Demonstration

AAMAS 2020, May 9-13, Auckland, New Zealand

A Framework for Collaborative and Interactive Agent-oriented
Developer Operations’

Demonstration

Cleber Jorge Amaral
Federal Institute of Santa Catarina
Sao José, SC, Brazil
cleber.amaral@ifsc.edu.br

ABSTRACT

Considering the increasing prevalence of autonomous systems in
today’s society, one could expect that agent-oriented program-
ming (AOP) is gaining traction among mainstream software en-
gineering practitioners. However, the tools and frameworks that
are used and developed in the academic multi-agent systems engi-
neering community struggle to keep up with recent developments
in the software industry in regards to how complex information
systems are developed and maintained. An important aspect of
recent changes in software engineering practices is the application
of technologies that support the increasingly fast iteration of a
programming-testing-deployment cycle. Such approaches require
intense collaboration that crosses boundaries between traditionally
separated roles like software development, quality assurance, and
operations; these approaches are often referred to as DevOps. In
this paper, we work towards the integration of DevOps and AOP
by introducing an extension of jacamo-web, an Integrated Develop-
ment Environment (IDE) that supports the collaborative, web-based
development and real-time continuous integration of autonomous
agents and Multi-Agent Systems (MAS).

KEYWORDS

Agent-oriented programming; IDE; Iterative software development;
Engineering multi-agent systems

ACM Reference Format:

Cleber Jorge Amaral, Timotheus Kampik, and Stephen Cranefield. 2020.
A Framework for Collaborative and Interactive Agent-oriented Developer
Operations. In Proc. of the 19th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2020), Auckland, New Zealand, May
9-13, 2020, IFAAMAS, 3 pages.

1 INTRODUCTION

In many organizations, the software development process from
specification to deployment is executed at an increasingly rapid
pace; often, software teams aim at improving their processes to sup-
port continuous deployments, i.e. the ability to deploy small updates
to the code base without system downtime in a fully automated
manner and at any point in time [9, 11]. Consequently, hand-overs

“Work partially supported by CAPES, project Print CAPES-UFSC “Automation 4.0”
and by the Wallenberg AI, Autonomous Systems and Software Program (WASP).

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9-13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

Timotheus Kampik
Umeé University
Umea, Sweden
tkampik@cs.umu.se

2092

Stephen Cranefield
University of Otago
Dunedin, New Zealand
stephen.cranefield@otago.ac.nz

between distinct technology ecosystems and teams become increas-
ingly impractical [10]. To address this challenge, the concept of
Developer Operations (DevOps) has emerged as a widely employed
best practice for engineering and maintaining complex informa-
tion systems [7]. DevOps comes with its own set of tools, which
range from business process execution engines that bridge the
gap between business and IT [6] to container orchestration tools
that allow for the automation of deployments and operations of
system instances across a heterogeneous and scalable device and
infrastructure landscape [4].

Interactive programming refers to the programming of a running
system in real time [14]. Because changes to the program code
are applied to the running system instance(s) on-the-fly as soon
as they are made or committed, interactive programming speeds
up development time [12]. Consequently, interactive programming
facilitates prototyping and debugging, as well as iterative develop-
ment, especially in scenarios, in which no precise design documents
exist [5, 12].

Among software engineering practitioners, it is largely acknowl-
edged that programming is an inherently collaborative activity.
On the technology side, frameworks and tool-chains emerged in
which collaboration features are treated as first-class citizens. Most
notably, version control systems and abstractions on top of them
(for example: GitHub and GitLab) [2] are facilitating collaborative
work in large teams, integration of specification documents (issues)
and source code, and continuous integration. To take collaboration
support to a new level, IDEs with (near) real-time collaboration
features have been developed during the last decade [8, 13]; yet, in
contrast to collaborative version control systems, such IDEs have
so far not been widely adopted in practice. To the best of our knowl-
edge, no collaborative programming approaches and technology
frameworks exist specifically for AOP.

