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1 INTRODUCTION
An autonomous intelligent agent often needs to explore its environ-

ment and choose among different available alternatives. In many

physical environments the exploration is costly, and the agent also

faces uncertainty regarding the price of the possible alternatives.

For example, consider a traveling purchaser seeking to obtain an

item [7]. While there may be prior knowledge regarding candidate

stores (e.g., based on search history), the actual price at any given

site may only be determined upon reaching the site. In another

domain, consider a Rover robot seeking to mine a certain mineral

on the face of Mars [8, 9]. While there may be prior knowledge re-

garding candidate mining sites (e.g., based on satellite images) [3, 4],

the actual cost associated with the mining at any given location,

e.g., in terms of battery consumption, may depend on the exact

conditions at each site (e.g., soil type, terrain, etc.), and hence are

fully known only upon reaching the site.

These scenarios are referred to as probabilistic physical search

problems, since there is a prior probabilistic knowledge regarding

the price of the possible alternatives at each site, and traveling for

the purpose of observing a price typically entails a cost. Further-

more, exploration and obtaining the item results in the expenditure

of the same type of resource. The purchaser’s money is used not

only to obtain the item but also for traveling from one potential

store to another; the robot’s battery is used not only for mining

the mineral but also for traveling from one potential location to

another. Thus, the agent needs to carefully plan its exploration and

balance its use of the available budget between the exploration cost

and the purchasing cost.

We focus on the development of efficient exploration strategies

for probabilistic physical search problems on graphs. The analysis

of such problems was initiated by Aumann et al. [1], who showed

that it is (computationally) hard to find the optimal solution on
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general graphs. Accordingly, they provide a thorough analysis of

physical search problems on one-dimensional path graphs, both for

single and multi-agent settings. However, many real-world physical

environments may only be represented by two-dimensional graphs.

For example, the Mars rover can freely move directly from any

possible mining location to another (with an associated travel cost),

while in path graphs the robot is restricted to move only to the two

adjacent neighbors of its current location. Our work thus handles

probabilistic physical search problems on general graphs. To the

best of our knowledge, ours is the first to do this.

We consider two variants of the problem. The first variant, coined

Max-Probability, considers an agent that is given an initial budget

for the task (which it cannot exceed) and needs to act in a way that

maximizes the probability it will complete its task (e.g., reach at

least one opportunity with a budget large enough to successfully

buy the product). In the second variant, coined Min-Budget, we
are required to guarantee some pre-determined success probability,

and the goal is to minimize the initial budget necessary in order to

achieve the said success probability.

Of course, the procurement application and the Mars rover sce-

nario are only two examples of the general setting of costly explo-

ration in an uncertain physical environment, and the discussion and

results of this paper are relevant to any such domain. For example,

a search-and-rescue plane collecting debris from a missing airliner

at various locations will want to optimize its chance of success

given limited fuel while minimizing the risk of adverse weather. A

UAV that has to loiter to classify an object with high confidence

via imagery will want to choose the best spot that will guarantee

the completion of the mission while minimizing the required bat-

tery. Since previous work showed that probabilistic physical search

problems are hard on general graphs, we either need to consider ap-

proximations with guaranteed bounds or heuristics with practical

running time. We do both.

2 THEORETICAL RESULTS
Wefirst establish an interesting connection betweenMax-Probability
and the Deadline-TSP problems [2], and as a result we are able to

provide an O(logn) approximation for the former (where n is the

number of sites), based on an O(logn) approximation for the latter,

with the only requirement that the probabilities are not too small.

This result also resolves two open problems of [1].

Theorem 2.1. TheMax-Probability problem can be approximated
within a ratio of O(logn + logk), for any instance of the problem for
which it holds that pv (ci )

1−
∑i−1
j=1 pv (c j )

≥ 1/c for every vertex v and any
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cost ci ∈ Cv , where c is any constant larger than 1. For k = O(n)
the Max-Probability problem can be approximated within a ratio of
O(logn), for the same instances.

Now consider the dual of the Max-Probability problem, the Min-
Budget problem:

Theorem 2.2. TheMin-Budget problem with a specific instance of
equal vertex costs and equal single probabilities can be approximated
within a ratio of 5 + ϵ , for any ϵ > 0.

Theorem 2.3. The Min-Budget problem is hard to approximate
within a ratio of α = 220/219 − ϵ , for any 1/219 > ϵ > 0.

We note that probabilistic physical search problems are not sim-

ply variants of the Deadline-TSP problem. Indeed, Theorem 2.2

shows that Min-Budget can sometimes be approximated, while the

dual of the Deadline-TSP problem, namely theMin-Length-Deadline-
TSP, is hard to approximate within any constant ratio:

Theorem 2.4. The Min-Length-Deadline-TSP problem is hard to
approximate within any constant ratio.

3 EXPERIMENTAL RESUTLS
We now consider heuristics for practical use. We adapt a Greedy

approach and an Ant Colony Optimization (ACO) algorithm to

our setting. We also test two restricted variants of the optimal

algorithm: the Bounded-Length (BL) heuristic, which bounds the

solution’s length, and the No-Backtrack (NB) heuristic, which only

checks paths with bounded length and without repetitions. For the
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Figure 1: Max-Probability: the number of initial locations
where a solution was found in less than 8 minutes.
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Figure 2:Max-Probability: performance comparison against
the optimal algorithm. Higher is better.

empirical evaluation of our heuristics we used a real graph structure

with the traveling costs set as the real distance between the vertices,

which was extracted from the GIS data of the highways network

of the USA. In addition, we uniformly sampled 100 vertices from

the graph as the possible initial locations for all of our algorithms.

The probabilities for each vertex were generated using a Dirichlet

distribution [6]. Some of our results are presented in Figures 1-4.

For the Max-Probability problem, BL found the success probabil-

ities that were almost as good as the success probabilities found by

the optimal algorithm (on average), and NB was only a little behind.

Both heuristics returned solutions that were at most 90% from the

optimal solutions. Greedy performed significantly worse, and ACO

was only a little better than Greedy. However, when examining

the corresponding running time NB and Greedy performed much

better than BL and ACO.

For the Min-Budget problem, BL and NB required initial budgets

that were at most 20% (on average) more than the optimal initial

budgets. ACO required larger initial budgets, and Greedy performed

worse. When examining the corresponding running time NB and

Greedy performed again better than BL and ACO.

We conclude from our experimental analysis that NB clearly is

the winner, for both Max-Probability and Min-Budget problems,

since it runs very fast but still finds near-optimal solutions. We

suggest considering a similar approach, i.e., performing a complete

search that only checks paths with bounded length and without

repetitions, for solving other planning problems on non-complete

graphs in practice.
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Figure 3:Min-Budget: the number of initial locations where
a solution was found in less than 15 minutes.
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Figure 4: Min-Budget: performance comparison against the
optimal algorithm. Lower is better.
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