
MsATL: A Tool for SAT-Based ATL Satisfiability Checking
Demonstration

Artur Niewiadomski
Siedlce University, Faculty of Exact and Natural Sciences

artur.niewiadomski@uph.edu.pl

Magdalena Kacprzak
Bialystok University of Technology, Poland

m.kacprzak@pb.edu.pl

Damian Kurpiewski, Michał Knapik,
Wojciech Penczek

ICS PAS, Warsaw, Poland
{d.kurpiewski,m.knapik,penczek}@ipipan.waw.pl

Wojciech Jamroga
ICS PAS, Poland, and University of Luxembourg

wojciech.jamroga@uni.lu

ABSTRACT
We present MsATL: the first tool for deciding the satisfiability of
Alternating-time Temporal Logic (ATL) with imperfect informa-
tion. MsATL combines SAT Modulo Monotonic Theories solvers
with existing ATL model checkers: MCMAS and STV. The tool can
deal with various semantics of ATL, including perfect and imper-
fect information, and can handle additional practical requirements.
MsATL can be applied for synthesis of games that conform to a
given specification, with the synthesised game often being minimal.
ACM Reference Format:
Artur Niewiadomski, Magdalena Kacprzak, Damian Kurpiewski, Michał
Knapik, Wojciech Penczek, and Wojciech Jamroga. 2020. MsATL: a Tool
for SAT-Based ATL Satisfiability Checking. In Proc. of the 19th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2020),
Auckland, New Zealand, May 9–13, 2020, IFAAMAS, 3 pages.

1 INTRODUCTION AND MOTIVATIONS
Multi-agent systems (MAS) are often viewed as a game between
the human or artificial players. Building a formal specification of
a designed system can provide various insights into the solved
problem. A minimal model conforming to the specification is most
valuable: we either obtain an implementable working example or a
formally correct but non-acceptable design whose validation may
be tractable. We are interested in synthesis of minimal game models
that conform to a specification given in Alternating-time temporal
logic (ATL) [1–3, 20]. Each constructive procedure for testing satisfi-
ability is of high practical importance, as it can be used to synthesize
models from specifications. It is employed by various branches of
computer science, including Artificial Intelligence [25] and Applied
Logic [9, 11], and Program Synthesis [23, 26]. Even if synthesis
from scratch is not feasible, satisfiability-based approaches can be
used in order to repair an “almost-correct” program [4, 15].

2 THEORETICAL BACKGROUND
Alternating-time temporal logic (ATL) [1–3] generalizes CTL [9] by
replacing the path quantifiers E,A with strategic modalities ⟨⟨Γ⟩⟩.
Formally, the language of ATL is defined by the following grammar:
φ ::= p | ¬φ | φ ∧ φ | ⟨⟨Γ⟩⟩X φ | ⟨⟨Γ⟩⟩φUφ | ⟨⟨Γ⟩⟩Gφ, for p ∈ PV (a
set of proposition variables). Intuitively, ⟨⟨Γ⟩⟩γ expresses that the

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

group of agents Γ has a collective strategy to enforce γ . “X ” stands
for “next,” “G” for “always from now on,” andU for “strong until.” F
(“sometimes in the future”) is defined as Fφ ≡ (true)Uφ.

We interpret ATL over formal models of MAS. We assume that
MAS consists of n agents, each assigned a set of local states, an
initial local state, a set of local actions, a local protocol that assigns a
non-empty set of available actions to each state, and a local transi-
tion function defining possible changes of local states. The global
transition function is the composition of partial transition functions
of all the agents. To describe the interaction between agents, we
have chosen Moore synchronous models [3]. Moreover, for each
global state, a set of propositions true in this state is defined.

A strategy of agent i is a conditional plan that specifies what i is
going to do in any situation. To ensure decidability of ATL model
checking [13, 18, 33], the main technique employed by MsATL,
we focus on memoryless perfect and imperfect information strate-
gies. Intuitively, a memoryless imperfect information strategy for
i assigns a local action to each of its local states while a perfect
information strategy for i assigns a local action to each global state.
Thus, perfect information strategies give agent i full insight into
other players’ local states. For more details see [3].

