
A Very Condensed Survey and Critique of Multiagent Deep
Reinforcement Learning

JAAMAS Track

Pablo Hernandez-Leal
Borealis AI

Edmonton, Canada

Bilal Kartal
Borealis AI

Edmonton, Canada

Matthew E. Taylor
Borealis AI

Edmonton, Canada

ABSTRACT
Deep reinforcement learning (RL) has achieved outstanding results
in recent years. This has led to a dramatic increase in the number
of applications and methods. Recent works have explored learn-
ing beyond single-agent scenarios and have considered multiagent
learning (MAL) scenarios. Initial results report successes in complex
multiagent domains, although there are several challenges to be
addressed. The primary goal of this extended abstract is to provide a
broad overview of current multiagent deep reinforcement learning
(MDRL) literature, hopefully motivating the reader to review our 47-
page JAAMAS survey article [28]. Additionally, we complement the
overview with a broader analysis: (i) We revisit previous key com-
ponents, originally presented in MAL and RL, and highlight how
they have been adapted to multiagent deep reinforcement learning
settings. (ii) We provide general guidelines to new practitioners in
the area: describing lessons learned from MDRL works, pointing
to recent benchmarks, and outlining open avenues of research. (iii)
We take a more critical tone raising practical challenges of MDRL.
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1 INTRODUCTION
Almost 20 years ago Stone and Veloso’s seminal survey [47] laid the
groundwork for defining the area of multiagent systems (MAS) and
its open problems in the context of AI. About ten years ago, Shoham,
Powers, and Grenager [44] noted that the literature on multiagent
learning (MAL) was growing significantly. Since then, the number
of published MAL works continues to steadily rise, which led to
different surveys on the area, ranging from analyzing the basics of
MAL and their challenges [4, 13, 51], to addressing specific subar-
eas: game theory and MAL [38, 44], cooperative scenarios [36, 39],
and evolutionary dynamics of MAL [10]. The last couple of years
three surveys related to MAL have been published: learning in
non-stationary environments [27], agents modeling agents [3], and
transfer learning in multiagent reinforcement learning (RL) [45].

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

While different techniques and algorithmswere used in the above
scenarios, in general, they are all a combination of techniques from
two main areas: RL [48] and deep learning [33, 42].

RL is an area of machine learning where an agent learns by inter-
acting (i.e., taking actions) within a dynamic environment. However,
one of the main challenges to RL, and traditional machine learning
in general, is the need for manually designing high-quality features
on which to learn. Deep learning enables efficient representation
learning, thus allowing the automatic discovery of features [33, 42].

In deep reinforcement learning (DRL) [6, 20] deep neural net-
works are trained to approximate the optimal policy and/or the
value function. In this way the deep neural network, serving as
function approximator, enables powerful generalization.

DRL has been regarded as an important component in construct-
ing general AI systems and has been successfully integrated with
other techniques, e.g., search [46], planning [50], and more recently
with multiagent systems, with an emerging area of multiagent deep
reinforcement learning (MDRL) [37, 40]. However, learning in multi-
agent settings is fundamentally more difficult than the single-agent
case due to the presence of multiagent pathologies, e.g., the moving
target problem (non-stationarity) [13], curse of dimensionality [44],
multiagent credit assignment [53], global exploration [36], and
relative overgeneralization [21].

2 A SURVEY OF MDRL
We identified four categories to group recent MDRL works:

• Analysis of emergent behaviors. These works, in general, do
not propose learning algorithms — their main focus is to
analyze and evaluate single-agent DRL algorithms, e.g., DQN,
in a multiagent environment. In this category we found
works that analyze behaviors in the three major settings:
cooperative, competitive, and mixed scenarios.

• Learning communication. These works explore a sub-area
in which agents can share information with communica-
tion protocols, for example through direct messages or via a
shared memory.

• Learning cooperation. While learning to communicate is an
emerging area, fostering cooperation in learning agents has
a long history of research in MAL [36, 39]. In this category
the analyzed works are evaluated in either cooperative or
mixed settings.

• Agents modeling agents. Albrecht and Stone [3] presented a
thorough survey in this topic andwe have foundmanyworks
that fit into this category in the MDRL setting, some tak-
ing inspiration from DRL, and others from MAL. Modeling
agents is helpful not only to cooperate, but also for modeling
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opponents for improved best-response, inferring goals, and
accounting for the learning behavior of other agents. In this
category the analyzed algorithms present their results in
either a competitive setting or a mixed one (cooperative and
competitive).