2 REAL TIME COLLABORATIVE AOP

We extended jacamo-web [1], a JaCaMo-based [3] IDE for develop-
ing Multi-Agent Systems under the perspective of the dimensions
of the agents, environment and organizations!. Jacamo-web makes
use of Read-Eval-Print Loop (REPL) [15] functions, allowing the
engineer to interactively insert blocks of code into running agents.
These on-the-fly updates keep the agent’s context and current in-
tentions when changes to its plans library are made. Jacamo-web
supports on-the-fly development of organizations and artifacts
thanks to a built-in Java compiler. Our extension adds integrative
and real-time collaborative features for AOP to jacamo-web.

! A demo instance runs at http://jacamo-web.herokuapp.com/.

http://jacamo-web.herokuapp.com/

Demonstration

Let us introduce a running example to demonstrate the features.
We implement an online business-to-business marketplace for au-
tonomous supply chain integration. The marketplace is modeled as
an MAS, composed of three organizations: i) a factory that needs
to buy items; ii) a supplier that wants to sell items; and iii) the mar-
ketplace, representing the institution in which agents can adopt
buyer and seller roles and trade in compliance with its norms.

We have two engineers developing this system; one is responsible
for the factory side and the other for the supplier. The engineers
have to develop their agents according to the marketplace protocol,
which specifies three steps to be performed in order to fully process
a trade transaction: (i) an item must be ordered; (ii) the payment
must be made; and (iii) the item must be delivered.

In our example, both factory and supplier organizations have the
common objective of trading with each other. The engineers are free
to decide the details of how the objective can be achieved, which
illustrates a common challenge that modern software engineering
teams face.

Our extension provides new interactive facilities. The IDE auto-
matically updates its content keeping the engineer informed about
changes done by others. For instance, when the engineer creates
and updates the seller agent, the engineer that is programming the
buyer may perceive and interact with the new state of the seller. The
interactive development approach is often adopted when specifica-
tions are unclear. For effective, rapid small upgrades, it is essential
to have a hot-swap facility providing an immediate response from
the system. It helps engineers to understand the system’s behavior
and effects of each change made in MAS models.

Furthermore, continuous deployment requires fast quality assur-
ance functionalities. Jacamo-web provides facilities such as code
highlighting and code completion that increase efficiency and help
prevent mistakes, but comprehensive test measures are needed for
updates. Our extension performs tests on temporary running in-
stances. This allows the framework to check compatibility using
the real scenario.

7 +ibuyItem <-
8 .print("Ordering item...");
9 .walit(1000);

10
11
12
13
11
15

.send(seller,achieve, sendInvoice);

+imakePayment[source(s)] <-
.print("Paying ", §);

.walt(1000);

Save & Reload Discard changes Ediiting: buyer.asl Warning: Agent 'seller' doesn't understand 'sendinvoice'

Figure 1: Understandability warning,.

Our extension introduces two functionalities to test agents’ inte-
gration: understandability and usefulness checks. In our market-
place, let us say the buyer’s engineer adds a request to send to the
seller agent to achieve the goal sendInvoice. In case the recipient
does not have any plan to be triggered to achieve such goal, the
engineer of the buyer agent is notified by an understandability
warning (Fig. 1). Using the same idea, consider that the buyer agent
intends to send a belief to the agent seller informing that the pay-
ment was made. Beliefs can trigger events and can also be used in
decision-making processes. Let us say, due to a typo, the agent is

2093

AAMAS 2020, May 9-13, Auckland, New Zealand

wrongly sending paidd instead of paid. As the usefulness checking
function does not find any mention of paidd in the recipient’s plans
library, it reports a warning helping the engineer to prevent that
error. In both checking functions, tests are performed while the
engineer types without affecting running instances.

JaCaMo OAGENTS EEN'"""”“"W S onosiaman
The following user(s) are already
seller - R editing this file: EngineerA.

