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ABSTRACT
Collaborating agents typically must share limited resources, such
as power or bandwidth. When dealing with global constraints on
resource use, agents need to plan their decisions in advance to max-
imize utility obtained from resources. However, deciding which
agent should claim a resource under uncertainty is a hard prob-
lem: we prove that optimally planning for a globally constrained,
multi-agent Markov decision process is pspace-hard, even when
agents’ transition and reward dynamics are independent, resource
consumption is binary, and only one constraint is active for any
decision.

To overcome this complexity, relaxations may be used to find
high-value policies efficiently. Unfortunately, relaxed policies are
not guaranteed to satisfy the constraints in every realizable trajec-
tory, making them unusable in practice. In this paper, we address
this weakness by investigating the use of such efficient-but-unsafe
algorithms in online replanning. We show that replanning can be
used to obtain high-quality safe solutions, by replanning condition-
ally with a Lagrangian relaxation-based column generation pro-
cedure. By replanning only when the risk of constraint violations
becomes too high, both the computational cost and the obtained
value can be improved over naive replanning, while retaining safety
with respect to the constraints.
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1 INTRODUCTION
When multiple independent agents must share limited resources,
such as power or bandwidth, we want them to plan their deci-
sions in advance to maximize utility subject to the resource limits.
Unfortunately the shared resource means that each agents plans
cannot be made in isolation. A straightforward approach to this
constrained multi-agent decision making problem simply joins the
planning of the agents together into a single large agent and plans
there actions jointly. While this approach makes it easy to ensure
that resource limits are respected, it quickly becomes intractable as
the resulting state space is exponential in the number of agents.

Another approach to the problem is to relax the problem and
have the agents respect the resource limits in expectation rather
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than strictly. While this makes the resolution of the problem much
more feasible, it will create violations of the resource constraints
in practice, when the actual actions chosen by the agents overload
the resource. In many cases violation of the constraints is either
impossible, for example, if all customers of an electricity network
attempt to use more than the networks available power then brown-
outs or black-outs will occur; or dangerous, if individual agents on
an autonomous robot simultaneously demand more power than
the rating of the battery a fire may result. And in the case of a
traffic routing optimization that promises a lower travel time by
occasionally recommending detours, constraint violations could
lead to traffic jams that erode users’ trust, making them ignore the
system in subsequent detour suggestions.

In this paper we investigate how to solve a globally constrained
multi-agent sequential decision making problem without ever vio-
lating the constraints in a manner that is both efficient is solving
time and utility of solution. Starting from a column generation
approach to solving the relaxed problem we show how we can use
conditional replanning to repair the policies created in order to
avoid constraint violations.

The remainder of the paper is organized as follows. In the next
section we formally introduce the problem of constraint sequen-
tial decision making, CMMDP. In Section 3.2 we show that the
problem we tackle is PSPACE-hard by a reduction from Quantified
Boolean Formula (QBF) solving. In Section 4 we introduce existing
approaches to solve CMMDPs and discuss their strengths and weak-
nesses. Then in Section 5 we introduce our conditional replanning
approach. In Section 6 we experimentally compare against alterna-
tive approaches to solving CMMDPs using two different problem
domains. In Section 7 we discuss related work further, and finally
in Section 8 we conclude.

2 BACKGROUND
To model sequential decision making under uncertainty, we employ
the typical Markov Decision Process framework [6, 24, MDP], using
the collaborative multi-agent generalization [8, MMDP]. Addition-
ally, throughout this paper we assume that agents’ transition and
reward dynamics are independent from one another [5]. Therefore,
an unconstrained instance is defined by 𝑛 individual MDP models,
one for each agent 𝑖:

Definition 2.1 (Independent MMDPs). A multi-agent MDP con-
sisting of 𝑛 independent agents can be defined through the tu-
ple ⟨ℎ, {𝑆𝑖 , 𝐴𝑖 ,𝑇𝑖 , 𝑅𝑖 } ∈ 𝛼⟩, containing
• a finite time horizon ℎ of steps 𝑡 ∈ {1, . . . , ℎ}, and
• a finite set of agents 𝛼 , with each 𝑖 ∈ {1, . . . , 𝑛} having
– a finite set of local states 𝑠𝑖 ∈ 𝑆𝑖 ,
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– a finite set of actions 𝑎𝑖 ∈ 𝐴𝑖 ,
– a transition function 𝑇𝑖 : 𝑡 × 𝑆𝑖 × 𝐴𝑖 → P(𝑆𝑖 ), awarding
probability mass 𝑇𝑖 (𝑡, 𝑠𝑖 , 𝑎𝑖 , 𝑠 ′𝑖 ) = P(𝑠 ′

𝑖
| 𝑡, 𝑠𝑖 , 𝑎𝑖 ), and

– a reward function 𝑅𝑖 : 𝑡 × 𝑆𝑖 ×𝐴𝑖 → R.

The goal of the agents is to maximize their collective expected
reward after ℎ time steps. Let ®𝑆 =

∏
𝑖 𝑆𝑖 be the set of all possible

joint states of the agents, and analogously ®𝐴 =
∏

𝑖 𝐴𝑖 for all joint
actions. Then, the maximum expected value of the agents 𝑉 ∗, is
defined by the Bellman equation [1957]:

𝑉 ∗ [ℎ, ®𝑠] = max
®𝑎∈ ®𝐴

𝑅
(
𝑡, ®𝑠, ®𝑎

)
, ∀®𝑠

𝑉 ∗ [𝑡, ®𝑠] = max
®𝑎∈ ®𝐴

(
𝑅
(
𝑡, ®𝑠, ®𝑎

)
+𝑄∗ [𝑡, ®𝑠, ®𝑎]

)
, ∀𝑡, ®𝑠

𝑄∗ [𝑡, ®𝑠, ®𝑎] =
∑
®𝑠′∈𝑆

(
𝑇 (𝑡, ®𝑠, ®𝑎, ®𝑠 ′) ·𝑉 ∗ [𝑡+1, ®𝑠 ′]

)
. ∀𝑡, ®𝑠, ®𝑎

(1)

An optimal joint policy 𝜋∗ : 𝑡 × ®𝑆 → ®𝐴 prescribes the action to
take in each time and state, i.e., the argmax®𝑎∈ ®𝐴 that achieves 𝑉 ∗

in Equation (1). The task of a planning algorithm is to find 𝜋∗.
In the case of fully independent agents, the problem of find-

ing policy 𝜋∗ decomposes into planning 𝑛 individual policies 𝜋∗
𝑖
.

