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ABSTRACT
The open-source Unity platform, where agents can be trained using
hierarchical or non-hierarchical reinforcement learning, supports
the use of games and simulations as environments for multiple-
agent interactions. In this demonstration, we present hierarchical
and non-hierarchical multi-agent interactions based on Unity rein-
forcement learning, specifically, hierarchical reinforcement learn-
ing that sets different levels of agent’s observations to achieve
the goal. We created four multi-agent scenarios in the Unity en-
vironment, namely, Crawler, Tennis, Banana Collector, and Soc-
cer, to test the interaction performances of hierarchical and non-
hierarchical reinforcement learning. The simulation-interaction
performances show that hierarchical reinforcement learning can
be applied to multi-agent environments and can compete with
agents trained via non-hierarchical reinforcement learning. The
demonstration video can be viewed at the following link:
https://youtu.be/YQYQwLPXaL4
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1 INTRODUCTION
Reinforcement learning (RL) typically refers to a goal-oriented al-
gorithm that learns how to achieve complex tasks with mimicing
human performance. In the agent training process, an agent ob-
serves the environment and takes actions to receive rewards for
accomplishing tasks in the process of achieving a goal. The agent is
punished for making incorrect decisions and rewarded for making
the right decisions, which makes this approach one of the most
reliable training methods [5]. Many platforms that enable users to
develop and test RL algorithms are currently available, including
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OpenAI Gym [1] and DeepMind Lab [6], which were developed to
investigate how agents learn complex tasks. However, the above
RL platforms, such as OpenAI Gym, lack the ability to flexibly con-
figure the simulation for multiple agents; therefore, the simulation
environment is an unmodifiable black box from the perspective of
the learning system. Recently, the Unity platform released a new
open-source toolkit [4] developed for creating and interacting with
RL simulation environments. The toolkit enables games and simu-
lations to serve as environments for training and testing intelligent
RL agents, and these trained agents can be used for multiple pur-
poses, including testing game builds and evaluating different game
designs in multi-agent interactions.

To coordinate and test agent-agent interactions, we use RL to
train agents in a developed environment to achieve an optimised
policy. Some state-of-art RL algorithms have been developed to
optimise the training performance, such as proximal policy optimi-
sation (PPO) [7], which simplifies the training implementation to
handle complex scenarios. Furthermore, to accelerate the learning
process and improve generalisation in a multi-agent environment,
hierarchical reinforcement learning (HRL) was proposed to learn a
policy composed of multiple layers, each of which is responsible
for control at a different level of temporal abstraction [9] [3]. One
recent example of an HRL framework is feudal networks (FuNs)
[8] proposed by the DeepMind group, which employ a manager
module and a worker module for hierarchical training. This frame-
work was extended by [2] to a method called hierarchical critics
assignment (HCA), which assigns a virtual manager that can be
added on top of all worker agents in the environment to observe
the global environment and provide global critic signal to push
worker agents towards the goal. Each worker agent must observe
the local environment and take actions based on local and global
critics. In our investigation of existing studies, we did not find any
methods that support different RL types for multi-agent interaction
in flexible environments. This lack of research motivated us to use
RL (non-hierarchical approach) and HRL (hierarchical approach) for
two agent teams separately to demonstrate the testing performance
with real-time interactions.

In this demonstration, to support interaction among multiple
agents, we train agents separately via RL (using the PPO algorithm)
and HRL (using the HCA algorithm) approaches while playing a
series of game scenarios in the Unity environment. We developed
four multi-agent simulation scenarios in the Unity platform, namely,
Crawler, Tennis, Banana Collector and Soccer. The original versions
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of these scenarios were designed by Unity: we modified them to
use RL and HRL algorithms for multi-agent interaction tasks. Our
demonstration makes the following contributions: 1) we develop
new game environments to assist with RL and HRL designs and
interactions for testing multi-agent systems; 2) the agents trained
by HRL achieve better performance with high scores in competition-
based interaction games; and 3) we consider the potential impact
on applications in multi-agent competitions.

