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ABSTRACT
Intelligent agents are being designed to automate many tasks - for
e.g., traffic signal control, vehicle driving, inventory control and
are also being used in improving lives of people - like in healthcare,
agriculture, wildlife protection etc. The widespread deployment of
intelligent agents requires that we minimize the bottlenecks which
affect their performance and utility. Motivated by this challenge, my
thesis proposes new algorithms and methods which helps the agent
in efficiently operating in the real-world and also during interaction
with humans. My work has shown significant improvements in the
performance of deployed agents, when operating in real world.
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1 INTRODUCTION
Autonomous agents driven by learning techniques are increasingly
being designed for sequential decision-making applications ([7, 12])
as well as for data intensive applications [8]. Our objective is to
solve problems in autonomous systems that can be tackled using
data-driven sequential decision-making learning techniques. For
e.g., in vehicular traffic signal control [7], an autonomous agent can
pick an appropriate green signal duration for all lanes at a traffic
junction based on input from visual sensors as well as physical sen-
sors embedded in lanes to measure traffic density. Hence the data
collected by a network of sensors combined with apt signal duration
(agent decision) can lead to better traffic management. Similarly, a
robot senses the surrounding terrain and alters its limb trajectories
[12]. However, there are several issues which arise when we think
of intelligent agents controlling autonomous systems, the first be-
ing efficiency of the learning techniques - the agent needs to work
with minimal amount of real-time data and computational power.
The second aspect is that of continual learning - when deployed
in real-world, the agent has to deal with dynamically changing
operating conditions (see [11]) of the autonomous system, in which
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case, the agent needs to adapt quickly to the changing conditions
and additionally should not forget previously learnt models of the
system. The third issue is when multiple rational agents drive an
autonomous system by mutual interaction [15]. The agents are
rational and take individual decisions, but each agent’s decision af-
fects the other agents. Thus, stabilizing the autonomous system and
efficiently controlling it requires that these agents co-operate with
each other in the absence of perfect information. This stabilization
is hard to attain when incomplete information is known.

2 BACKGROUND AND PRIORWORK
Autonomous systems controlled by intelligent agents involve se-
quential decision making under uncertainty. The natural mathemat-
ical framework to model these autonomous systems is a Markov
decision process (MDP) [14]. A MDP is characterized by the tuple
⟨S,A, P ,R⟩, where S is the set of operating states of the system, A
is the set of controls/actions available to the agent, P : S ×A× S →

[0, 1] is the transition probability function and R : S ×A× S → R is
the reward function. If the analytical form of the transition proba-
bility and reward functions are known, then dynamic programming
techniques [14] can be used by the agent to control the autonomous
system in an efficient or optimal manner. However, more often au-
tonomous systems are complex to model and generally the agent
does not have access to the form of these functions. In this case, the
agent can learn to control the autonomous system using reinforce-
ment learning (RL) techniques [14]. Then, we say that the agent is
a “RL agent". Suppose the initial state of the autonomous system
is s0. The RL agent deterministically chooses an action at accord-
ing to a policy π (st ) and the system evolves to the next state st+1
based on the conditional distribution p(·|st ,at ). Simultaneously the
RL agent receives a reward rt = R(st ,at , st+1). This interaction
between the RL agent and the autonomous system gives us a trajec-
tory τ = (s0,a0, r0, s1,a1, r1, s2, . . .). The goal of the RL agent is to
find a policy π∗ that maximizes the expected sum of discounted re-
wards, i.e. maximizes E[

∑∞
t=0 γ

t rt ], where γ ∈ [0, 1) is the discount
factor and actions are picked according to the policy π∗. This is a
long-term performance criterion.

The issues highlighted in Section 1 should be viewed from the
lens of the RL paradigm andMDPmodeling, because ultimately, any
issues which arise in the system need to be tackled at the mathemat-
ical model level. Every RL agent has access only to a finite collection
of trajectories {τ i = (si0,a
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M < ∞,N < ∞} and it must find an appropriate policy which
maximizes the above long-term discounted rewards criterion. A

Doctoral Consortium  AAMAS 2020, May 9–13, Auckland, New Zealand

2201



learning technique is efficient if it utilizes minimal amount of trajec-
tory information to learn a good policy. Also, the data obtained can
be utilized to infer more about the system conditions as well as the
system dynamics. Prior work [2, 4] have explored data efficiency
for single-agent settings as well as multi-agent settings but lack
theoretical justification. These works are empirical and lack any
justification of the results.