However, this changes when constraints are added to the problem.

3 CONSTRAINED SEQUENTIAL DECISION
MAKING

A constraint imposes a restriction on the actions that the agents are
allowed to execute. For example, when routing traffic to minimize
total travel time, the number of vehicles taking a particular road at
any given time is limited by the capacity of the road, i.e., a 3-lane
road segment will fit at most 3 cars side-by-side. To model such a
problem, we extend Independent MMDPs by imposing an upper
limit 𝐿𝑡 on the consumption, and adding for every agent 𝑖 , a binary
resource consumption function 𝐶𝑖 :

Definition 3.1 (Constrained MMDPs). A multi-agent MDP with
constraints is defined by tuple ⟨ℎ, 𝐿, {𝑆𝑖 , 𝐴𝑖 ,𝑇𝑖 , 𝑅𝑖 ,𝐶𝑖 } ∈ 𝛼⟩, consist-
ing of

• an Independent MMDP ⟨ℎ, {𝑆𝑖 , 𝐴𝑖 ,𝑇𝑖 , 𝑅𝑖 } ∈ 𝛼⟩ (Def. 2.1),
• a set 𝐿 containing 𝑡 real-valued limits 𝐿𝑡 ∈ R+, and
• a binary consumption function 𝐶𝑖 : 𝑡 × 𝑆𝑖 ×𝐴𝑖 → {0, 1}.

The constraints imposed by a Constrained MMDP (CMMDP) are
satisfied by a (joint) policy 𝜋 , if it holds that

∀𝑡, ®𝑠 :
𝑛∑
𝑖=1

𝐶𝑖 (𝑡, ®𝑠𝑖 , 𝜋𝑖 (𝑡, ®𝑠)) ≤ 𝐿𝑡 . (2)

A policy that satisfies the constraints is safe. The goal of a planner
for CMMDPs is to obtain the optimal safe policy 𝜋∗, which maxi-
mizes the expected reward without exceeding the capacity limits
on any of the 𝑡 constraints in any possible state ®𝑠 . First, we define
the set of safe joint actions in ⟨𝑡, ®𝑠⟩ as

®𝐴safe
𝑡,®𝑠 =

{
®𝑎
�� ∑𝑛

𝑖=1𝐶𝑖 (𝑡, ®𝑠𝑖 , ®𝑎𝑖 ) ≤ 𝐿𝑡 , ®𝑎 ∈ ®𝐴
}
. (3)

MDP1

MDP2

MDP3

MDP4

MDP5

MDP6 ∑
influence

MDP1

MDP2

MDP3

MDP4

MDP5

MDP6

Figure 1: Constraints impose an all-to-all coupling between
the otherwise independent single-agent MDPs (left). The
weak coupling imposed by constraints suggests abstracting
the influence agents have on each other (right). Figure re-
produced with permission from [9].

Then, the optimal safe value function 𝑉 ∗safe is given by

𝑉 ∗safe [ℎ, ®𝑠] = max
®𝑎∈ ®𝐴safe

𝑡,®𝑠

𝑅
(
𝑡, ®𝑠, ®𝑎

)
, ∀®𝑠

𝑉 ∗safe [𝑡, ®𝑠] = max
®𝑎∈ ®𝐴safe

𝑡,®𝑠

(
𝑅
(
𝑡, ®𝑠, ®𝑎

)
+𝑄∗safe [𝑡, ®𝑠, ®𝑎]

)
, ∀𝑡, ®𝑠

𝑄∗safe [𝑡, ®𝑠, ®𝑎] =
∑
®𝑠′∈𝑆

(
𝑇 (𝑡, ®𝑠, ®𝑎, ®𝑠 ′) ·𝑉 ∗safe [𝑡+1, ®𝑠

′]
)
. ∀𝑡, ®𝑠, ®𝑎 ∈ ®𝐴safe

𝑡,®𝑠

Without loss of generality, we assume no dead-ends, states where
no further actions can safely be taken, exist in a ConstrainedMMDP.
To remove dead-ends from a model, we can always add a dummy
feasibility action with 0 consumption and negative infinity rewards.

3.1 Connections with other constrained models
Several models for MDPs with one primary objective and multi-
ple secondary constraints exist, starting from at least the works
of Kallenberg [18], Rossman [26] and Beutler and Ross [7]. Broadly
speaking, constraints fall in two categories: soft constraints, which
apply to the expected value of consumption, and hard constraints
which require that even in the worst-case trajectory the constraints
should be met. Tractable algorithms for soft constraints based on
linear programming allow us to find solutions for these problems
efficiently, see [3] for an overview.