For each category, our survey [28] provides a full description
as well as a outlines recent works. Then, we take a step back and
reflect on how these new works relate to the existing literature.

3 A CRITIQUE OF MDRL
First, we address the pitfall of deep learning amnesia, roughly de-
scribed as missing citations to the original works and not exploiting
the advancements that have been made in the past, i.e., pre 2010s.
We provide some specific examples of research milestones that
were studied earlier, e.g., RL or MAL, and that now became highly
relevant for MDRL, such as:

• Dealing with non-stationarity in independent learners [32]
• Multiagent credit assignment [2]
• Multitask learning [14]
• Auxiliary tasks [49]
• Experience replay [35]
• Double estimators [25]

Next, we take a more critical view with respect to MDRL and
highlight different practical challenges that already happen in DRL
and that are likely to occur in MDRL.

Reproducibility, troubling trends, and negative results. Reproducibil-
ity is a challenge in RL that is only aggravated in DRL due to
different sources of stochasticity: baselines, hyperparameters, ar-
chitectures, and random seeds. Moreover, DRL does not have com-
mon practices for statistical testing which has led to bad reporting
practices (i.e., cherry picking [7]). We believe that together with
following the advice on how to design experiments and report re-
sults, the community would also benefit from reporting negative
results [19, 22, 43] for carefully designed hypothesis and experi-
ments.

Implementation challenges and hyperparameter tuning. One prob-
lem is that canonical implementations of DRL algorithms often
contain additional non-trivial optimizations — these are sometimes
necessary for the algorithms to achieve good performance [30]. The
effects of hyperparameter tuning were analyzed in more detail in
DRL by Henderson et al. [26], who concluded that hyperparameters
can have significantly different effects across algorithms and envi-
ronments since there is an intricate interplay among them. Note that
hyperparameter tuning is related to the troubling trend of cherry
picking in that it can show a carefully picked set of parameters that
make an algorithm work. Lastly, note that hyperparameter tuning
is computationally very expensive, which relates to the challenge
of computational demands.

Computational resources. Deep RL usually requires millions of
interactions for an agent to learn [5], i.e., low sample efficiency [54],
which highlights the need for large computational infrastructure in
general. However, computational infrastructure is a major bottle-
neck for performing DRL and MDRL research, especially for those

who do not have such large compute power (e.g., most companies
and most academic research groups) [9, 43].

In the end, we believe that high compute based methods act as a
frontier to showcase benchmarks [1, 52], i.e., they show what re-
sults are possible as data and compute is scaled up; however, lighter
compute based algorithmic methods can also yield significant con-
tributions to better tackle real-world problems.

Occam’s razor and ablative analysis. Finding the simplest context
that exposes the innovative research ideas is challenging, and if
ignored, leads to a conflation of fundamental research (working
principles in the most abstract setting) and applied research (work-
ing systems as complete as possible). In particular, some deep learn-
ing papers are presented as learning from pixels without further
explanation, while object-level representations would have already
exposed the algorithmic contribution [16]. This still makes sense
to remain comparable with established benchmarks (e.g., OpenAI
Gym), but less so if custom simulations are written without open
source access, as it introduces unnecessary variance in pixel-level
representations and artificially inflates computational resources.

Finally, we conclude with some open questions for MDRL.
• On the challenge of sparse and delayed rewards.
Recent MDRL competitions and environments have complex
scenarios where many actions are taken before a reward
signal is available. This sparseness is already a challenge for
RL [18, 48] and in MDRL this is even more problematic since
the agents not only need to learn basic behaviors, but also to
learn the strategic element (e.g., competitive/collaborative)
embedded in the multiagent setting.

• On the role of self-play.
Self-play is a cornerstone inMALwith impressive results [12,
15, 23, 29]. While notable results had also been shown in
MDRL [11], recent works have also shown that plain self-play
does not yield the best results. However, adding diversity, i.e.,
evolutionary methods [8, 34, 41] or sampling-based methods,
have shown good results. A drawback of these solutions is
the additional computational requirements since they need
either parallel training (more CPU computation) or memory
requirements.

• On the challenge of the combinatorial nature of MDRL.
To learn complex multiagent interactions some type of ab-
straction [17] is often needed, for example, factored value
functions [24, 31] try to exploit independence among agents
through (factored) structure; however, in MDRL there are
still open questions such as understanding their represen-
tational power (e.g., the accuracy of the learned Q-function
approximations) and how to learn those factorizations.

