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1 INTRODUCTION
Consider a soccer game with spectators in a stadium acting as
voters. The spectators are polled to determine whether a ball has
crossed a line. Either the ball has crossed, or it has not, but the
opinions of individual voters regarding the truth of the matter
may differ because of their differing perspectives on the event.
Voters positioned far from the event may be unable to accurately
assess the outcome compared to those positioned nearby. In practice,
however, voters’ opinions may not be independently distributed.
For example, the voters may talk among themselves before their
opinions are gathered. This can distort the distribution of opinions,
and introduce correlations into voter reports, preventing recovery
of the true outcome. For example, if an announcer states that the
ball did cross the line, then voters who did not observe this may
report this authoritative opinion rather than their own.

Conitzer [2] first questioned whether or not social network struc-
ture should inform voting outcomes. In his model, he showed the
Maximum Likelihood Estimator (MLE) is exactly equal to majority
voting, and does not depend on network structure at all. This in
turn led a more complex model [3] where opinions were distributed
among edges (conversations) of the network. Although this second
model produced a tractable estimator, we argue it is not a natural
representation opinion spread.

We present a novel approach to objective social choice where
agents interact within a social network and alter their opinions
based on their peers. We assume that agents are more easily con-
vinced of the truth rather than a falsehood, and produce a compu-
tationally efficient, intuitive, and effective method for inferring the
true outcome even after opinions have been altered throughout the
social network. Our main contributions are the following:

• A new model for agent conversations (opinion dynamics)
in a social network, for which inference1 is tractable — the
Correct Conversation model (CC).

1We use inference in the statistical sense: inferring the value of a variable or parameter
on the basis of a given set of data. For us, the variable of interest is usually the winner
of an election, while the data are usually the votes.
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• A theoretical characterization of the model and its properties
on simulated and real world datasets to showcase its predic-
tive power over majority voting, under certain conditions.

2 MODEL
A social network G = {V , E} contains n voters V , and m edges
where edge Ei , j indicates that the opinions of voters Vi and Vj can
interact. Let Vi ∈ C = {ψ ,ω} represent voter Vi ’s vote. We treat
the true winner (i.e. ground truth outcome) as a random variable
W drawn from C . Voter Vi has initial opinion Xi ∈ C , which may
be changed by social interactions prior to the reporting stage. Let
Ni = {Vj ∈ V |Ei , j } be the neighbors ofVi . The process we model is
a vote held over the set of alternativesC = {ψ ,ω} with true winner
W ∈ C , with voters V , connected by edges E in the social network
G.

In the style of Conitzer [2], we define the likelihood function
L(W = λ |V ) for alternative λ ∈ C being the winner, given observed
votes V , as follows:

L(W = λ |V ) ∝
∏
i
д(Vi |W = λ)h(Vi ,VNi |W = λ) (1)

Additionally, we assume the tendency for voters to agree with
their neighbors can be factored into a product of individual such
tendencies with each neighboring voter:

h(Vi ,VNi |W = λ) ∝
∏

Vj ∈VNi

h′(Vi ,Vj |W = λ) (2)

Finally, we add constraints forд andh′ so to bias them toward the
correct outcome — both of voters’ innate opinions, and tendency
toward agreement with neighbors. The latter is the core of our
“Correct Conversation (CC)” assumption (voters who talk to one
another are more likely to agree on the truth than on a falsehood):

д(Vi = λ |W = λ) > д(Vi , λ |W = λ) (3)
h′(Vi = λ,Vj = λ |W = λ) > h′(Vi , λ,Vj , λ |W = λ) (4)

We assume functions д and h′ are identical for every voter.

2.1 Finding the Most Likely Alternative
Finding the most likely winner of the election reduces to finding
argmaxλ∈C L(W = λ |V ). We adopt the notation д(Vi = λ |W =

λ) ∝ p, д(Vi , λ |W = λ) ∝ 1 − p = Ûp, h′(Vi = λ,Vj = λ |W = λ) ∝ q,
h′(Vi , λ,Vj , λ |W = λ) ∝ Ûq, and h′(Vi = λ,Vj , λ |W = λ) ∝ r ,
where q + Ûq + r = 1. Then our likelihood function can be expressed
as follows:

L(W = λ |V ) ∝ px Ûpn−xq2yr2z Ûq2(m−y−z) (5)
where n is the number of voters,m is the number of edges be-

tween voters in the social network, x is number of votes for λ, y

JAAMAS Track Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

2137



(a) (b) (c) (d)

Figure 1: Performance Improvement: (a) ER graphs; (b) BA graphs; networks of (c) and (d) based on Kapferer Tailor Shop data.

is the number of concordant edges (i.e. edges between voters both
voting for λ), and z is the number of discordant edges (i.e. edges
between voters who disagree).