However, hard constraints, such as those of the CMMDP model
considered here, can be significantly harder to solve, especially
whenmultiple agents are involved. This is because, while the reward
function only affects the goals and behavior of one individual agent,
constraints set the operating conditions for all agents together,
thereby fully coupling them. Despite this, the ‘independent agent
core’ suggests that these problems are only weakly coupled [2, 21].
As the total resource consumption is the sum of individual agent
consumptions, for the sake of meeting the constraint it does not
matter which specific agents contributed to the total. From the
perspective of a specific agent, the influence of the other agents is
thus anonymous [25, 28]. Intuitively, tractability may be achievable,
by approximating the influence agents exert on one another, see
Figure 1.
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Figure 2: CMMDP corresponding to QBF (4). Transitions labeled with the corresponding action(s), solid and dotted edges are
deterministic, dashed edges have 𝑃 = 0.5. During the checking phase, blue edges have 𝐶 = 0, while dotted edges score 𝑅 = −1.

3.2 Complexity of planning for CMMDPs
Although several heuristic and relaxation algorithms have been
proposed for (models closely related to) Constrained MMDPs, the
complexity of these problems has not yet been formally established.
Our first contribution is proving that even under our restricted
constraint model, computing an optimal safe policy is pspace-hard.
We do so through a reduction from the Quantified Boolean For-
mula (QBF) problem, which asks us to decide if a Boolean satisfia-
bility problem augmented with existential and universal quantifiers
can always be made true. The QBF problem is known to be pspace-
complete [17, section 11.3.4]. We first present the QBF problem
formally, before presenting our proof.

Definition 3.2 (QBF). A Quantified Boolean Formula 𝜙 in prenex
conjunctive normal form (PCNF) is of the form𝑄1𝑥1 . . . 𝑄𝑛𝑥𝑛𝜓 , with
quantifier 𝑄𝑖 ∈ {∀, ∃} and 𝜓 a Boolean satisfiability formula in
conjunctive normal form.

Any QBF can be converted into an equivalent QBF in PCNF
through a suitable formula translation scheme. As an example of a
QBF, consider the following formula:

∃𝑥1 : ∀𝑥2 : ∃𝑥3 : (𝑥1 ∨ 𝑥2) ∧ (𝑥2 ∨ 𝑥3) ∧ (¬𝑥1 ∨ ¬𝑥2 ∨ ¬𝑥3) (4)

The QBF problem asks to decide if this is a true formula, i.e., if
there exists an allocation to 𝑥1 such that for all allocations to 𝑥2
there exists an allocation to 𝑥3 that makes all clauses true. This
example formula is true, because we can set 𝑥1 to true to satisfy
the first clause, after which we only need to set 𝑥3 = ¬𝑥2, to cover
the remaining of the two clauses that is not satisfied by either
assignment to 𝑥2.

In the subsequent proof, we show that any QBF problem can be
encoded as an equivalent CMMDP in polynomial time. Intuitively,
the sequential nature of truth assignments to variables, where the
decision on 𝑥1 needs to be made before 𝑥2 is known maps naturally
to the sequential decision making process of MDPs. We make use

of this idea in the reduction by deciding on each variable in turn
in a decision phase. The decision phase is followed by a clause
checking phase, where one clause is checked every time step, using
constraints to force each clause to be satisfied.When a clause cannot
be satisfied by the truth assignment, the agents incur a reward
penalty; only when a policy can be found that never incurs penalties
is the QBF true.

Theorem 3.3. Solving a CMMDP is PSPACE-hard.

Proof. Given a QBF in PCNF, where the variables are numbered
in order of quantification we construct the following CMMDP:
create one MDP for each variable 𝑥𝑖 . The MDP 𝑖 starts in an initial
state 𝑠0, and there are two other states 𝑠true or 𝑠false. Each agent has
two actions 𝑎true and 𝑎false. These actions initially transition from 𝑠0
to 𝑠0, until the time that 𝑡 = 𝑖 . How each of the other states is reached
at 𝑡 = 𝑖 depends on the quantifier attached to 𝑥𝑖 . In the case of ∀𝑥𝑖 ,
both actions have a probability 0.5 of reaching either 𝑠true or 𝑠false,
e.g., 𝑇 (𝑖, 𝑠0, ·, 𝑠true) = 0.5. In the case of ∃𝑝𝑖 , the agent can choose
𝑎true to transition to 𝑠true with certainty, or 𝑎false to instead visit the
other state. After transitioning from 𝑠0 the agents will follow one
of two self-transitions (e.g., 𝑠true → 𝑠true). This first decision phase
lasts until 𝑡 = 𝑛 + 1, at which point all agents have transitioned to
either 𝑠true or 𝑠false, forming a candidate truth assignment. During
the decision phase, agents neither receive rewards, nor consume
resources, i.e., ∀𝑡 ≤ 𝑛 : 𝑅𝑖 (𝑡, ·, ·) = 𝐶𝑖 (𝑡, ·, ·) = 0.

Following the decision phase there are |𝜓 | clause checking time
steps. During the clause checking phase, agents continue to follow
the self-transitions, but now they are penalized for choosing the
action that disagrees with their state, ∀𝑡 > 𝑛 : 𝑅𝑖 (𝑡, 𝑠true, 𝑎false) =
𝑅𝑖 (𝑡, 𝑠false, 𝑎true) = −1, and 0 otherwise. Furthermore, agents now
consume 1 resource unless the action they choose satisfies the
corresponding clause, i.e., ∀𝑡 > 𝑛 : 𝑅𝑖 (𝑡, ·, 𝑎false) = 0 iff ¬𝑥𝑖 ∈ 𝜓𝑡−𝑛 .
The constraint 𝐿𝑡 in time 𝑡 > 𝑛 imposes a maximum consumption
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Algorithm 1 Constrained MDP Occupancy Linear Program [3].