4 CONCLUSIONS
Our view is that there are practical issues within MDRL that hinder
its scientific progress: the necessity of high compute power, com-
plicated reproduciblity, and the lack of sufficient encouragement
for publishing negative results. However, we remain highly opti-
mistic about the multiagent community and hope this work serves
to raise those issues, promote good solutions, and ultimately take
advantage of the existing literature and resources available to move
the area in the most promising directions.

JAAMAS Track Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

2147



REFERENCES
[1] 2018. Open AI Five. https://blog.openai.com/openai-five. (2018). [Online;

accessed 7-September-2018].
[2] Adrian K Agogino and Kagan Tumer. 2008. Analyzing and visualizing multiagent

rewards in dynamic and stochastic domains. Autonomous Agents and Multi-Agent
Systems 17, 2 (2008), 320–338.

[3] Stefano V. Albrecht and Peter Stone. 2018. Autonomous agents modelling other
agents: A comprehensive survey and open problems. Artificial Intelligence 258
(Feb. 2018), 66–95.

[4] Eduardo Alonso, Mark D’inverno, Daniel Kudenko, Michael Luck, and Jason
Noble. 2002. Learning in multi-agent systems. Knowledge Engineering Review 16,
03 (Feb. 2002), 1–8.

[5] Dario Amodei and Danny Hernandez. 2018. AI and Compute. (2018). https:
//blog.openai.com/ai-and-compute

[6] Kai Arulkumaran, Marc Peter Deisenroth, Miles Brundage, and Anil Anthony
Bharath. 2017. A Brief Survey of Deep Reinforcement Learning . (2017). http:
//arXiv.org/abs/1708.05866v2

[7] Kamyar Azizzadenesheli. 2019. Maybe a few considerations in Reinforcement
Learning Research?. In Reinforcement Learning for Real Life Workshop.

[8] Thomas Back. 1996. Evolutionary algorithms in theory and practice: evolution
strategies, evolutionary programming, genetic algorithms. Oxford university press.

[9] Edward Beeching, Christian Wolf, Jilles Dibangoye, and Olivier Simonin. 2019.
Deep Reinforcement Learning on a Budget: 3D Control and Reasoning Without
a Supercomputer. CoRR abs/1904.01806 (2019). arXiv:1904.01806 http://arxiv.org/
abs/1904.01806

[10] Daan Bloembergen, Karl Tuyls, Daniel Hennes, and Michael Kaisers. 2015. Evo-
lutionary Dynamics of Multi-Agent Learning: A Survey. Journal of Artificial
Intelligence Research 53 (2015), 659–697.

[11] Michael Bowling, Neil Burch, Michael Johanson, and O Tammelin. 2015. Heads-up
limit hold’em poker is solved. Science 347, 6218 (2015), 145–149.

[12] Michael Bowling and Manuela Veloso. 2002. Multiagent learning using a variable
learning rate. Artificial Intelligence 136, 2 (2002), 215–250.

[13] Lucian Busoniu, Robert Babuska, and Bart De Schutter. 2008. A Comprehensive
Survey of Multiagent Reinforcement Learning. IEEE Transactions on Systems,
Man and Cybernetics, Part C (Applications and Reviews) 38, 2 (2008), 156–172.

[14] Rich Caruana. 1997. Multitask learning. Machine learning 28, 1 (1997), 41–75.
[15] Vincent Conitzer and Tuomas Sandholm. 2006. AWESOME: A general multiagent

learning algorithm that converges in self-play and learns a best response against
stationary opponents. Machine Learning 67, 1-2 (2006), 23–43.

[16] Giuseppe Cuccu, Julian Togelius, and Philippe Cudré-Mauroux. 2019. Playing
atari with six neurons. In Proceedings of the 18th International Conference on
Autonomous Agents and MultiAgent Systems. 998–1006.

[17] Yann-Michaël De Hauwere, Peter Vrancx, and Ann Nowe. 2010. Learning multi-
agent state space representations. In Proceedings of the 9th International Confer-
ence on Autonomous Agents and Multiagent Systems. Toronto, Canada, 715–722.

[18] Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune.
2019. Go-Explore: a NewApproach for Hard-Exploration Problems. arXiv preprint
arXiv:1901.10995 (2019).