The problem we are solving is to decide (in a possibly most
efficient way) whether an ATL formula is satisfiable. This means,
given an ATL formula ϕ, we check if there exists a model M with
an initial state ι in which the formula holds, i.e.,M, ι |= ϕ. In what
follows we call this decision problem ATLiSAT (resp. ATLI SAT) for
imperfect (resp. perfect) information semantics of ATL. For more
details about the theory behind MsATL see [21].

3 CHALLENGES
The main problem we are facing is a very high complexity of
ATLI SAT and unknown complexity ofATLiSAT, which makes non-
symbolic approaches, in principle, inefficient. The complexity of
ATLI SAT was first proved to be EXPTIME-complete [16, 34] for a
fixed number of agents and later extended to the general case in [35].
The satisfiability of perfect information ATL∗, a generalisation of
perfect information ATL, is 2EXPTIME-complete [32]. The results

The work of M. Kacprzak was supported by the Bialystok University of Technology,
Poland, as part of the research grant WZ/WI/1/2019 of the Faculty of Computer Science
and funded by the resources for research by Ministry of Science and Higher Education,
Poland. M. Knapik and W. Penczek acknowledge support from Luxembourg/Polish
FNR/NCBiR project STV and CNRS/PAS project PARTIES.

Demonstration AAMAS 2020, May 9–13, Auckland, New Zealand

2111

MsATL (C++)

MiniSAT

ATL Theory
Solver

ATL
Model

Checker

MCMAS
Adapter

STV
Adapter

MCMAS
Model

Checker

STV
Model

Checker

Graphical
User Interface

(Python)

Id K C MsATL TATL
[sec.] [sec.]

1 9 13 0.22 0.58
2 13 19 0.23 6.2
3 17 25 0.24 29.7
4 20 31 0.31 74.6
5 23 35 0.32 229.1
6 26 41 0.34 551.9
7 30 49 0.38 1381.5
8 33 55 0.43 3947.8

Figure 1: The toolset architecture and experimental results

employ techniques based on alternating tree automata. A practi-
cally implementable tableau-based constructive decision method
forATLI SATwas described in [17]. Subsequently, the tableau-based
method was extended for checking ATL∗ [10] and ATEL [6], an
epistemic extension of ATL [22].

Thus, there are two known methods for deciding ATLI SAT, ei-
ther by using alternating tree automata or tableau. The first one
is of rather theoretical importance. The tableau-based procedure
has been implemented [10], but it runs in 2EXPTIME and does not
guarantee finding minimal models. For ATLiSAT, it is not even
known whether the problem is decidable. A hint of its difficulty
is given in [18, 33] where model checking of ATL with imperfect
information is shown to be ∆P2 -complete. No less importantly, the
logic has no standard fixed-point characterisation [7, 12]. Note that
the previous solutions are applicable only to perfect information
ATL, while the research of imperfect information ATL is growing
rapidly. Our tool can deal with both variants of ATL with perfect-
and imperfect information.

4 ARCHITECTURE AND TECHNOLOGY
MsATL employs a SAT solver and ATL model checkers to check
ATLi/I SAT, and follows the concept of SAT Modulo Monotonic
Theories solvers [5]. While some parts of MsATL’s architecture
(Fig. 1) are inspired by an earlier design for CTL [24], the tackled
problem ismore complex, as outlined in Sec. 3. The core components
of our system are: the SAT-solver - modified MiniSAT [14], the ATL
theory solver - a module interacting with the SAT-solver, and an
ATLmodel checker (embedded or external). The SAT-solver is liable
for manipulating variables representing agents’ local transitions
and the valuations of propositions over global states. The main task
of the ATL theory solver is to check if the current partial valuation
maintained by the SAT-solver represents a class of models that
possibly contains a model satisfying the formula. We use external
model checkers depending on the used semantics. For memoryless
perfect information strategies we use our verifier and MCMAS
model-checker [30, 31]. For memoryless imperfect information
strategies, we use STV - the most recent tool for verification of
strategic abilities under imperfect information [19, 27, 28].