Then, there is an unambiguous winner when x > n
2 and y >

m−z
2 ; i.e. an alternative that captures both a majority of the

votes and a majority of the concordant edges, is the most
likely winner. When these signals conflict, however, the situa-
tion is more complicated and an MCMC approach can be used to
maximize the probability of selecting a winner.

2.2 The Homophily Assumption
Unfortunately, the conditions outlined above are not sufficient for
the CC model to outperform simple majority. We need to make
one additional assumption about how votes are distributed in the
network — that they exhibit homophily. It is not sufficient that
neighbors agree more often than they disagree, but that agreeing
nodes are disproportionately clustered together. There are many
generative processes which produce such highly homophilic vote
distributions on a social network; we examine one now.

Consider a process where we assign each voter an initial opinion,
X0,i which is correct with probability p. Then, at each step t , we
sample a voter, Swap, with probability proportionate to

P(Swap = i) ∝ 1 +
∑
j ∈Ni

I (Xt , j =W ∧ Xt ,i ,W ) (6)

where I is the indicator function, and flip her opinion Xt ,Swap to
the opposite alternative to obtain a new profile Xt+1. We repeat
this process to perform k swaps.

This process produces homophilic graphs and parallels innova-
tion diffusion mechanisms: “Wrong” voters with many “correct”
neighbors are sampled preferentially, and are therefore more likely
to be influenced. While flipping the opinion of such a node will
increase the discriminatory power of the majority rule by 1

|V |
, it

also increases the discriminatory power of counting the concordant
edges by far more than 1

|E | .

3 EMPIRICAL EVALUATION
We evaluate the performance of the CC model on simulated elec-
tions on Erdös-Rényi (RE) random graphs [5], and networks based
on the Kapferer Tailor Shop dataset [7]. Voters in the network
have opinions initialized randomly, with nc of the n voters starting
with the correct opinion, and the remainder receiving the incor-
rect opinion. Subsequently, voters interact k times based on the

dynamics specified in Equation 6. Finally, we aggregate opinions
from the networks via two methods: (1) Simple majority, and (2)
the CC model described in Section 2.1, using a Metropolis-Hastings
algorithm [6, 8] to break ties.

3.1 Results
We measure each model’s ability to predict the correct winner
and show the difference between these values as the Performance
Improvement as heatmaps in Figure 1. Darker regions correspond to
data points where our model performs better than majority voting.
The data points where the Correct Conversation model performs
worse than majority voting are marked with a red X.

In all scenarios, the lighter region in the top left represents cases
where bothmodels are incorrect, becausemost voters beginwith the
incorrect opinion and have little opportunity to change. Therefore,
the performance of bothmodels is exactly zero. In analogous regions
in the lower right, most voters have the correct opinion, so both
models almost always give the correct answer. With more extreme
parameters, majority voting may perform better, but this effect
is very small (typically around 1-2%). In between however, there
is a critical band where the Correct Conversation model enjoys
a considerable advantage: around 15% in ER graphs, and up to
37% in the Kapferer dataset. Interestingly, in the bottom left, just
beside the critical band are several scenarios that elicits the worst
performance from our model. In these scenarios, almost half of
the voters initially begin with the correct opinion, and just enough
opinions are revised to produce a small majority. This allows naive
voting to produce the correct result, but does not produce sufficient
structure in the edges for our model to exploit.

We also explored directed networks based on Barabási-Albert
(BA) scale-free random graphs [1]. We find that it performs in a
similar manner (with up to 86% performance improvement) when
high-degree hub nodes act as information aggregators. Because of
the dynamics of Equation 6, these high-degree nodes that are in err
are likely to be flipped to the correct opinion. However, it performs
poorly in strongly hierarchical networks where high-degree nodes
only exert influence on their neighbors. Here, high-degree nodes
can easily become misinformed and perpetuate that misinformation
to other nodes. We refer the reader to the full paper for additional
details and proofs [4].

Future investigation will apply the CC model to more complex
graph models, and extend it both to ranked voting rules for multiple
alternatives and to a wider range of opinion dynamics.
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