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ABSTRACT
Self-organized task allocation is possible with systems designed
using the swarm robotic principles of scalability, flexibility, robust-
ness, and emergence. We summarize (1) our derived quantitative
measurements of these principles in 10,000 robot swarms, and (2)
our task allocation work using stochastic choice and matroids. We
propose extensions to our current task allocation methodology
using stochastic processes and graph-theoretic topological invari-
ants to provide a unified algorithmic approach to swarm-robotic
foraging and construction.
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1 PROBLEM DESCRIPTION
Swarm Robotics (SR) systems consist of large numbers of robots.
The main differentiating factors between SR research and multi-
agent robotics research stem from the origins of SR as an offshoot
of Swarm Intelligence (SI), which investigates algorithms and prob-
lem solving techniques inspired from natural systems such as bees,
ants, and termites. The main properties of SR systems are (1) scal-
ability: systems can profitably scale to large numbers of agents,
(2) emergence: simple, local robot interactions give rise to com-
plex collective behaviors at the system level, (3) flexibility: systems
are capable of exploiting (resisting) beneficial (adverse) environ-
mental changes (4) robustness: systems are extremely tolerant to
sensor/actuator noise and changing swarm sizes. As a result, SR
systems are able to function effectively in domains where other
types of robotic systems cannot.

The biological origins of SR enables effective parallels to be
drawn between many naturally occurring problems, such as for-
aging, and real-world problems including clearing a corridor on
a mining operation, hazardous material cleanup, and search and
rescue [5]. In the foraging problem, robots are tasked with gath-
ering objects from the environment and bringing them to a single
central location under various conditions/parameters, in which the
swarm collectively adapts to maximize some performance measure.
Once collected, objects can be used to create 3D structures of arbi-
trary size and complexity, drawing inspiration from the strategies
employed by termites [7, 9].
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2 CONTRIBUTIONS
Our recent works [2–4] have attempted to move beyond the heuris-
tic approaches to problem solving common in SR to more theoreti-
cally grounded algorithms. In [2], we investigate task partitioning
in the context of a foraging task (Fig. 1). Generalist robots choose to
not partition the task, and perform the entire foraging task them-
selves (depth0 decomposition), retrieving an object and bringing it
to the nest. Alternatively, robots can choose to partition the task
once (depth1 decomposition), and perform one of two subtasks
(Fig. 1, bottom gold tasks). Harvester robots can bring an acquired
object to an intermediate drop site (cache), and Collector robots
pick up an object from the cache and bring it to the nest. Robots
make stochastic task allocation decisions based on local, per-robot
estimates of task execution times, and we observe emergent behav-
iors in which the swarm dynamically changes its task allocation
distribution in predictable ways.

Figure 1: Task decomposition graph for a foraging task.
Solid edges indicate task decomposition, dashed blue edges
indicate dependent task sequences. Gold tasks were defined
in previous works [1, 2, 8], red tasks defined in [4].

In [3], we propose a set of quantitative measurements for swarm
scalability, flexibility, and emergence. We apply our measurements
to a foraging task using the correctness of predictive hypotheses
across scales and operating conditions to demonstrate their utility
as part of the iterative SR system design process. We evaluated
candidate algorithms at “natural scales” (10,000 robots), as distinct
from the very small numbers (≤ 30) of robots common in many re-
lated works. Our scalability measure notes the parallels between SR
and supercomputing, and frames a swarm’s scalability in terms of
the fraction of its performance that was due to inter-robot coopera-
tion. To measure emergence, we increase swarm sizes within fixed
size operating areas, and measure levels of inter-robot interference
across scales, observing that sub-linearities in interference increases
indicate self-organization (i.e. in the absence of such organization,
doubling the swarm size in a confined space would result in double
the interference). Finally, we analyzed swarm performance curves
in ideal vs. non-ideal conditions using mathematical measures of
curve similarity in order to provide quantitative evaluations of
swarm flexibility across experimental scenarios.
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In [4], we extend the task partitioning method from [2, 8] re-
cursively (i.e., a large overall task decomposed in different ways
into sequences of interdependent subtasks), allowing the swarm to
collectively create, utilize, and deplete caches dynamically, rather
than using a static predetermined location (Fig. 1, red tasks). We
prove that a variant of this task decomposition graph is a ma-
troid [6], and therefore optimal performance is guaranteed via a
simple greedy algorithm iff the emergent intelligence was rooted
in collective learning of vertex weights (task cost estimates) of the
original graph. We do not observe optimal performance, suggesting
emergent intelligence is instead rooted in collective learning of task
decomposition graph connectivity.