Input: CMMDP ⟨ℎ, 𝐿, {𝑆𝑖 , 𝐴𝑖 ,𝑇𝑖 , 𝑅𝑖 ,𝐶𝑖 } ∈ 𝛼⟩
Output: 𝑛 independent stochastic policies 𝜋𝑖 , see (5)

max
𝑥𝑖,𝑡,𝑠,𝑎

𝑛∑
𝑖=1

ℎ∑
𝑡=1

∑
𝑠∈𝑆𝑖

∑
𝑎∈𝐴𝑖

𝑅𝑖 (𝑡, 𝑠, 𝑎) · 𝑥𝑖,𝑡,𝑠,𝑎

s.t.
∑
𝑎′∈𝐴𝑖

𝑥𝑖,𝑡+1,𝑠′,𝑎′ =
∑

𝑠∈𝑆𝑖 ,𝑎∈𝐴𝑖

𝑇𝑖 (𝑡, 𝑠, 𝑎, 𝑠 ′) · 𝑥𝑖,𝑡,𝑠,𝑎 ∀𝑖, 𝑡 < ℎ, 𝑠 ′∑
𝑎′∈𝐴𝑖

𝑥𝑖,1,𝑠′,𝑎′ = P𝑖 (1, 𝑠 ′) ∀𝑖, 𝑠 ′∑
𝑖,𝑠∈𝑆𝑖 ,𝑎∈𝐴𝑖

𝐶𝑖 (𝑡, 𝑠, 𝑎) · 𝑥𝑖,𝑡,𝑠,𝑎 ≤ 𝐿𝑡 ∀𝑡

0 ≤ 𝑥𝑖,𝑡,𝑠,𝑎 ≤ 1

of 𝑛−1, forcing at least one of the actions chosen to make the clause
true. However, unless all chosen actions align with their states (=
assignments), satisfying the constraint incurs a penalty of at least
−1. Therefore, the optimal policy for this CMMDP has an expected
value 𝑉 ∗ [1, ®𝑠0] = 0 only if the corresponding QBF is true.

The size of the resulting CMMDP is polynomial in the size of
the input QBF: there are 𝑛 agents, each with 3 states and 2 actions,
and a planning horizon ℎ = 𝑛 + |𝜓 |. □

Figure 2 applies the reduction in the proof to our example QBF
formula from Equation (4). As a corollary to this proof, observe
that an agent 𝑖 that decides on an existential quantifier at time 𝑡
needs to take into account the state transitions of all the agents that
participate in one of the clauses with 𝑖 and already transitioned
to 𝑠true or 𝑠false at an earlier time 𝑡 ′ < 𝑡 . This means that an optimal
policy for a CMMDP necessarily needs to consider the joint state
of all agents in the worst case, even though the agents’ transition
and reward models are otherwise independent.

4 EXISTING APPROACHES
Because of the high complexity of solving CMMDPs, finding optimal
policies is intractable in general. Existing approximate solutions
based on principled optimization therefore either tighten or relax
aspects of the problem to retain tractability. In this section, we
describe existing methods with optimality guarantees (within their
specific assumptions) for both categories.

4.1 Constraint relaxations
To obtain a policy efficiently, we either have to settle for approxi-
mate solutions, or forgo constraint strictness by accepting relaxed
solutions. Such solutions typically satisfy the constraints in expec-
tation, guaranteeing only that E[∑𝑖 𝐶𝑖 ] ≤ 𝐿𝑡 . Several algorithms
have been proposed to compute relaxed solutions, here we briefly
describe four possible approaches.

Constrained MDP dual LP. One approach to compute relaxed
solutions is to solve the linear program (LP) given in Algorithm 1,
which is the extension of a Constrained MDP [3] to multiple agents.
This LP is defined over probability flow variables 𝑥𝑖,𝑡,𝑠,𝑎 , which rep-
resent the unconditional probability that agent 𝑖 takes action 𝑎 at
time 𝑡 in state 𝑠 . The flow of probability is made consistent with

the transition function through the first two constraints, starting
from prior probabilities P𝑖 (1, 𝑠 ′) over the initial state. The resource
usage constraints imposed by the CMMDP are satisfied in expec-
tation through the third constraint: because 𝑥𝑖,𝑡,𝑠,𝑎 is the marginal
probability of incurring resource cost 𝐶𝑖, 𝑗 (𝑡, 𝑠, 𝑎), the sum over all
possible states gives us the expected resource consumption, thus
making the policy satisfy the constraints in expectation. The policy
indicated by the flow variables is stochastic, with actions chosen
according to the probability

Pr(𝜋𝑖 (𝑡, 𝑠𝑖 ) = 𝑎𝑖 ) =
𝑥𝑖,𝑡,𝑠𝑖 ,𝑎𝑖∑
𝑎 𝑗

𝑥𝑖,𝑡,𝑠𝑖 ,𝑎 𝑗

. (5)

i-dual. The LP at the core of Algorithm 1 can quickly grow very
large, having 𝑂 (𝑛ℎ |𝑆𝑖 | |𝐴𝑖 |) variables. However, many of the vari-
ables may never be assigned a positive probability value 𝑥 > 0.
Trevizan et al. [27] use this insight to speed up solving the LP, by
generating variables incrementally, as they receive positive proba-
bility. It does this by creating artificial goal variables 𝑥𝑖,𝑡,𝑠 for the
states at the reachable fringe, which are only expanded into their
actual variables 𝑥𝑖,𝑡,𝑠,𝑎 when a previous iteration indicated 𝑥𝑖,𝑡,𝑠 > 0.
To guide the expansion of promising candidates 𝑥𝑖,𝑡,𝑠 , the variables
are assigned (admissible) heuristic values for both the expected
future reward and expected future costs. In the case of our CMMDP
problems, we use the admissible heuristic value given by comput-
ing the optimal unconstrained single-agent policies’ 𝑉𝑖 [𝑡, 𝑠𝑖 ], and
setting consumption to 0.

Lagrangian Relaxation and Column Generation. Especially when
dealing with multiple independent agents, an efficient approach to
obtain relaxed policies is to make use of Lagrangian relaxation [15].
Yost and Washburn [31] propose a column generation approach
based on Lagrangian relaxation, interleaving single-agent (partially
observable) MDP planning for a resource usage cost with solving a
‘master’ linear program that finds the best updated resource price.

