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ABSTRACT
Many real-world decision problems are inherently multi-objective

in nature and concernmultiple actors, makingmulti-objectivemulti-

agent systems a key domain to study. We argue that trade-offs

between conflicting objective functions should be analysed on the

basis of the utility that these trade-offs have for the users of a system.

We develop a new taxonomy which classifies multi-objective multi-

agent decisionmaking settings, on the basis of the reward structures

and utility functions. We analyse which solution concepts apply to

the different settings in our taxonomy, which allows us to offer a

structured view of the field and identify promising directions for

future research.

CCS CONCEPTS
• Computing methodologies → Multi-agent systems; • The-
ory of computation → Sequential decision making;
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1 INTRODUCTION
The majority of multi-agent systems (MAS) implementations aim

to optimise agent’s policies with respect to a single objective, de-

spite the fact that many real-world problems are inherently multi-

objective in nature. Multi-objective optimisation [5] approaches

consider these possibly conflicting objectives explicitly. In multi-

objective multi-agent systems (MOMAS) the reward signal for each

agent is a vector, where each component represents the perfor-

mance on a different objective. Compromises between competing

objectives should be made on the basis of the utility that these

compromises have for the users. In other words, if we can define a

utility function that maps the vector value of a compromise solution

to a scalar utility, then we can derive what to optimise [11], and

how to measure the quality of solutions [13].
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In this work, we focus exclusively on multi-objective approaches

to decision making in MAS. We build a taxonomy of what consti-

tutes a solution for a multi-objective multi-agent decision problem

based on reward structures and utility functions. We note that

many of the different settings we identify are under-explored in

the current literature and would merit further investigation.

2 MOMAS TAXONOMY
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Figure 1: Multi-objective multi-agent decision making tax-
onomy and mapping of solution concepts.

In single-agent multi-objective problems, the shape of the utility

function, in conjunction with the allowed policy space, can be used

to derive the optimal solution set that a multi-objective decision-

theoretic algorithm should produce [10]. In multi-agent settings, the

situation is more complex, as each individual agent can represent

one or more distinct users. In other words, the utility function may

vary per agent. That is why we propose a taxonomy based on the

reward as well as the utility functions. We distinguish between

two types of reward functions: a team reward, in which each agent

receives the same value or return vector for executing the policy,

and individual rewards in which each agent receives a different

value/return vector. Furthermore, we make a distinction in three

types of utility—more or less orthogonally to the types of rewards—

i.e., team utility, which is what happens when all the agents serve

the same interest, e.g., when they all work for a single company
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or are on the same football team; social choice utility, when we are

interested in optimising the overall social welfare across all agents;

and individual utility, which is what happens if each agent serves a

different agenda and just tries to optimise for that. This results in

the taxonomy provided in Figure 1. Furthermore, we note that the

individual rewards with a team utility setting is not realistic; even

if the utility function of all the individual agents would be the same,

that would still lead to different individual utilities due to different

rewards. Hence, we also treat this situation as individual utilities.
Another factor we identify is the difference between the opti-

misation criteria: expected scalarised returns (ESR) and scalarised

expected returns (SER) [10, 12]. This roughly distinguishes settings

where either a single outcome (ESR) or the average outcome over

multiple runs (SER) matters.

2.1 Solution Concepts
In the context of MAS, it is difficult to identify what constitutes an

optimal behaviour, as the agents’ strategies are interrelated. For this

reason, we usually try to determine interesting groups of outcomes,

i.e., solution concepts.

Coverage sets In single-agent multi-objective decision making,

the optimal solution is called a coverage set [10]. A coverage set

contains at least one optimal policy for each possible utility function.

The team reward and team utility setting is a fully cooperative

one where all rewards and the utility derived from that is shared

between all agents. Therefore, there is only one true utility function

in the execution phase, and the motivation for coverage sets being

the right solution concept is the same as for single-agent multi-

objective decision making. In a team reward but individual utility

setting, coverage sets could be used if all agents will agree (e.g.,

through negotiation [4, 6]) that they will always execute a policy

that is potentially optimal. Furthermore, in an individual reward

and utility setting, a coverage set can also be a set of possible best
responses to the behaviours of the other agents.

