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ABSTRACT
This paper presents a survey of issues relating to explainability in
Human-Agent Systems. We consider fundamental questions about
the Why, Who, What, When and How of explainability. First, we
define explainability and its relationship to the related terms of
interpretability, transparency, explicitness, and faithfulness. These
definitions allow us to answer why explainability is needed in
the system, whom it is geared to and what explanations can be
generated to meet this need. We then considerwhen the user should
be presented with this information. Last, we consider how objective
and subjective measures can be used to evaluate the entire system.
This last question is the most encompassing as it needs to evaluate
all other issues regarding explainability.
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1 OVERVIEW
As the field of Artificial Intelligence matures and becomes ubiqui-
tous, there is a growing emergence of systems where people and
agents work together. These systems, often called Human-Agent
Systems or Human-Agent Cooperatives, have moved from theory
to reality in the many forms, including digital personal assistants,
recommendation systems, training and tutoring systems, service
robots, chat bots, planning systems and self-driving cars [2–4, 7, 10–
12, 14–18, 20–23, 25, 26, 28]. One key question surrounding these
systems is the type and quality of the information that must be
shared between the agents and the human-users during their inter-
actions.

We focus on one aspect of this human-agent interaction — the
internal level of explainability that agents using machine learning
must have regarding the decisions they make. Our overall goal is
to provide an extensive study of this issue in Human-Agent Sys-
tems. Towards this goal, our first step is to formally and clearly
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define explainability, as well as the concepts of interpretability,
transparency, explicitness, and faithfulness that make a system
explainable. Through using these definitions, we provide a clear
taxonomy regarding theWhy, Who, What, When, and How about
explainability and stress the relationship of interpretability, trans-
parency, explicitness, and faithfulness to each of these issues.

This paper’s first contribution is a clear definition for explain-
ability and for the related terms: interpretability and transparency.
In defining these terms we also define how explicitness and faith-
fulness are used within the context of Human-Agent Systems. A
summary of these definitions is found in Table 1. In defining these
terms, we focus on the features and records that are used as training
input in the system, the supervised targets that need to be identified,
and the machine learning algorithm used by the agent. We define
L as the machine learning algorithm that is created from a set of
training records, 𝑅. Each record 𝑟 ∈ 𝑅 contains values for a tuple
of ordered features, 𝐹 . Each feature is defined as 𝑓 ∈ 𝐹 . Thus, the
entire training set consists of 𝑅 × 𝐹 . While this model naturally
lends itself to tabular data, it can as easily be applied to other forms
of input such as texts, whereby 𝑓 are strings, or images whereby 𝑓

are pixels. The objective of L is to properly fit 𝑅 × 𝐹 with regard to
the labeled targets 𝑡 ∈ 𝑇 .

To help visualize the relationship between explainability, in-
terpretability and transparency, please note Figure 1. Note that
interpretability includes six methods, including transparent models,
and also the non-transparent possibilities of model and outcome
tools, feature analysis, visualization methods, and prototype analy-
sis. Feature analysis can serve as a basis for creating transparent
models, on its own as a method of interpretability, or as a inter-
pretable component within model, outcome and visualization tools.
Similarly, visualization tools can help explain the entire model as a
global solution or as a localized interpretable element for specific
outcomes of 𝑡 ∈ 𝑇 . Prototype analysis uses 𝑅 as the basis for in-
terpretability, and not 𝐹 , and can be used for visualization and/or
outcome analysis of 𝑟 ∈ 𝑅. Interpretability is a means for providing
explainability, as per these terms’ definitions in Table 1.

To date, many reasons have been suggested for making systems
explainable [1, 5, 6, 8, 9, 13, 24]: to justify its decisions so the human
participant can decide to accept them (provide control), to explain
the agent’s choices and guarantee safety concerns are met, to build
trust in the agent’s choices, especially if a mistake is suspected or
the human operator does not have experience with the system, to
explain the agent’s choices that ensure fair, ethical, and/or legal
decisions are made, to explain the agent’s choices and better eval-
uate or debug the system in previously unconsidered situations,
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Term Notation Short Description
Feature 𝐹 One field within the input.
Record 𝑅 A collection of one item of information (e.g. picture, row in datasheet).
Target 𝑇 The labeled category to be learned. Can be categorical or numeric.

Algorithm L The algorithm used to predict the value of 𝑇 from the collection of data
(all features and records).

Interpretation 𝕀 A function that takes as its input 𝐹, 𝑅,𝑇 , and L and returns a representation of L’s logic.
Explanation 𝔼 The human-centric objective for the user to understand L using 𝕀.
Explicitness The extent to which 𝕀 is understandable to the intended user.
Fairness The lack of bias in L for a field of importance (e.g. gender, age, ethnicity).
Faithfulness The extent to which the logic within 𝕀 is similar to that of L.
Transparency The connection between 𝕀 and L is both explicit and faithful.

Table 1: Notation and short definition of explainability, interpretability, transparency, fairness, and explicitness.

Figure 1: A Venn Diagram of the relationship between Ex-
plainability, Interpretability and Transparency. Notice the
centrality of Feature Analysis to 4 of the 5 elements.

and knowledge / scientific discovery. Once we have established the
why and who about explanations, a key related question one must
address is what interpretation can be generated as the basis for the
required explanation. Different users will need different types of
explanations, and the interpretations required for effective explana-
tions will differ accordingly [27]. We posit that six basic approaches
exist as to how interpretations can be generated: directly from a
transparent machine learning algorithm, feature selection and/or
analysis of the inputs, using an algorithm to create a post-hoc model
tool, using an algorithm to create a post-hoc outcome tool, using
an interpretation algorithm to create a post-hoc visualization of
the agent’s logic and using an interpretation algorithm to provide
post-hoc support for the agent’s logic via prototypes.

In Figure 2 we describe how these various methods for gen-
erating interpretations have different degrees of faithfulness and
explicitness. Each of these methods contains some level of trade-off
between their explicitness and faithfulness. Transparent models
are inherently more explicit and faithful than other possibilities.
Nonetheless, we present this figure only as a guideline, as many
implementations and possibilities exists within each of these six
basic approaches. These differences will impact the levels of both
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Figure 2: Faithfulness versus explicitness within the six ba-
sic approaches for generating interpretations

faithfulness and explicitness, something we indicate via the arrows
pointing to both higher levels of faithfulness and explicitness for a
specific implementation.

Creating a general evaluation framework is still an open chal-
lenge as these issues are often intrinsically connected. For example,
the detail of an explanation is often dependent on why that expla-
nation is needed. An expert will likely differ from a regular user
regarding why an explanation is needed, will often need these ex-
planations at different times, e.g. before or after the task (when), and
may require different types of explanations and interfaces (what
and how). At other times multiple facets of explanation exist even
within one category. A DSS system is built to support a user’s de-
cision, thus making explainability a critical issue. However, these
systems will still likely benefit from better explanations, so that the
user trusts those explanations. Similarly, a scientist pursuing knowl-
edge discovery may need to analyze and interact with information
presented before, during and after a task’s completion (when). Thus,
multiple goals must often be considered and evaluated.

We hope that the definitions presented here and in the extended
version of this paper [19] will serve as a basis for future studies
about the five questions about explainability that we present, par-
ticularly in the proper evaluation of explainability in Human-Agent
Systems.
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