Column Generation [14] allows us to decompose combinatorial
optimization problems, provided the problem has some method to
generate new potential solutions efficiently. The technique uses
the insight that, when an LP is used to select solutions from an
exhaustive set 𝑍 , the simplex algorithm only considers one variable
at a time. If we can generate the optimal element to be selected on
the fly, we avoid having to maintain the exhaustive set of candidate
variables explicitly. In the case of CMMDPs, the elements ⟨𝑖, 𝑘⟩ of
the set𝑍 are the individual agent MDP policies, with expected value
𝑉𝜋𝑖,𝑘 and expected resource usage 𝑈𝜋𝑖,𝑘 . The master LP selects the
optimal ‘mix’ of policies, by awarding a probability 𝑥𝑖,𝑘 to each
policy 𝜋𝑖,𝑘 such that the expected value is maximized within the
constraints:

max
𝑥𝑖,𝑘

𝑛∑
𝑖=1

∑
𝜋𝑘 ∈𝑍𝑖

𝑥𝑖,𝑘𝑉𝜋𝑖,𝑘 (1, 𝑠1),

s.t.
𝑛∑
𝑖=1

∑
𝜋𝑘 ∈𝑍𝑖

𝑥𝑖,𝑘 𝑈𝜋𝑖,𝑘 , 𝑗 (1, 𝑠1) ≤ 𝐿𝑗 ∀𝑗,∑
𝜋𝑘 ∈𝑍𝑖

𝑥𝑖,𝑘 = 1, ∀𝑖,

𝑥𝑖,𝑘 ≥ 0, ∀𝑖, 𝑘 .

(6)
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Algorithm 2 Column generation for CMMDPs [31].

Input: CMMDP𝑀 = ⟨ℎ, 𝐿, {𝑆𝑖 , 𝐴𝑖 ,𝑇𝑖 , 𝑅𝑖 ,𝐶𝑖 } ∈ 𝛼⟩
Output: Deterministic policies 𝜋𝑖,𝑘 ∈ 𝑍 , with Pr(𝜋𝑖,𝑘 ) = 𝑥𝑖,𝑘

𝜆 = 0, 𝜆′ = ∞, Λ = ∅, 𝑍 = ∅
1: while 𝜆 ≠ 𝜆′ do
2: 𝜆 ← 𝜆′

3: ∀𝑖 : 𝜋𝑖,new ← plan(𝑀𝑖 , 𝜆) ⊲ Equation (7)
4: 𝑍𝑖 ← 𝑍𝑖 ∪ 𝜋𝑖,new
5: ⟨𝑥, 𝜆′⟩ ← solveLP(𝑍 ) ⊲ Equation (6)
6: Λ← Λ ∪ 𝜆
7: end while
8: return ⟨𝑥, 𝑍,Λ⟩

Generating the ‘column’ of constants 𝑉𝜋𝑖,𝑘 ,𝑈𝜋𝑖,𝑘 that define the
candidate variable comes down to planning a single-agent MDP
policy for a resource usage cost 𝜆, for example through a modified
dynamic programming, for equation

𝑉𝜋𝑖,𝑘 (𝑡, 𝑠) = max
𝑎∈𝐴

𝑅𝑖 (𝑠, 𝑎) +
∑
𝑠′∈𝑆𝑖

𝑇𝑖 (𝑠, 𝑎, 𝑠 ′) ·𝑉𝜋𝑖,𝑘

− 𝜆𝑘 ×𝐶𝑖 (𝑡, 𝑠, 𝑎) .
(7)

The resulting algorithm 2 finds the optimal stochastic mix of
policies for relaxed constraints, satisfying the constraints in expec-
tation, in worst-case polynomial time. Because the resulting policy
is a stochastic mix, every time we want to execute the joint policy,
we first have to sample a 𝜋𝑖 ∈ 𝑍 ∝ 𝑥𝑖 ∀𝑖 .

Dynamic bounding. All three previous algorithms satisfy the
constraints in expectation. However, even when constraints are soft,
exceeding them typically incurs some cost to the system operator.
Therefore, De Nijs et al. [11] propose to restrict the probability that
the random variable 𝑋𝑡 of the total resource consumption exceeds
the limit, through Hoeffding’s inequality [16] on the tail probability
of a sum of independent random variables 𝑋𝑖,𝑡 . This allows us to
find the maximum 𝐿∗𝑡 for which

Pr
[
𝑋𝑡 > 𝐿𝑡 | E [𝑋𝑡 ] ≤ 𝐿∗𝑡

]
≤ 𝛼, ∀𝑡 .

These reduced constraints can subsequently be used in conjunction
with any of the previously mentioned algorithms to compute 𝛼-safe
policies. However, because this bound may significantly overesti-
mate the tail probability, [11] suggests to use it as a starting point
for an iterative hill-climbing procedure to relax 𝐿∗𝑡 to tightly meet
limit 𝛼 .

4.2 Safe solutions and approximations
The bounding procedure gives us policies which are risk-bounded,
but to obtain entirely safe policies, different algorithms are needed.
The brute-force baseline approach to find safe policies is to apply
dynamic programming over the joint models, at every point only
selecting actions from the safe action set of Eq. (3). Unfortunately,
this algorithm requires 𝑂 (2®𝑆 ®𝐴ℎ) time and 𝑂 ( ®𝑆ℎ) space to arrive at
the optimal solution in the worst case, which are both exponential
in the number of agents 𝑛. A more efficient safe approximation
allocates resources unconditionally, through aMixed-Integer Linear
Program (MILP):

Algorithm 3 Preallocation Mixed-integer Linear Program [30].