[19] Jessica Zosa Forde and Michela Paganini. 2019. The Scientific Method in the
Science of Machine Learning. In ICLR Debugging Machine Learning Models work-
shop.

[20] Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare, Joelle
Pineau, et al. 2018. An Introduction to Deep Reinforcement Learning. Foundations
and Trends® in Machine Learning 11, 3-4 (2018), 219–354.

[21] Nancy Fulda and Dan Ventura. 2007. Predicting and Preventing Coordination
Problems in Cooperative Q-learning Systems. In Proceedings of the Twentieth
International Joint Conference on Artificial Intelligence. Hyderabad, India, 780–785.

[22] Oguzhan Gencoglu, Mark van Gils, Esin Guldogan, Chamin Morikawa, Mehmet
Süzen, Mathias Gruber, Jussi Leinonen, and Heikki Huttunen. 2019. HARK Side
of Deep Learning–From Grad Student Descent to Automated Machine Learning.
arXiv preprint arXiv:1904.07633 (2019).

[23] Amy Greenwald and Keith Hall. 2003. Correlated Q-learning. In Proceedings
of 17th International Conference on Autonomous Agents and Multiagent Systems.
Washington, DC, USA, 242–249.

[24] Carlos Guestrin, Michail Lagoudakis, and Ronald Parr. 2002. Coordinated rein-
forcement learning. In ICML, Vol. 2. 227–234.

[25] Hado V Hasselt. 2010. Double Q-learning. In Advances in Neural Information
Processing Systems. 2613–2621.

[26] Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup,
and David Meger. 2018. Deep Reinforcement Learning That Matters.. In 32nd
AAAI Conference on Artificial Intelligence.

[27] Pablo Hernandez-Leal, Michael Kaisers, Tim Baarslag, and Enrique Munoz de
Cote. 2017. A Survey of Learning in Multiagent Environments - Dealing with
Non-Stationarity. (2017). http://arxiv.org/abs/1707.09183

[28] Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor. 2019. A Survey and
Critique of Multiagent Deep Reinforcement Learning. Journal of Autonomous
Agents and Multiagent Systems 33 (October 2019), 750–797. Issue 6.

[29] Junling Hu and Michael P. Wellman. 2003. Nash Q-learning for general-sum
stochastic games. The Journal of Machine Learning Research 4 (Dec. 2003), 1039–
1069.

[30] Andrew Ilyas, Logan Engstrom, Shibani Santurkar, Dimitris Tsipras, Firdaus
Janoos, Larry Rudolph, and Aleksander Madry. 2018. Are Deep Policy Gradient
Algorithms Truly Policy Gradient Algorithms? CoRR abs/1811.02553 (2018).
arXiv:1811.02553 http://arxiv.org/abs/1811.02553

[31] Jelle R Kok and Nikos Vlassis. 2004. Sparse cooperative Q-learning. In Proceedings
of the twenty-first international conference on Machine learning. ACM, 61.

[32] Guillaume J Laurent, Laëtitia Matignon, Le Fort-Piat, et al. 2011. The world of
independent learners is not Markovian. International Journal of Knowledge-based
and Intelligent Engineering Systems 15, 1 (2011), 55–64.

[33] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature
521, 7553 (2015), 436.

[34] Joel Lehman and Kenneth O Stanley. 2008. Exploiting open-endedness to solve
problems through the search for novelty. In ALIFE. 329–336.

[35] Long-Ji Lin. 1992. Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine learning 8, 3-4 (1992), 293–321.

[36] Laetitia Matignon, Guillaume J Laurent, and Nadine Le Fort-Piat. 2012. Indepen-
dent reinforcement learners in cooperative Markov games: a survey regarding
coordination problems. Knowledge Engineering Review 27, 1 (Feb. 2012), 1–31.

[37] Thanh Thi Nguyen, Ngoc Duy Nguyen, and Saeid Nahavandi. 2018. Deep Rein-
forcement Learning for Multi-Agent Systems: A Review of Challenges, Solutions
and Applications. arXiv preprint arXiv:1812.11794 (2018).

[38] Ann Nowé, Peter Vrancx, and Yann-Michaël De Hauwere. 2012. Game theory
and multi-agent reinforcement learning. In Reinforcement Learning. Springer,
441–470.

[39] Liviu Panait and Sean Luke. 2005. Cooperative Multi-Agent Learning: The State
of the Art. Autonomous Agents and Multi-Agent Systems 11, 3 (Nov. 2005).