3 FUTUREWORK
Extending [3], we will first develop a metric for robustness using
mathematical curve similarity measures. We will also perform a cor-
relation analysis between common swarm convergence measures
(when the collective search process to solve a problem has stabi-
lized) and observed performance, in order to determine which types
of measures are best suited to different application domains. Such
convergence measures include (1) positional entropy (i.e., is the
swarm’s spatial distribution generally stable over time?), (2) robot
nearest neighbors (i.e., have robots generally grouped themselves
into stable clusters over time?), (3) task allocation distribution (i.e.,
is the fraction of the swarm engaged in each task stable over time?).

We will refine the stochastic task partitioning algorithm pre-
sented in [4], investigating task distribution load balancing within
the task decomposition graph, now represented as a Markov Chain.
Each robot will compute the projected steady state distribution
of the Markov Chain from its own localized information about
task cost estimates, and choose its next task based on (1) what
task it has most recently executed, (2) which task of the parents
and/or children of its most recently executed task has a projected
steady-state distribution that is most dissimilar from its predeces-
sors/descendants. The goal of this algorithm will be to minimize
unmet dependencies between tasks in task sequences (dashed blue
edges in Fig. 1) which are being worked on by (potentially) dif-
ferent robots, thus reducing wait times and improving collective
efficiency.

Similar to previous work in foraging, recent works on swarm
based construction have largely been heuristic in nature [7, 9], and
therefore few mathematical performance or convergence guaran-
tees of algorithms exist. We begin to address this gap by defining a
new task decomposition graph which breaks down the overall Con-
struction task (i.e. locating a block and placing it on an in-progress
structure) into the Forager graph shown in Fig. 1, and the Builder
decomposition graph, which breaks down the task of taking a block
from a specific cache and placing it onto the in-progress structure.
We will demonstrate the generality and extensibility of our task
allocation methodology by applying the derived theoretical tools
from our previous works to this much richer and more complex task
decomposition graph. This stochastic foraging-construction system
will be evaluated at truly real-world scales of 1,000,000 robots, and
will be capable of efficiently building simple but useful structures
such as walls and ramps. If successful, the system will introduce
the beginning of a theoretical basis for automation in building basic
infrastructure in real-world applications.

To create such a system, we will extend the stochastic task alloca-
tion algorithms of the Forager task from [4] by modeling caches as
queues, and applying queueing theory to influence task allocation
decisions to maintain a minimum number of objects in caches in
steady state. These stable piles of heterogeneous objects will then
be used by robots engaged in the Builder task. Stochastic processes
will be used to model the arrival of blocks within the swarm’s
operating area, as well as track their progress from their original
location to one of the existing caches in the arena (dynamically
created by the swarm), so that overall construction rate can be
accurately predicted as the swarm’s task distribution converges to
a steady state.

The Builder task will be designed to maintain topological in-
variants of the graphical representation of the structure to build
(e.g., no vertical holes in the graph, no concavities). The invariants
will be chosen such that the derived algorithm is provably correct
for all possible sub-graphs, and that construction is guaranteed
regardless of the number of robots or the current state of progress;
that is, the subgraph containing (possibly) heterogeneous blocks
comprising the in-progress structure also maintains the invariants.
Furthermore, the Builder algorithm will be massively parallel, al-
lowing multiple block attachment sites to be active simultaneously
(as distinct from [7], which although it allowed multiple robots to
traverse the in-progress structure in parallel, only had a single ac-
tive block attachment site). This will be achieved through recursive
decomposition of the overall graph and Builder task into multiple
subtasks and construction lanes, each with their own ingress and
egress points.
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