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ABSTRACT
In this paper, we investigate the effects of opponent modelling on
multi-objective multi-agent interactions with non-linear utilities.
Specifically, we consider multi-objective normal form games (MON-
FGs) with non-linear utility functions under the scalarised expected
returns optimisation criterion. We contribute a novel actor-critic
formulation to allow reinforcement learning of mixed strategies in
this setting, along with an extension that incorporates opponent
policy reconstruction using conditional action frequencies. Our em-
pirical results demonstrate that opponent modelling can drastically
alter the learning dynamics in this setting.
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1 OPPONENT MODELLING IN MONFGS
In many multi-agent interactions in the real world, agents receive
payoffs over multiple distinct criteria; i.e. the payoffs are multi-
objective in nature. However, the samemulti-objective payoff vector
may lead to different utilities for each participant. Therefore, it is
essential for agents to learn about the behaviour of other agents.

We present the first study of the effects of opponent modelling
on multi-objective multi-agent interactions with non-linear utili-
ties. Specifically, we consider MONFGs [3, 6, 15, 18] with non-linear
utility functions under the scalarised expected returns (SER) optimi-
sation criterion [8, 12]. I.e., we are interested in the utility, pu ,i , an
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agent i derives from the expected payoff over multiple episodes:

pu ,i = ui (E[pπi ]), (1)

where pπi is the payoff agent i receives after executing a joint
(possibly mixed) strategy π , and ui is the utility function of agent i
that maps the expected payoff vector to a scalar utility.

SER stands in contrast to expected scalarised results (ESR) [10],
which is more common in game theory [8]. However, we argue
that there are many settings in which interaction is repeated, and
it is the expected payoff vector that induces the utility, leading
to the SER criterion. SER is the typically employed criterion in
multi-objective planning and reinforcement learning [11].

A mixed strategy profile πNE is a Nash equilibrium (NE) [7] in a
MONFG under SER if for all i ∈ {1, ...,N } and all πi ∈ Πi , with Πi
the set of mixed strategies for agent i:

ui
[
E pi (πNE

i , πNE
−i )

]
≥ ui

[
E pi (πi , πNE

−i )
]

(2)

i.e. πNE is an NE under SER if no agent can increase the utility of
her expected payoffs by deviating unilaterally from πNE . Recent
work [13, 14] has demonstrated that NE need not exist in MONFGs
under SER with non-linear utility functions. For this paper, we
study both MONFGs with (Section 2) and without NEs [20]. As the
agents do not know each other’s utility functions, it becomes key
to explicitly learn about the other agents to reach favourable NEs.

For such opponent modelling, we employ policy reconstruction
using conditional action frequencies [1, 17], i.e., an agent i main-
tains a set of beliefs regarding the strategy of the opponents, using
empirical distributions derived from observing the actions of the
opponent. These are then used to represent the policy π−i of her
opponent and to derive the valuation of her actions (marginalising
out π−i ).

To exploit the opponent model we developed an actor-critic
algorithm [16, 19]. This algorithm has 3 steps. After taking action a
chosen from the policy π (a |θ ), the agent observes a multi-objective
payoffp as well as the opponent’s action a′. Then, the agent updates
its own estimate of the opponent’s policy π ′. In the second step,
the agent updates its multi-objective joint action value estimate:

Q
(
at ,a

′
t
)
← Q

(
at ,a

′
t
)
+ αQ

[
pt −Q

(
at ,a

′
t
) ]

(3)

We note that in a many MONFG settings, the payoffs observed
by the agent for known joint actions are deterministic. Equation 3
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Figure 1: Results for the game in Table 1. The left column shows the estimated SER for Agent 1 (top) and Agent 2 (bottom)
under the 4 experiment settings. The middle and right columns show the empirical outcome distributions.

L M R

L (4, 1) (1, 2) (2, 1)
M (3, 1) (3, 2) (1, 2)
R (1, 2) (2, 1) (1, 3)

Table 1: AMONFGwith pure strategy NE in (L,L), (M,M), and
(R,R), for utility functions u1([p1,p2]) = p1 · p1 + p2 · p2, and
u2([p1,p2]) = p1 · p2, under SER. NB: (L,L) and (M,M) Pareto-
dominate (R,R). (L,L) offers the highest utility for the row
player, and (M,M) for the column player.

applies to both deterministic and stochastic settings. After updating
the joint action values, the third step is to compute the SER objective
J (θ ), taking derivatives with regard to agent i’s strategy parameters,
θ , and subsequently update θ in the direction of the gradient:

θ ← θ + αθ∇θ J (4)

For a full description of this algorithm and its derivation, please
refer to the extended version of this paper [20].

2 RESULTS & DISCUSSION
To evaluate the impact of opponent modelling, we use, among
others, a 2-objective MONFG (Table 1). For the other games we
study, please refer to [20].

We consider four different settings: (1) neither agent performs
opponent modelling; (2) both agents perform opponent modelling;
(3) only agent 1 performs opponent modelling; (4) only agent 2
performs opponent modelling. For each setting, agents interact
for 3000 episodes, averaged over 100 trials. Furthermore, in this
experiment, the gradient ∇θ is computed analytically w.r.t J (θ ).
An agent’s strategy π (a |θ ) is represented using a simple softmax
function:

π (a = ai |θ ) =
eθi∑ |Ai |
j=1 eθ j

(5)

The actor learning rate for the presented experimental results
is αθ = 0.05, while h, the opponent modelling window size is
100. For the setting without opponent modelling we used a critic
learning rate αQ = 0.05. For the Opponent Modelling Actor-Critic
approach, because the agents are learning the Q-function for the
join-action space in a deterministic setting, we used αQ = 1. We

note that we carried out an extensive analysis with respect to all
these parameters and we present all the results in [20].

As the results (Figure 1) show, if only one of the agents is using
opponent modelling, the agent that does the opponent modelling
significantly benefits from doing so, with respect to the setting
in which neither agent does OM. When both agents do OM, the
distribution over the possible outcomes becomes more balanced.
We thus conclude that opponent modelling can significantly benefit
agents in MONFGs under SER that have Nash Equilibria.

We have also tested MONFGs in which there are no NEs [20].
For such games, the benefits of opponent modelling are not as good.
On the contrary, in most settings, the agent performing OM seemed
to be unable to accurately capture information regarding the oppo-
nent’s strategy, and thus making decisions on the basis of incorrect
or outdated information. Implementing OM in these settings does
not confer a significant advantage in terms of outcomes, and when
the learning parameters are not tuned well, it may even hurt the
performance of both agents.

In conclusion, our studies of MONFGs under SERwith non-linear
utility functions demonstrated that opponent modelling can sig-
nificantly alter the learning dynamics in MONFGs. In cases where
NE are present, opponent modelling can confer significant benefits
to agents that implement it. However, when there are no NE, we
observe that an agent implementing opponent modelling can expe-
rience adverse effects on its utility. These adverse effects could be
(mostly) mitigated after careful hyper-parameter optimisation of
the learning algorithm, but did not contribute to the utility of the
agent implementing the opponent modelling. This is highly sur-
prising, and does not occur in the single-objective setting – where
there are always NE in mixed strategies. Therefore, in future work,
we aim to investigate if more sophisticated schemes for opponent
modelling [9], such as explicitly modelling the (properties of) the
utility function of the opponent (e.g., using preference elicitation
[2, 4, 5, 21]), can make opponent modelling effective in all MONFGs.
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