[40] Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, and Stefano V Al-
brecht. 2019. Dealing with Non-Stationarity in Multi-Agent Deep Reinforcement
Learning. arXiv preprint arXiv:1906.04737 (2019).

[41] Christopher D Rosin and Richard K Belew. 1997. New methods for competitive
coevolution. Evolutionary computation 5, 1 (1997), 1–29.

[42] Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview.
Neural networks 61 (2015), 85–117.

[43] D Sculley, Jasper Snoek, Alex Wiltschko, and Ali Rahimi. 2018. Winner’s curse?
On pace, progress, and empirical rigor. In ICLR Workshop.

[44] Yoav Shoham, Rob Powers, and T. Grenager. 2007. If multi-agent learning is the
answer, what is the question? Artificial Intelligence 171, 7 (2007), 365–377.

[45] Felipe L.D. Silva and Anna Helena Reali Costa. 2019. A Survey on Transfer
Learning for Multiagent Reinforcement Learning Systems. Journal of Artificial
Intelligence Research 64 (2019), 645–703.

[46] David Silver, A Huang, C J Maddison, A Guez, L Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot,
Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever,
Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and
Demis Hassabis. 2016. Mastering the game of Go with deep neural networks and
tree search. Nature 529, 7587 (2016), 484–489.

[47] Peter Stone and Manuela M Veloso. 2000. Multiagent Systems - A Survey from a
Machine Learning Perspective. Autonomous Robots 8, 3 (2000), 345–383.

[48] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction (2nd ed.). MIT Press.

[49] Richard S Sutton, Joseph Modayil, Michael Delp, Thomas Degris, Patrick M
Pilarski, Adam White, and Doina Precup. 2011. Horde: A scalable real-time
architecture for learning knowledge from unsupervised sensorimotor interac-
tion. In The 10th International Conference on Autonomous Agents and Multiagent
Systems-Volume 2. 761–768.

[50] Aviv Tamar, Sergey Levine, Pieter Abbeel, Yi Wu, and Garrett Thomas. 2016.
Value Iteration Networks. NIPS (2016), 2154–2162.

[51] Karl Tuyls and Gerhard Weiss. 2012. Multiagent learning: Basics, challenges, and
prospects. AI Magazine 33, 3 (2012), 41–52.

[52] Oriol Vinyals, Igor Babuschkin, Junyoung Chung, Michael Mathieu, Max Jader-
berg, Wojciech M. Czarnecki, Andrew Dudzik, Aja Huang, Petko Georgiev,
Richard Powell, Timo Ewalds, Dan Horgan, Manuel Kroiss, Ivo Danihelka, John
Agapiou, Junhyuk Oh, Valentin Dalibard, David Choi, Laurent Sifre, Yury Sulsky,
Sasha Vezhnevets, James Molloy, Trevor Cai, David Budden, Tom Paine, Caglar
Gulcehre, Ziyu Wang, Tobias Pfaff, Toby Pohlen, Yuhuai Wu, Dani Yogatama, Ju-
lia Cohen, Katrina McKinney, Oliver Smith, Tom Schaul, Timothy Lillicrap, Chris
Apps, Koray Kavukcuoglu, Demis Hassabis, and David Silver. 2019. AlphaStar:
Mastering the Real-Time Strategy Game StarCraft II. https://deepmind.com/blog/
alphastar-mastering-real-time-strategy-game-starcraft-ii/. (2019).

[53] David H Wolpert and Kagan Tumer. 2002. Optimal payoff functions for members
of collectives. In Modeling complexity in economic and social systems. 355–369.

[54] Yang Yu. 2018. Towards Sample Efficient Reinforcement Learning.. In IJCAI.
5739–5743.

JAAMAS Track Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

2148

https://blog.openai.com/openai-five
https://blog.openai.com/ai-and-compute
https://blog.openai.com/ai-and-compute
http://arXiv.org/abs/1708.05866v2
http://arXiv.org/abs/1708.05866v2
http://arxiv.org/abs/1904.01806
http://arxiv.org/abs/1904.01806
http://arxiv.org/abs/1904.01806
http://arxiv.org/abs/1707.09183
http://arxiv.org/abs/1811.02553
http://arxiv.org/abs/1811.02553
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/
https://deepmind.com/blog/alphastar-mastering-real-time-strategy-game-starcraft-ii/

	Abstract
	1 Introduction
	2 A survey of MDRL
	3 A Critique of MDRL
	4 Conclusions
	References