Equilibria and stability concepts In the individual utility sce-

nario the utility derived by each agent from the received reward

is different, regardless if this reward is the same or not for all the

agents. This constitutes the most difficult scenario in our taxon-

omy. We consider that game theoretic equilibria (e.g., Nash [8] or

correlated equilibria [1]) are suitable solution concepts, as we are

dealing with decision making between self-interested agents.

Cooperative game theory studies settings where binding agree-

ments among agents are possible. A central problem is therefore

that of coalition formation, i.e., finding (sub)groups of agents that
are willing to make such a binding agreement with each other. In

the models in cooperative game theory, the utility for each agent is

directly derived from the coalition the agents end up in, however,

one can imagine that under the hood, the coalition works together

cooperatively (based on their binding agreement) in a sequential

decision problem that results in this utility. We further note, that the

word cooperative does not imply team utility; typically, the agents

will have their own utility functions. Hence, solution concepts from

cooperative game theory apply to individual utility settings.

Mechanism design In game theory, the field of mechanism de-

sign takes the system’s perspective for multi-agent decision prob-

lems: taking an original decision problem where the agents have

individual reward functions that are unknown to the other agents

and the “owner” of the game, as well as a social welfare function

as input, the aim is to design a system of additional payments that

would a) force the agents to be truthful about their individual utili-

ties, and b) leads to solutions that are (approximately) optimal under

the social welfare function. In multi-objective settings, the situation

is more complex, as the individually received rewards determine

the individual utilities via individual private utility functions. In

general, it might even be very hard, or even impossible to articulate

these functions, so being “truthful” about their utilities might be

infeasible from the get-go. Nevertheless, it is possible to design

mechanisms for some multi-objective multi-agent problems if the

individual utilities can be articulated.

3 CONCLUSION AND NEWHORIZONS
In this paper, we analysed multi-objective multi-agent decision

problems from a utility-based perspective. We hope that the taxon-

omy we build, together with the solution concept mapping, helps

to place existing research papers in the larger multi-objective multi-

agent decision problem context, and informs and helps to inspire

further research.

In future work, it would be worthwhile to further explore the link

between the multi-objective optimisation criteria ESR and SER, and

solution concepts for MOMAS with non-linear utility functions.

In single-objective reinforcement learning (RL), an agent often

aims to learn a model of the other agents’ behaviours and uses this

model when selecting or learning best responses. In multi-objective

multi-agent settings, a good and possibly even sufficient predictor

for this behaviour would be the utility function of the other agents.

Therefore, explicitly estimating the utility functions of the other

agents in a MOMAS is likely to be important in future research.

Interactive querying approaches, in which more information

about the utility functions is actively pursued by querying the

agents while planning or learning to limit the set of viable alter-

natives, could be helpful for mechanism design in settings where

individual reward vectors are common knowledge, but agent pref-

erences are (partially) unknown. For challenging real-world appli-

cations of MOMAS, it will be necessary to develop methods which

consider continuous or high-dimensional state and action spaces.

An important next step is therefore to extend existing deep RL

methods for multi-objective multi-agent decision making settings.

Now that we have identified the different settings and solution

concepts which are relevant to MOMAS, significant opportunities

exist to revisit problems initially modelled as single-objective multi-

agent decision problems using a multi-objective perspective. This

could provide a richer set of potential solutions for cooperative

MAS using the concept of coverage sets, or potentially improve

performance by considering additional synthetic objectives which

represent sub-tasks explicitly (i.e., multi-objectivisation [3]). One

promising direction for future work is to use multi-objectivisation

to improve team behaviour through social welfare. The possibility

also exists to use MORL techniques to develop agents which may be

tuned to adopt a range of different behaviours during deployment

[7] in MAS (e.g. cooperative vs. competitive), or even creating

populations of agents that develop effective behaviours against a

large range of opponents [2].
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