Continual learning capability is needed when the transition prob-
ability and reward functions P and R vary with time. The system
dynamics at every decision instant constitutes an environment
context, and the context variation is hidden from the agent. The dif-
ferent hidden contexts are formalized as MDPs Mθ0 ,Mθ1 , . . . ,Mθn ,
where Mθi = ⟨S,A, Pθi ,Rθi ⟩, 0 ≤ i ≤ n. At time t , if agent takes
action at in state st ∼ pθt+1 (·|st ,at ). The RL agent is unaware of the
underlying dynamics and the policy it learns using the trajectory
τ is not optimal when environment context changes. Some prior
works [1, 5] focus on continual learning for different environment
contexts. [1] proposes a model-based RL algorithm which estimates
transition probability and reward functions from trajectories cor-
responding to all environment contexts. This algorithm is highly
data-inefficient and heuristic. [5] proposes cascade neural networks
for recording policies at multiple timescales. This architecture does
not deal with environment contexts, but only remembers some
previously learnt policies. Additionally, in cases where previous
context is again active, this method re-learns the policy and hence
is prone to catastrophic forgetting [6].

Multi-agent RL [15] techniques are designed for sequential-
decision making problems with more than one RL agent involved.
The evolution of the autonomous system state and the reward
received by each agent are influenced by the joint actions of all
agents. Further, each agent has its own long-term reward to opti-
mize, which becomes a function of the policies of all other agents.
Prior works [10] have achieved empirical success, but lack theoreti-
cal analysis [3]. Scalability issues also present difficult challenges.

3 CONTRIBUTIONS
In my thesis, I focus on developing algorithms which provide prac-
tical solutions to the issues described in Sections 1 and 2.
Continual Learning: My work [11] proposes a continual RL al-
gorithm known as Context Q-learning (abbrv. CQL). A RL agent
employs CQL to search and learn an approximately optimal non-
stationary policy and this search over the space of non-stationary
policies is extremely efficient. This policy maximizes the long-term
performance criterion (see Section 2) when contexts vary and the
information about environment contexts is not available. Our algo-
rithm collects experience tuples, where each tuple consists of the
current and the next states as well as the reward. These tuples are
analyzed to detect changes in the model using a novel changepoint
algorithm. Additionally the algorithm is designed so that it resists
catastrophic forgetting.
Efficiency in Learning: Efficient learning techniques need to use
the trajectory information for multiple purposes. This is even more
important in partially observable environments, where the state
st is not observable. Instead, the RL agent has access to a mea-
surement ot of the state st and ot ∼ O(st ,at−1). Here O(st ,at−1)
is the probability distribution over observations when state is

st and previous action is at−1. Unlike the perfect trajectory in-
formation, defined in Section 2, in case of partial observability,
an RL agent has access to the (modified) trajectory information
{o0,a0, ro ,o1,a1, r1, . . . ,oN ,aN , rN }, using which it has to control
the autonomous system. My work [13] uses the trajectory informa-
tion obtained in a partially observable environment for multiple
purposes. In [13], I focus on enabling a UAV quadrotor equipped
with a monocular camera, to autonomously avoid collisions with
obstacles in unstructured and unknown indoor environments. The
monocular camera images are generally used for surveillance appli-
cations. These images are the observations available to the agent
and can be utilized for obstacle avoidance as well, as proposed in
my work [13]. Our proposed method does not require any addi-
tional equipment like stereo camera, optical flow camera etc. to be
mounted on a UAV. The obstacle avoidance UAV RL agent utilizes
multiple relevant images from a monocular camera to build a map
of the surrounding physical environment. This map is leveraged
to avoid stationary as well as mobile obstacles that are of various
shapes and sizes. Compared to prior approaches which do not fully
retain and utilize the extensively available information from the
monocular camera, our obstacle avoidance method uses the tem-
poral information inferred from a sequence of images to provide
a direction in which the UAV needs to move to avoid obstacles.
The method modifies the DQN [9] algorithm using LSTM neural
network architecture and temporal attention.

4 FUTUREWORK
My work till now has addressed some issues which arise when RL
agents control autonomous systems. However, there is scope for
more improvements. Further, I aim to focus on tackling the issues
of data efficiency and learning in presence of multiple agents. More
specific details are as follows:
Efficiency in Learning: My approach in [13] builds a data effi-
cient deep Q network [9]. However, one can also consider data
efficiency in policy-based approaches as well. To enhance usability,
I would like to extend my work to actor-critic algorithms. Another
direction I intend to explore is to make off-policy prediction [14]
and control algorithms more data efficient. Additionally, I intend to
leverage compressed sensing [16] to ascertain relevance of trajec-
tory samples.
Multiple Agents: I intend to explore theoretical analysis for multi-
agent RL algorithms, using off-policy based approaches. Off-policy
approaches as highlighted earlier, promise data efficiency, since
trajectories of one policy is used to learn about other policies as
well as about optimal policies. Though some prior works [10] exist,
there is ample scope for more exploration.
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