2
3 +istart <- .print("Ei").

buyer "
5 +isupplyTtem[source(S)] <-
& .print(s, ordered item...");
7 .wait(1000);

. 8 .abolish(paid);

directory 9 .send(buyer ,achieve,makePayment) ;

facilitator

11

create agent 12 tpaidisource(S}] <-

Save & Reload Discard changes Editing: seller.as! Code looks correct.

Figure 2: Notification of concurrent use to prevent data loss.

In addition, our extension provides integrative facilities for pre-
venting conflicts when developers attempt to edit a resource si-
multaneously, as shown in Fig. 2, and for managing versions using
the version control system git [2], as illustrated in Fig. 3. This fa-
cilitates collaboration, as well as the integration of different MAS
instances, for example to provide separation between a sand-boxed
development instance and the production environment.

Enter your commit message here:
Commit message

Agent Checks
Agent buyer: Warning: Agent 'seller' doesn't use 'paidd"

Commit

Figure 3: The commit dialog highlights potential issues.

During the development of our marketplace, we can see the im-
portance of monitoring tools on several levels and from different
perspectives. Jacamo-web provides facilities for observing the sys-
tem using fragmented views, i.e., from the perspective of each agent.
It is also possible to inspect the current state of an agent’s mind
and the current value of an observable property of an artifact or
the state of an organization. Our extension adds live observability,
i.e., the interface instantly updates the observable state of agents,
artifacts and organizations.

3 CONCLUSION

We have presented an extension of jacamo-web that combines its
original interactive programming approach with collaborative and
integrative tools to promote fast and continuous deployment. Our
marketplace scenario highlights the importance of such facilities in
the development of MAS. To further advance the integration of AOP
and collaborative software engineering and DevOps approaches, we
suggest to i) transfer ideas of AOP into existing, production-scale
DevOps tooling, ii) further develop Agent DevOps as a software
engineering paradigm, and iii) continue with the implementation
of collaborative DevOps features in AOP frameworks.

Demonstration

REFERENCES

(1]

(2]

(3]

Cleber Jorge Amaral and Jomi Fred Hiibner. 2019. Jacamo-web is on the fly: an
interactive Multi-Agent System IDE. In 7th International Workshop on Engineer-
ing Multi-Agent Systems (EMAS 2019). https://cgi.csc.liv.ac.uk/~lad/emas2019/
accepted/EMAS2019_paper_8.pdf

John D. Blischak, Emily R. Davenport, and Greg Wilson. 2016. A Quick Introduc-
tion to Version Control with Git and GitHub. PLOS Computational Biology 12, 1
(2016), 1-18. https://doi.org/10.1371/journal. pcbi. 1004668

Olivier Boissier, Rafael H. Bordini, Jomi F. Hiibner, and Alessandro Ricci. 2019.
Dimensions in programming multi-agent systems. The Knowledge Engineering
Review 34 (2019), e2. https://doi.org/10.1017/5026988891800005X

Eric A. Brewer. 2015. Kubernetes and the Path to Cloud Native. In Proceedings
of the Sixth ACM Symposium on Cloud Computing (SoCC ’15). Association for
Computing Machinery, New York, NY, USA, 1. https://doi.org/10.1145/2806777.
2809955

William Choi. 2008. Rehearse: Coding Interactively while Prototyping, In Pro-
ceedings of the 21th Annual ACM Symposium on User Interface Software and
Technology. Extended Abstracts of UIST '08 8, 1-3.

Matt Cumberlidge. 2007. Business process management with JBoss jBPM. Packt
Publishing Ltd.