2 DEMONSTRATION SCENARIOS
In the Unity platform with a new open-source toolkit [4], we de-
veloped four multi-agent scenarios as shown in Fig. 1, namely,
Crawler, Tennis, Banana Collector and Soccer, to simulate multi-
agent competitive interactions 1. The experiments in each scenario
are defined in terms of two agent teams: the blue team and the red
team. Agents from the blue team are trained via HRL (hierarchical
approach), whereas agents from the red team are trained via RL
(non-hierarchical approach). Each agent targets a specific scenario
goal to receive the maximum game score, and the game scores
are recorded for the pre-trained RL and HRL agents during the
interaction stage.

Figure 1: Multi-agent interactions in four scenarios

2.1 Crawler
The Crawler scenario is a modified scenario that originally allows
a single agent to learn to walk in Unity. As shown in Fig. 1-A, we
initiate a crawler agent with two arms and two forearms and create
the logic for agents to learn to fight and compete with each other
during the training progress. The agents are required to learn to
maintain their body balance and to not touch the ground while
walking to the opponent’s position and then to fight against the
opponent and cause the challenger to lose their balance to obtain
a reward. In addition, as shown in the GitHub repository, the task
goal, agent reward function, and behaviour parameters, including
action and observation spaces, are defined for the crawler agents.

2.2 Tennis
Tennis competition is used as an example to simulate a sports
game of bouncing a ball to an opponent’s area in a multi-agent
1GitHub repository: https://github.com/kaichiuwong/hrl_unity_demo

environment. The agents are required to control the movement
of a racket to ensure that the ball does not drop or fall outside of
the boundaries on their side of the field. As an extension of the
original scenario, as shown in Fig. 1-B, we increased the number of
agents to two each on the blue and red teams, where the blue team,
assigned to the HRL scenario, has a virtual manager on top of the
agents to observe the global environment. Furthermore, as shown
in the GitHub repository, the task goal, agent reward function, and
behaviour parameters, including action and observation spaces, are
defined for the tennis agents.

2.3 Banana Collector
The Banana Collector scenario involves multiple agents competing
to collect target bananas. The environment consists of two different
types of banana, healthy bananas and toxic bananas. Each agent
must learn how to move and collect as many healthy (yellow) ba-
nanas as possible while avoiding toxic (purple) bananas. When an
agent touches and collects a toxic banana, the agent is frozen for 20
s and then continues to collect healthy bananas. As shown in Fig.
1-C, we create a manager on top of the blue-team agents trained
by HRL to observe the global environment. We also define the task
goal, agent reward function, and behaviour parameters, including
action and observation spaces for the collector agents, as shown in
the GitHub repository.

2.4 Soccer
As shown in Fig. 1-D, we create a two agent teams Soccer scenario
in which the agents aim to attack the other team’s gate and defences
without the ball being kicked into their own gate. Each team has
two types of agents, a goalie and a striker, who aim to defend their
own gate and score by attacking the opponent’s gate, respectively.
For the blue-team agents, we add a virtual manager to obtain global
observations and give critics of the agents’ actions. As presented in
the GitHub repository, the task goal, agent reward function, and
behaviour parameters, including action and observation spaces, are
defined for the soccer agents.

3 CONCLUSION
In summary, our demonstration shows that the Unity platform can
support the development of new games and simulations for RL and
HRL environments with multi-agent interactions. We created four
scenarios with multiple agents in the Unity environment, namely,
Crawler, Tennis, Banana Collector, and Soccer. We also presented hi-
erarchical and non-hierarchical multi-agent interactions by means
of RL and HRL algorithms and showed that the HRL-trained agents
with a virtual manager that can observe global information achieve
better performance with higher game scores as demonstrating in
the video. We believe our demonstration has a potential impact on
high attentions to HRL and the relevant applications in multi-agent
competitions.
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