Input: CMMDP ⟨ℎ, 𝐿, {𝑆𝑖 , 𝐴𝑖 ,𝑇𝑖 , 𝑅𝑖 ,𝐶𝑖 } ∈ 𝛼⟩
Output: 𝑛 independent stochastic policies 𝜋𝑖 , see (5)

max
𝑥𝑖,𝑡,𝑠,𝑎

𝑛∑
𝑖=1

ℎ∑
𝑡=1

∑
𝑠∈𝑆𝑖

∑
𝑎∈𝐴𝑖

𝑅𝑖 (𝑡, 𝑠, 𝑎) · 𝑥𝑖,𝑡,𝑠,𝑎

s.t.
∑
𝑎′∈𝐴𝑖

𝑥𝑖,𝑡+1,𝑠′,𝑎′ =
∑

𝑠∈𝑆𝑖 ,𝑎∈𝐴𝑖

𝑇𝑖 (𝑡, 𝑠, 𝑎, 𝑠 ′) · 𝑥𝑖,𝑡,𝑠,𝑎 ∀𝑖, 𝑡 < ℎ, 𝑠 ′∑
𝑎′∈𝐴𝑖

𝑥𝑖,1,𝑠′,𝑎′ = P𝑖 (1, 𝑠 ′) ∀𝑖, 𝑠 ′∑
𝑠∈𝑆𝑖 ,𝑎∈𝐴𝑖

𝐶𝑖 (𝑡, 𝑠, 𝑎) · 𝑥𝑖,𝑡,𝑠,𝑎 ≤ Δ𝑖,𝑡 ∀𝑖, 𝑡

𝑛∑
𝑖=1

Δ𝑖,𝑡 ≤ 𝐿𝑡 ∀𝑡

0 ≤ 𝑥𝑖,𝑡,𝑠,𝑎 ≤ 1,Δ𝑖,𝑡 ∈ {0, 1} ∀𝑖, 𝑡, 𝑠, 𝑎

Preallocation MILP. This algorithm was first proposed by Dol-
gov and Durfee [13] for infinite-horizon MMDPs with single-shot
resource allocations, and later extended in Wu and Durfee [30] to
handle resource reallocation over time. It uses the insight that the
marginal probability of an agent arriving in a state ⟨𝑡, 𝑠𝑖 ⟩ and using
action 𝑎 (the 𝑥𝑖,𝑡,𝑠,𝑎 variables of Alg. 1) can be used as an indicator
for an agent using a resource in the ‘worst’ case. By constraining
the sum over these worst-case ‘preallocations’, we can be sure that
the agents never exceed their allowance.

Algorithm 3 presents the full MILP model, using the same flow
variables and constraints of Alg. 1, augmented with Δ𝑖, 𝑗 variables
indicating an allocation of resource 𝑡 to agent 𝑖 . The third constraint
guarantees that any probability of taking a resource-consuming
action is translated into an allocation. Finally, the fourth constraint
ensures that the total allocation does not exceed the limits.

This algorithm computes the optimal resource preallocation, in
worst-case time 𝑂 (2𝑛𝑚). This algorithm thus also requires time
exponential in the number of agents, but it uses exponentially less
space than dynamic programming. This saving comes at a cost,
because preallocations reason over all possible paths at the same
time, and may therefore over-estimate realized resource consump-
tion, resulting in conservative policies. Trevizan et al. [27] propose
a row-and-column generation procedure for probability flow LPs,
which can improve the average-case runtime of the MILP.

5 CONDITIONAL REPLANNING
Unfortunately, existing algorithms are either insufficiently scalable
to handle more than a handful of agents or time-steps, or relax
the problem to the point that constraint satisfaction cannot be
guaranteed. Therefore, we investigate the use of replanning to
repair policies that are computed by relaxations.

Recall that relaxed solutions satisfy the constraints in expecta-
tion, by computing the marginal probability of realized resource
consumption. Because the marginal probability of the current state
is 1, we may expect that a relaxed solution is at least guaranteed to
be feasible for the current state. However, relaxations can return
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Algorithm 4 Conditional replanning for CMMDPs.

Risk threshold 𝛼 , joint policy ®𝜋 , warm start columns Λ,
consumption sample means ®𝜇 ′ and standard deviations ®𝜎 ′.

1: procedure init(CMMDP𝑀 , initial state ®𝑠0)
2: ⟨𝑥, 𝑍,Λ⟩ ← planCG(𝑀)
3: ®𝜋 ← sampleSafe(𝑥, 𝑍, ®𝑠0)
4: ⟨®𝜇 ′, ®𝜎 ′⟩ ← sampleConsumption( ®𝜋,𝑀)
5: end procedure

6: procedure applyPolicy(time 𝑡 , state ®𝑠)
7: if 𝐶 (𝑡, ®𝑠, ®𝜋 (®𝑠)) ≥ 𝐿𝑡 or
8: ∃𝑡 ′ :

��E[𝐶®𝑠®𝜋 (𝑡 ′)] − 𝜇 ′𝑡 ′ �� ≥ 𝛼 · 𝜎 ′
𝑡 ′ then

9: ⟨𝑥, 𝑍,Λ⟩ ← replanCG(𝑀,Λ)
10: ®𝜋 ← sampleSafe(𝑥, 𝑍, ®𝑠)
11: ⟨®𝜇 ′, ®𝜎 ′⟩ ← sampleConsumption( ®𝜋,𝑀)
12: end if
13: return action ®𝑎 = ®𝜋 (®𝑠)
14: end procedure

stochastic policies, which means that algorithms like column gen-
eration might still return policy mixes where some combinations
of policies over-consume resources in the current time step. For
example, a constraint of 0.6 may be satisfied by a mix where 60%
policies use 1 unit and 40% policies use 0 units of the resource. Nev-
ertheless, in the case of a single active instantaneous constraint per
state, a safe policy selection is guaranteed to exist. The odds of not
sampling this (current-instant) safe policy decrease exponentially,
e.g., Pr = 0.6𝑘 for 𝑘 samples in the example, making it vanishingly
unlikely that rejection sampling over the policy mix would not find
a safe action to execute. And even if no safe policy is sampled, we
can find a worst-case one by construction, by selecting for each
agent the policy with least immediate consumption. One approach
to address the issue of constraint violations is thus to replan a con-
trol policy after every time step using a relaxing solver, and using
rejection sampling to guarantee safe action selection.