MsATL is modular: we can freely attach other model checkers
to expand its capabilities. It also easily outperforms the only other
tool [10] overATLI SAT (see Fig. 1 (right) and Sec. 5). MsATL can be
used standalone or via GUI. The MsATL input requires at least: the
number of (1) agents, (2) local states for each agent, (3) proposition
variables, (4) an ATL formula to be checked for satisfiability, (5)
the model checking engine. In the case of imperfect information, a

Table 1: Satisfiability for imperfect information - the results

Id G K C L=2 L=3 L=4 L=5
1 1 2 4 12.1 37.2 88.8 226
2 2 3 9 16.4 52.7 167 542
3 3 3 6 15.8 56.6 163 559
4 3 4 6 22.9 68.1 194 746
5 4 7 6 35.8 124 285 795
6 5 13 13 70.9 265 647 2480
7 5 17 15 88.2 314 744 2365
8 5 21 18 106 383 1110 3470

list of observable propositions for each agent is also needed. For
more details please refer to http://monosatatl.epizy.com/ and video
demonstration of MsATL at https://youtu.be/HSW-i80VEHs.

5 EXPERIMENTAL EVALUATION
Fig. 1 (right) presents an evaluation of MsATL performance on
randomly generated2 ATLI SAT instances. MsATL’s performance is
compared to the only other available tool TATL [10]. The meaning
of the table columns, from left to right, is as follows. The first three
contain formulas’ ids; the number of nested strategy operators;
and the total number of Boolean connectives. Next, we present
computation times of both tools, in seconds.

Table 1 presents experimental results for randomly generated
formulae of ATLi with MsATL calling STV for the model checking
subtask. The column ’G’ is for the number of distinct groups of
agents, and the columns marked ’L’ contain computation times
(sec.) for different numbers of local states per agent. While not
comprehensive, the results show the potential of our method, es-
pecially for some classes of ATL formulae. The experiments have
been performed on Intel i5-7200U CPU/16GB Linux machine.

Satisfiability in perfect information models implies satisfiability
for imperfect information, but not vice versa [8]. To test MsATL
on a (non-randomly generated) case that requires imperfect infor-
mation, we used formula ¬ϕ, where ϕ ≡

(
¬next ∧ ⟨⟨a⟩⟩F next ∧

⟨⟨∅⟩⟩G (next → ⟨⟨1⟩⟩F win)
)
→ ⟨⟨1⟩⟩F win. Intuitively, ϕ expresses

that, if agent a can get to a “next” state, and whenever in “next” it
has a follow-up strategy to win, then a must also have a single strat-
egy to win.3 Formulae like ϕ are known to be valid forATLI but not
for ATLi [8]. MsATL determined ¬ϕ to be satisfiable for ATLi (in
about 80 sec.) and unsatisfiable for ATLI (in about 11 sec.), which
demonstrates that both functionalities of MsATL are important.

6 CONCLUSIONS
The problem of deciding the ATL satisfiability is computationally
hard and the existing techniques are still not satisfactory for prac-
tical solutions. MsATL implements a novel technique, applying
symbolic methods and SAT Modulo Monotonic Theories solvers
for checking the ATL satisfiability. The method is universal as it
can be applied to different classes of multi-agent systems [29], also
with additional restrictions, and ATL under various semantics. This
is the first tool to synthesise systems under imperfect information
of ATL. The experiments show a high potential for this approach.

2Due to the lack of standard benchmarks for testing the satisfiability of ATL, we have
implemented an ATL formula generator.
3We could not use a more straightforward formalization, since MsATL calls STV for
model checking, and STV does not admit the “nexttime” operator X .

Demonstration AAMAS 2020, May 9–13, Auckland, New Zealand

2112

http://monosatatl.epizy.com/
https://youtu.be/HSW-i80VEHs

REFERENCES
[1] R. Alur, T. A. Henzinger, and O. Kupferman. 1997. Alternating-Time Temporal

Logic. In Proc. of the 38th IEEE Symp. on Foundations of Computer Science (FOCS’97).
IEEE Computer Society, 100–109.

[2] R. Alur, T. A. Henzinger, and O. Kupferman. 1998. Alternating-Time Temporal
Logic. LNCS 1536 (1998), 23–60.

[3] R. Alur, T. A. Henzinger, and O. Kupferman. 2002. Alternating-Time Temporal
Logic. J. ACM 49(5) (2002), 672–713.

