ,at)

1 + Nl
(5)

2.2.2 Postprocessing method. To avoid all possible conflicts, we
postprocess actions by the following steps: 1) Return if the given
action is conflict-free; 2) Sort the other four actions in a decreas-
ing order according to the probability weights from the policy; 3)
Choose the first action and go to step 1.

3 RESULTS AND COMPARISON ANALYSIS
3.1 Square grid world
In this 30 × 30 example, there are 7 distributing sources (pick-up
places) and 80 equally spaced sinks (drop-off places).

0
5000

10000
15000
20000

0 20 40 60 80 100

Sc
or

e

Number of AGVs

Score

CBS WHCA MARL MARLS MARLSP PRIMAL

0

500

1000

0 20 40 60 80 100N
um

be
r o

f S
te

ps

Number of Steps

0

0.5

1

0 20 40 60 80 100

Co
lli

sio
n

Ra
te

Collision Rate

0
1
2
3
4
5

0 20 40 60 80 100Ca
lc

ul
at

io
n

Ti
m

e
(m

s)

Calculation Time for one agent and one step

Figure 1: Comparison results for AGV path finding in the
30 × 30 grid world by different algorithms.

In this experiment, the policies we used is learned from the en-
vironment with only 10 agents. As shown in the results in Figure 1,
the scores of the simplest MARL policy (trained without MATS
strategy) and PRIMAL drop dramatically to negative values when
more agents are involved. By forcing all the agents not to follow the
others, many collisions are naturally avoided in PRIMAL. But the
side effect of this assumption for PRIMAL in the AGV path finding
case is its longer paths and lower efficiency than our MARL policy.
With the help of MATS strategy, MARLS overcomes the drawback
of MARL and decreases the collision rates to 10%-20% for 100 agents.
Benefit from postprocessing, MARLSP avoids all conflicts and is
proved to be the best trained policy. Even though WHCA and
CBS provides shorter paths, higher scores than MARLSP in parser
worlds, the calculation time for one-step decision exceeds 20ms
(strict limitation for online use) as the number of agents increases.

3.2 Real-world warehouse
In the real-world warehouse, the graph size is 63 × 115. There are
299 sinks with 8 sources on both west and east sides. Since MARLSP
outperforms many other RL policies in this work, we only compare
MARLSP with WHCA and PRIMAL in this section. Similar with the
results in the previous example, MARLSP beats WHCA only when
the number of agents is larger than 150, and totally wins PRIMAL
in nearly all the conditions.

4 CONCLUSION
In conclusion,MARL policy is efficient and effective for solvingAGV
path finding problems in denser worlds. The multi-step ahead tree
search (MATS) strategy and postprocessing methods in this work
significantly improve the scalability and robustness of policies.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

2078

REFERENCES
[1] Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio.

2017. Neural Combinatorial Optimization with Reinforcement Learning. In 5th
International Conference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Workshop Track Proceedings.

[2] Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M. Lucas,
Peter I. Cowling, Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana,
Spyridon Samothrakis, and Simon Colton. 2012. A Survey of Monte Carlo Tree
Search Methods. IEEE Trans. Comput. Intellig. and AI in Games 4, 1 (2012), 1–43.

[3] Yujie Chen, Yu Qian, Yichen Yao, Zili Wu, Rongqi Li, Yinzhi Zhou, Haoyuan
Hu, and Yinghui Xu. 2019. Can Sophisticated Dispatching Strategy Acquired by
Reinforcement Learning?. In Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems, AAMAS ’19, Montreal, QC, Canada,
May 13-17, 2019. 1395–1403.

[4] Lu Duan, Haoyuan Hu, Yu Qian, Yu Gong, Xiaodong Zhang, Jiangwen Wei, and
Yinghui Xu. 2019. A Multi-task Selected Learning Approach for Solving 3D
Flexible Bin Packing Problem. In Proceedings of the 18th International Conference
on Autonomous Agents andMultiAgent Systems, AAMAS ’19, Montreal, QC, Canada,
May 13-17, 2019. 1386–1394.

[5] Ariel Felner, Jiaoyang Li, Eli Boyarski, Hang Ma, Liron Cohen, TK Satish Kumar,
and Sven Koenig. 2018. Adding heuristics to conflict-based search for multi-agent
path finding. In Twenty-Eighth International Conference on Automated Planning
and Scheduling.

[6] Wouter Kool and Max Welling. 2018. Attention Solves Your TSP. CoRR
abs/1803.08475 (2018). arXiv:1803.08475 http://arxiv.org/abs/1803.08475

[7] Hang Ma and Sven Koenig. 2016. Optimal target assignment and path finding for
teams of agents. In Proceedings of the 2016 International Conference on Autonomous
Agents & Multiagent Systems. International Foundation for Autonomous Agents
and Multiagent Systems, 1144–1152.

[8] Hang Ma, Sven Koenig, Nora Ayanian, Liron Cohen, Wolfgang Hönig, TK Kumar,
Tansel Uras, Hong Xu, Craig Tovey, and Guni Sharon. 2017. Overview: Gener-
alizations of multi-agent path finding to real-world scenarios. arXiv preprint

arXiv:1702.05515 (2017).
[9] MohammadReza Nazari, Afshin Oroojlooy, Lawrence V. Snyder, andMartin Takác.

2018. Deep Reinforcement Learning for Solving the Vehicle Routing Problem.
CoRR abs/1802.04240 (2018). arXiv:1802.04240 http://arxiv.org/abs/1802.04240

[10] Guillaume Sartoretti, Justin Kerr, Yunfei Shi, Glenn Wagner, TK Satish Kumar,
Sven Koenig, and Howie Choset. 2019. PRIMAL: Pathfinding via reinforcement
and imitation multi-agent learning. IEEE Robotics and Automation Letters 4, 3
(2019), 2378–2385.

[11] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).
http://arxiv.org/abs/1707.06347

[12] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant. 2015. Conflict-
based search for optimal multi-agent pathfinding. Artificial Intelligence 219 (2015),
40–66.

[13] David Silver. 2005. Cooperative Pathfinding. AIIDE 1 (2005), 117–122.
[14] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George

van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. 2016. Mastering the game of
Go with deep neural networks and tree search. Nature 529, 7587 (2016), 484–489.

[15] Jur VanDen Berg, Stephen J Guy,Ming Lin, andDineshManocha. 2011. Reciprocal
n-body collision avoidance. In Robotics research. Springer, 3–19.

[16] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer Networks.
In Advances in Neural Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-12, 2015, Montreal, Quebec,
Canada. 2692–2700.

[17] Peter R Wurman, Raffaello D’Andrea, and Mick Mountz. 2008. Coordinating
hundreds of cooperative, autonomous vehicles in warehouses. AI magazine 29, 1
(2008), 9–9.

Extended Abstract AAMAS 2020, May 9–13, Auckland, New Zealand

2079

http://arxiv.org/abs/1803.08475
http://arxiv.org/abs/1803.08475
http://arxiv.org/abs/1802.04240
http://arxiv.org/abs/1802.04240
http://arxiv.org/abs/1707.06347

	Abstract
	1 Introduction
	2 Learning to cooperate
	2.1 MDP Definition
	2.2 MARL framework

	3 Results and comparison analysis
	3.1 Square grid world
	3.2 Real-world warehouse

	4 Conclusion
	References