Warm replanning in column generation. Naive replanning is costly
if done from scratch, and usually cannot be done under time con-
straints from policy execution [12]. Fortunately, in the case of col-
umn generation we have the opportunity to reuse information from
the previous time step, for a warm restart. After a state transition
the expected value𝑉𝜋𝑖,𝑘 (𝑡, 𝑠) and expected resource usage𝑈𝜋𝑖,𝑘 (𝑡, 𝑠)
constants that make up the (surviving) columns in 𝑍 are no longer
valid, because they are specific to the initial state (𝑡, 𝑠). However, the
policy 𝜋𝑖,𝑘 remains a valid policy for costs 𝜆𝑘 , which means that we
can compute updated column values𝑉𝜋𝑖,𝑘 (𝑡+1, 𝑠 ′) and𝑈𝜋𝑖,𝑘 (𝑡+1, 𝑠 ′)
without having to recompute the policy. This allows us to start the
next iteration of column generation with the same set of lambda
costs that were active previously.

Minimizing the frequency of replanning. While warm restarts
help to bring down the computational impact of replanning, it
remains costly to replan every time step, and multi-agent settings
have the added challenge that a replanning operation also incurs
a communication overhead [29]. Furthermore, because finding a
safe action requires rejection sampling, the chosen policy is always
on the conservative half of the expected value, making the actually

implemented policies considerably more conservative than the
expectation. By resampling unconditionally, every time step incurs
this reward penalty. What is needed therefore is a mechanism to
optimize the frequency of replanning [1].

We propose the following replanning strategy, presented for-
mally in Algorithm 4: given a selection of policies ®𝜋 = {𝜋1, . . . 𝜋𝑛}
sampled to implement a safe action in some previous time step 𝑡 ′, we
only replan a new mix of policies at time 𝑡 if either one of two con-
ditions hold: (line 7) the currently chosen action would immediately
violate the currently active constraints, or (line 8) the (estimated)
future probability of a constraint violation using the current policy
exceeds a given risk threshold 𝛼 . This forward-looking perspective
is necessary for models such as the QBF mapping presented in
Section 3.2, where the decisions that impact resource consumption
are made several time steps before a constraint applies.

In order to obtain the true future probability of a constraint vio-
lation, we would need to join the individual agent models together
and find the marginal probability of all joint states where a given
constraint is violated. However, because the joint model has expo-
nential size and is therefore too large to evaluate, we instead use a
simple forward simulations of the policies to estimate the risk of a
future constraint violation.

In case replanning is required, we use the same rejection sam-
pling technique to obtain a new selection ®𝜋 . The effect of this replan-
ning strategy is that the currently selected policy is retained, unless
stochastic transitions push the policy into an unsafe continuation.

6 EMPIRICAL EVALUATION
In order to evaluate conditional replanning empirically, we compare
it against the existing baseline algorithms presented in Section 4.
We compare our results on a challenging smart energy domain
involving the allocation of power to HVAC units under a time-
fluctuating renewable power production.

Planetary Rover (Maze). The Mars rover domain proposed byWu
and Durfee [30] models a collection of autonomous vehicles ex-
ploring remote locations. Each of the vehicles operates in its own
grid-world, in which it has to perform as many tasks as possible
before the vehicle expires. In this domain the resources allow the
agent to traverse the world more safely, while every task requires a
resource to complete.

The grid-world of a vehicle consists of𝑚 ×𝑚 cells, which repre-
sent the states that the vehicle can be in. Only a subset of the cells
are traversable, the other cells act as walls. Traversable cells may
additionally have a task to be completed, which is known to the
agents at plan time. Beyond the locations in the grid, agents also
have an ‘expired’ state, which is reached when the vehicle breaks
down. The probability that an agent breaks down depends on the
type of ‘move’ it uses. A safe move requires a resource to proceed,
but gives only 5% chance of breaking down, whereas an unsafe
move breaks the vehicle with 20% chance. For the resource model,
we use the model where the agents are allowed to change their
resource consumption in every time step. This means that resources
are effectively renewable, and corresponds to the unlimited phase
shifting model of Wu and Durfee [30].
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Figure 3: Effect of conditional replanning parameter 𝛼 on
algorithm performance. Instance size tuple is ( |𝑆 |, |𝐴|, ℎ, 𝑛).

Thermostatically Controlled Loads (TCL). In this problem de-
scribed by De Nijs et al. [10], each of the 𝑛 agents is responsible for
keeping the temperature inside its house at a level that is comfort-
able to its occupants (i.e., as close as possible to the given set point).
The controller has two actions available to it, which are either to
heat, or do nothing. Heating costs power at one unit (meaning
all the houses use an equivalent amount of power). However, the
houses under control each have different build quality, which affects
the rate at which the building heats up and cools down, according to
a first-order exponential decay function of a controlled temperature
process described by Mortensen and Haggerty [22]. The contin-
uous temperature values are discretized into temperature ranges,
with the transition function mapping the probability that a value in
range 𝑠 would advance to range 𝑠 ′ according to its continuous tran-
sition. The power limit that the agents are subject to is a periodic
waveform on top of baseline production, modeling the influence of
solar power generation.