[4] P. C. Attie, A. Cherri, K. Dak-Al-Bab, M. Sakr, and J. Saklawi. 2015. Model and
program repair via SAT solving. In 13. ACM/IEEE International Conference on
Formal Methods and Models for Codesign, MEMOCODE 2015, Austin, TX, USA,
September 21-23, 2015. IEEE, 148–157.

[5] S. Bayless, N. Bayless, H.H. Hoos, and A.J. Hu. 2015. SAT Modulo Monotonic The-
ories. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence
(AAAI’15). AAAI Press, 3702–3709.

[6] F. Belardinelli. 2014. Reasoning about Knowledge and Strategies: Epistemic
Strategy Logic. In Proceedings 2nd International Workshop on Strategic Reasoning,
SR 2014, Grenoble, France, April 5-6, 2014. 27–33.

[7] N. Bulling and W. Jamroga. 2011. Alternating Epistemic Mu-Calculus. In Proceed-
ings of IJCAI-11. 109–114.

[8] N. Bulling and W. Jamroga. 2014. Comparing Variants of Strategic Ability: How
Uncertainty and Memory Influence General Properties of Games. Journal of
Autonomous Agents and Multi-Agent Systems 28, 3 (2014), 474–518.

[9] E.M. Clarke and E.A. Emerson. 1981. Design and Synthesis of Synchronization
Skeletons Using Branching Time Temporal Logic. In Proceedings of Logics of
Programs Workshop (Lecture Notes in Computer Science), Vol. 131. 52–71.

[10] A. David. 2015. Deciding ATL* Satisfiability by Tableaux. In International Confer-
ence on Automated Deduction. Springer, 214–228.

[11] E. De Angelis, A. Pettorossi, and M. Proietti. 2012. Synthesizing Concurrent
Programs Using Answer Set Programming. Fundam. Inform. 120, 3-4 (2012),
205–229.

[12] C. Dima, B. Maubert, and S. Pinchinat. 2015. Relating Paths in Transition
Systems: The Fall of the Modal Mu-Calculus. In Proceedings of MFCS (Lecture
Notes in Computer Science), Vol. 9234. Springer, 179–191. https://doi.org/10.1007/
978-3-662-48057-1_14

[13] C. Dima and F.L. Tiplea. 2011. Model-checking ATL under Imperfect Information
and Perfect Recall Semantics is Undecidable. CoRR abs/1102.4225 (2011).

[14] N. Eén and N. Sörensson. 2003. An Extensible SAT-solver. In Theory and Ap-
plications of Satisfiability Testing, 6th International Conference, SAT 2003. Santa
Margherita Ligure, Italy, May 5-8, 2003 Selected Revised Papers (Lecture Notes in
Computer Science), Vol. 2919. Springer, 502–518.

[15] D. Gopinath, M.Z. Malik, and S. Khurshid. 2011. Specification-Based Program
Repair Using SAT. In Tools and Algorithms for the Construction and Analysis of
Systems - 17th International Conference, TACAS 2011, Held as Part of the Joint
European Conferences on Theory and Practice of Software, ETAPS 2011, Saarbrücken,
Germany, March 26-April 3, 2011. Proceedings (Lecture Notes in Computer Science),
Vol. 6605. Springer, 173–188.

[16] V. Goranko and G. Van Drimmelen. 2006. Complete axiomatization and decid-
ability of alternating-time temporal logic. Theoretical Computer Science 353, 1-3
(2006), 93–117.

[17] V. Goranko and D. Shkatov. 2009. Tableau-based decision procedures for logics
of strategic ability in multiagent systems. ACM Trans. Comput. Log. 11, 1 (2009),
3:1–3:51.

[18] W. Jamroga and J. Dix. 2006. Model Checking ATLir is Indeed ∆P2 -complete. In
Proceedings of EUMAS’06 (CEUR Workshop Proceedings), Vol. 223. CEUR-WS.org.

[19] W. Jamroga, M. Knapik, D. Kurpiewski, and Ł. Mikulski. 2019. Approximate
verification of strategic abilities under imperfect information. Artif. Intell. 277
(2019).