C. Ebert, G. Gallardo, J. Hernantes, and N. Serrano. 2016. DevOps. IEEE Software
33, 3 (2016), 94-100. https://doi.org/10.1109/MS.2016.68

Max Goldman, Greg Little, and Robert C. Miller. 2011. Real-Time Collaborative
Coding in a Web IDE. In Proceedings of the 24th Annual ACM Symposium on User
Interface Software and Technology (UIST ’11). Association for Computing Machin-
ery, New York, NY, USA, 155-164. https://doi.org/10.1145/2047196.2047215
Koen V. Hindriks. 2014. The Shaping of the Agent-Oriented Mindset. In Engineer-
ing Multi-Agent Systems, LNCS, volume 8758, Fabiano Dalpiaz, Jiirgen Dix, and

2094

=
S

[11

(13

[14

[15

AAMAS 2020, May 9-13, Auckland, New Zealand

M. Birna van Riemsdijk (Eds.). Springer International Publishing, Cham, 1-14.
Viviana Mascardi, Danny Weyns, Alessandro Ricci, Clara Benac Earle, Arthur
Casals, Moharram Challenger, Amit Chopra, Andrei Ciortea, Louise A. Dennis,
Alvaro Fernandez Diaz, Amal El Fallah-Seghrouchni, Angelo Ferrando, Lars-
Ake Fredlund, Eleonora Giunchiglia, Zahia Guessoum, Akin Giinay, Koen Hin-
driks, Carlos A. Iglesias, Brian Logan, Timotheus Kampik, Geylani Kardas, Vin-
cent J. Koeman, John Bruntse Larsen, Simon Mayer, Tasio Méndez, Tasio Méndez,
Juan Carlos Nieves, Valeria Seidita, Baris Tekin Tezel, Laszl6 Z. Varga, and Michael
Winikoff. 2019. Engineering Multi-Agent Systems: State of Affairs and the Road
Ahead. SIGSOFT Engineering Notes (SEN) (January 2019).

T. Savor, M. Douglas, M. Gentili, L. Williams, K. Beck, and M. Stumm. 2016.
Continuous Deployment at Facebook and OANDA. In 2016 IEEE/ACM 38th Inter-
national Conference on Software Engineering Companion (ICSE-C). Association
for Computing Machinery, 21-30.

Sho-Huan Simon Tung. 1992. Interactive modular programming in Scheme. ACM
SIGPLAN Lisp Pointers V, 1 (1992), 86-95. https://doi.org/10.1145/141478.141512
Jason Vandeventer and Benjamin Barbour. 2012. CodeWave: A Real-Time,
Collaborative IDE for Enhanced Learning in Computer Science. In Proceed-
ings of the 43rd ACM Technical Symposium on Computer Science Education
(SIGCSE °12). Association for Computing Machinery, New York, NY, USA, 75-80.
https://doi.org/10.1145/2157136.2157160

Ge Wang and Perry R Cook. 2004. On-the-fly Programming: Using Code as
an Expressive Musical Instrument. NIME 04 Proceedings of the 2004 confer-
ence on New interfaces for musical Expression (2004). https://doi.org/10.1017/
$1092852916000900

Makarius Wenzel. 2013. READ-EVAL-PRINT in Parallel and Asynchronous Proof-
checking. Electronic Proceedings in Theoretical Computer Science 118 (2013), 57-71.
https://doi.org/10.4204/EPTCS.118.4

https://cgi.csc.liv.ac.uk/~lad/emas2019/accepted/EMAS2019_paper_8.pdf
https://cgi.csc.liv.ac.uk/~lad/emas2019/accepted/EMAS2019_paper_8.pdf
https://doi.org/10.1371/journal.pcbi.1004668
https://doi.org/10.1017/S026988891800005X
https://doi.org/10.1145/2806777.2809955
https://doi.org/10.1145/2806777.2809955
https://doi.org/10.1109/MS.2016.68
https://doi.org/10.1145/2047196.2047215
https://doi.org/10.1145/141478.141512
https://doi.org/10.1145/2157136.2157160
https://doi.org/10.1017/S1092852916000900
https://doi.org/10.1017/S1092852916000900
https://doi.org/10.4204/EPTCS.118.4

	Abstract
	1 Introduction
	2 Real Time Collaborative AOP
	3 Conclusion
	References