6.1 Results
We first perform a preliminary experiment to evaluate the impact
of different settings of risk tolerance 𝛼 , performing 250 repetitions
across 10 small instances. We record per-run rewards, as well as the
deliberation time (initial planning time plus time spent replanning).
Figure 3 presents the results, demonstrating a strong reduction in
runtime as 𝛼 increases. The impact of 𝛼 on reward is relatively mi-
nor on our domains, because our domains do not have as significant
a delay between decisions and resource consumption as in QBF. The
direction of the reward trend is specific to the domain dynamics.
On TCL, always replanning is too conservative, resulting in lower
rewards. As a result, 𝛼 = ∞ dominates the other choices. On the
Maze domain, replanning more often increases reward, which we
hypothesize may be helped by a domain-specific effect: rovers can
break every time step, therefore adjusting the resource allocation
from dead to live agents improves the average performance. We set
𝛼 = 1.5 on Maze, to balance between runtime benefits and reward.

Next we compare our replanning approaches against the existing
safe approaches with optimality guarantees, in order to evaluate

Figure 4: Scalability limits of exhaustive solvers compared
to replanning on small instances of the TCL problem.

their scalability limits and how much performance is lost by repair-
ing a relaxed solution through rejection sampling and replanning.
In this first experiment, we focus on the TCL domain because it has
a much smaller action space than Maze, making it feasible to eval-
uate dynamic programming over the joint models. We randomly
generate 5 instances and evaluate each solver 50 times, recording
for each evaluation: the obtained reward and the total deliberation
time required to plan and execute the policy, with a timeout of
20 minutes. Figure 4 shows the performance trends of the base-
line algorithms dynamic programming and mixed-integer linear
programming, compared with conditional replanning.

We observe that finding the optimal policy (through dynamic
programming) or the optimal resource preallocation (using the
MILP) quickly becomes intractable as the number of agents or the
horizon increases. Because the optimal resource preallocation is
conservative under uncertainty, the reward obtained by MILP is
slightly lower than that of dynamic programming. In contrast, our
conditional replanning approach is able to effectively redistribute
resources when needed, obtaining very close to optimal reward
while taking only a fraction of the runtime.

Finally, we investigate the scalability of replanning on long hori-
zons and for large agent counts, beyond sizes that can be handled
by either dynamic programming or MILP models. Figure 5 presents
performance trends as the number of agents or planning horizons
grow. We observe that, as expected, all three relaxation algorithms
Constrained MDP LP (CMDP), i-dual, and Column Generation (CG)
find the same solution, in terms of obtained rewards and frequency
of constraint violations in policy simulation, with the only dif-
ference being the amount of time it takes to find a solution. In
particular, we note that CG is sometimes able to find solutions up
to an order of magnitude quicker than either CMDP or i-dual. Un-
expectedly, i-dual does not provide speedup for solving the CMDP
LP in our domains, even timing out on the larger Maze instances;
we hypothesize that this is due to two differences in our setting. In
the first place, our domains are not shortest-path problems, which
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Figure 5: Solution quality, safety and scalability of conditional replanning (Our), compared to the single-shot relaxations CG,
CMDP and i-Dual, and constraint-aware approaches dynamic bounding (Bound) and unconditional replanning (Replan).

means that the total state space explored is a relatively larger frac-
tion of the total state space. Secondly, our multi-agent problems
mean that the number of reachable state variables expanded with
every iteration grows much quicker, as each agent has its own
reachable states.

However, we further observe that policies from the relaxation
algorithms regularly exceed the resource constraints, making them
unsuitable for applications with hard constraints. Dynamic bound-
ing, which we employ with maximum risk probability 𝛼 = 0.05
and the hill-climbing procedure to tightly meet this limit, obtains
policies that are significantly safer while still avoiding the need for
inter-agent communication during policy execution. However, this
comes at the cost of both solution quality, due to the need to be con-
servative about resource usage, and total deliberation time, because
of the need to simulate candidate solutions to obtain consumption
distribution estimates for the hill-climbing step. Unconditional re-
planning uses inter-agent communication during policy execution
to guarantee safety while improving on solution quality and total
deliberation time (which includes time spent replanning) compared
to dynamic bounding. Conditional replanning improves on this fur-
ther, greatly reducing required deliberation time and consistently
outperforming full replanning, while also further improving the
cumulative reward obtained on the TCL domain.

7 RELATEDWORK
Our work is closely related to the ideas of Model Predictive Con-
trol [20, MPC], which is a control paradigmwhere only the first step
of a solution optimized over the full horizon is implemented. The

full replanning scheme could be classified as an instance of MPC.
MPC has previously been applied to single-agent planning problems
with chance constraints [23]. The conditional replanning variant in
this paper essentially the central idea of MPC, by only replanning
when the previous control policy is no longer acceptable.

Another approach to handle large-scale MDPs effectively is
Monte-Carlo Tree Search (MCTS) [4], which has also been applied
to (single-agent) constrained MDPs [19]. An advantage of MCTS
over planning is that it only has to consider states which are reach-
able from the current state, making it much more effective at large
state-space MDPs. Nevertheless, it would be hard to apply MCTS to
our multi-agent problems, as the action space is also exponentially
sized, which makes the number of explored rollouts per action too
small to obtain accurate expected-value estimates.

8 CONCLUSION
Globally constrained multi-agent sequential decision making prob-
lems (CMMDPs) are extremely challenging to solve. This is perhaps
not too surprising since we show that they are PSPACE-hard even
for a restricted class. In this paper we provide an efficient approach
to solving CMMDPs that ensure that no violations of resource limits
arise during execution. Our conditional replanning approach is far
more efficient than the full replanning alternative, while providing
solutions that obtain higher reward in practice. Our approach is
comparable in efficiency to methods that solve the relaxed problem,
without ever violating the constraints. In summary we provide a
practically usable approach to tackling this challenging class of
problems.
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