[20] W. Jamroga, W. Penczek, P. Dembiński, and A. Mazurkiewicz. 2018. Towards
Partial Order Reductions for Strategic Ability. In Proceedings of the 17th Interna-
tional Conference on Autonomous Agents and MultiAgent Systems (AAMAS ’18).
156–165.

[21] M. Kacprzak, A. Niewiadomski, and W. Penczek. 2020. SAT-Based ATL Satisfia-
bility Checking. (2020). arXiv:cs.LO/2002.03117

[22] M. Kacprzak and W. Penczek. 2004. A Sat-Based Approach to Unbounded Model
Checking for Alternating-Time Temporal Epistemic Logic. Synthese 142, 2 (2004),
203–227.

[23] G. Katz and D. Peled. 2017. Synthesizing, correcting and improving code, using
model checking-based genetic programming. STTT 19, 4 (2017), 449–464.

[24] T. Klenze, S. Bayless, and A.J. Hu. 2016. Fast, Flexible, and Minimal CTL Synthesis
via SMT. In Computer Aided Verification, S. Chaudhuri and A. Farzan (Eds.).
Springer International Publishing, 136–156.

[25] J. R. Koza. 1993. Genetic programming - on the programming of computers by
means of natural selection. MIT Press.

[26] K. Krawiec, I. Bladek, J. Swan, and J. H. Drake. 2018. Counterexample-Driven
Genetic Programming: Stochastic Synthesis of Provably Correct Programs. In
Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden. ijcai.org, 5304–5308.

[27] D. Kurpiewski, W. Jamroga, and M. Knapik. 2019. STV: Model Checking for
Strategies under Imperfect Information. In Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems, AAMAS ’19, Montreal,
QC, Canada, May 13-17, 2019. 2372–2374.

[28] D. Kurpiewski, M. Knapik, and W. Jamroga. 2019. On Domination and Control
in Strategic Ability. In Proceedings of the 18th International Conference on Au-
tonomous Agents and MultiAgent Systems, AAMAS ’19, Montreal, QC, Canada,
May 13-17, 2019. 197–205.

[29] A. Lomuscio, W. Penczek, and H. Qu. 2010. Partial Order Reductions for Model
Checking Temporal-epistemic Logics over Interleaved Multi-agent Systems. Fun-
dam. Inform. 101, 1-2 (2010), 71–90.

[30] A. Lomuscio, H. Qu, and F. Raimondi. 2017. MCMAS: an open-source model
checker for the verification of multi-agent systems. International Journal on
Software Tools for Technology Transfer 19, 1 (2017), 9–30.

[31] A. Lomuscio and F. Raimondi. 2006. Model checking knowledge, strategies, and
games inmulti-agent systems. In 5th International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2006), Hakodate, Japan, May 8-12, 2006.
161–168.

[32] S. Schewe. 2008. ATL* Satisfiability Is 2EXPTIME-Complete. In Automata, Lan-
guages and Programming, 35th International Colloquium, ICALP 2008, Reykjavik,
Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics, and Theory
of Programming & Track C: Security and Cryptography Foundations. 373–385.

[33] P. Y. Schobbens. 2004. Alternating-Time Logic with Imperfect Recall. Electronic
Notes in Theoretical Computer Science 85, 2 (2004), 82–93.

[34] G. van Drimmelen. 2003. Satisfiability in alternating-time temporal logic. In 18th
Annual IEEE Symposium of Logic in Computer Science, 2003. Proceedings. IEEE,
208–217.

[35] D. Walther, C. Lutz, F. Wolter, and M. Wooldridge. 2006. ATL satisfiability is
indeed EXPTIME-complete. Journal of Logic and Computation 16, 6 (2006), 765–
787.

Demonstration AAMAS 2020, May 9–13, Auckland, New Zealand

2113

https://doi.org/10.1007/978-3-662-48057-1_14
https://doi.org/10.1007/978-3-662-48057-1_14
http://arxiv.org/abs/cs.LO/2002.03117

	Abstract
	1 Introduction and Motivations
	2 Theoretical Background
	3 Challenges
	4 Architecture and Technology
	5 Experimental Evaluation
	6 Conclusions
	References

