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ABSTRACT
Axiomatic approaches are an appealing method for designing fair

algorithms, as they provide formal structure for reasoning about

and rationalizing individual decisions. However, to make these algo-

rithms useful in practice, their axioms must appropriately capture

social norms. We explore this tension between fairness axioms and

socially acceptable decisions in the context of cooperative game

theory. We use two crowdsourced experiments to study people’s

impartial reward divisions in cooperative games, focusing on games

that systematically vary the values of the single-player coalitions.

Our results show that people select rewards that are remarkably

consistent, but place much more emphasis on the single-player

coalitions than the Shapley value does. Further, their reward divi-

sions violate both the null player and additivity axioms, but support

weaker axioms.We argue for a more general methodology of testing

axioms against experimental data, retaining some of the concep-

tual simplicity of the axiomatic approach while still using people’s

opinions to drive the design of fair algorithms.
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1 INTRODUCTION
As we give algorithms the power to make high-stakes decisions, it is

important to ensure that these decisions are fair. There are several

ways to design such an algorithm. One is the axiomatic approach,

where the algorithm makes provably fair decisions that satisfy

a number of mathematical axioms. These axioms are attractive,

leading to conceptually simple algorithms and, in some cases, the

ability to explain individual outcomes [11, 34]. However, when

they fail to capture social norms, they often produce decisions

that are deemed to be unfair [23, 24]. When this approach fails,

the main alternative is to set aside these theoretical guarantees,

elicit stakeholders’ opinions, and encode these into the model’s

behaviour. This idea drives modern AI techniques for ethical and

fair decision making [10, 21, 26, 31].

This conflict between fairness axioms and socially acceptable

decisions is present in cooperative game theory. Here, the most

celebrated reward division method is the Shapley value [36], which
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is the unique division that satisfies four fairness axioms of effi-

ciency, symmetry, null players, and additivity. However, there is

little reason to believe that these axioms align with human fairness

principles. Nowak and Radzik [32] suggested that the Shapley value

is only suitable for pure economic situations, and different axioms

might be necessary to represent important social or psychological

aspects. This criticism inspired alternative reward divisions, such

as the solidarity value [33] and the egalitarian Shapley values [18],

that capture these more “human” qualities.

Unfortunately, there is little empirical data on cooperative games

to validate whether these alternative fair divisions truly are more

“human”. The most relevant experimental work is De Clippel and

Rozen [8], who studied how impartial decision makers divided re-

wards in a limited set of games. Their results suggested that people

selected convex combinations of equal divisions and the Shapley

values. This trend implies that most people followed symmetry,

efficiency, and additivity, only breaking the null player axiom.

In this paper, we apply De Clippel and Rozen’s approach to a

broader set of games. Specifically, we design two sets of 3-player

cooperative games that systematically vary the values of the single-

player coalitions, and we use two crowdsourced experiments (n =
75 and 74) to find how people select impartial reward divisions in

these games. Our results show that people select rewards that are

remarkably consistent, but have little to do with the Shapley value:

they place much more emphasis on the single-player coalitions.

Further, their reward divisions violate both the null player and

additivity axioms, but support weaker monotonicity axioms.

We make two main contributions. First, our data provides new

insights about the gap between people’s opinions and fairness

axioms from cooperative game theory. Second, we propose the use

of our methodology in a broader set of social choice problems to

identify weaker axioms that are consistent with experimental data.

We argue that these weaker axioms are useful for representing

invariants in people’s opinions, even if they are not used to select a

single provably fair decision. In this way, we can retain some of the

conceptual simplicity of the axiomatic approach while still using

people’s opinions to drive the design of fair algorithms.

1.1 Related Work
We situate our work in the literature on human behaviour in cooper-

ative games. The earliest experimental work is by Kalisch et al. [22],

who studied face-to-face bargaining with 4 to 7 people. Though

their main focus was on the bargaining dynamics, they identified

several human factors: players often split their rewards equally,

and powerful players rarely took advantage of their position.

Most of the experimental work following Kalisch et al. is char-

acterized by two features. First, it focuses on bargaining, with par-

ticipants discussing coalitions and reward divisions while acting
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as players in the games. Second, it uses zero-normalized games,

where players must form coalitions to earn rewards. One notable

exception uses non-zero-normalized games [19], but still focuses

on bargaining in these games. For comprehensive surveys of this

work, we refer readers to Kahan and Rapoport [20] and Maschler

[29]. Some cooperative game theoretic predictions have also been

validated outside of laboratory studies [38]. Recent work has con-

tinued to focus on bargaining, using structured protocols [4, 30] or

computer agents [41].

De Clippel and Rozen’s experiment [8] is the most relevant to

our work. In their experiment, three “recipients” earned baskets

of items by answering trivia questions. Then, impartial “decision

makers” divided monetary rewards between the recipients based

on the baskets’ values. They concluded that humans select convex

combinations of an equal split and the Shapley value. To our knowl-

edge, their work is the first where the participants dividing the

rewards are impartial to the divisions. However, the games were

zero-normalized, as the recipients’ baskets were worthless alone.

We note some parallels between our research and other empiri-

cal work. First, behavioural economics often uses experiments to

identify gaps between theory and human behaviour. Halevy’s exper-

iment on subjective uncertainty [13] is a classic example. Computa-

tional models, such as those in behavioural game theory [5, 14, 39],

try to understand this gap by predicting people’s strategic decisions.

Second, in fair division problems, human perceptions of fairness

are rarely aligned with theoretical properties like envy freeness. In-

stead, they are often influenced by interpersonal comparisons [16],

reference points such as equal divisions [15], multiple concepts of

fairness [23], and understanding of the fair division system [25]. Fi-

nally, empirical work in machine learning has compared clustering

quality metrics against human evaluations [27]. We take inspiration

from these approaches, but to our knowledge, none of these models

can directly applied to cooperative games.

2 VALUES FOR COOPERATIVE GAMES
We begin by describing cooperative game theory concepts that

we use to motivate our experiments. A transferable utility game
G = (N , f ) consists of a set of n players, N , and a characteristic

function f ∈ R2
N
, assigning a reward f (C) to each coalitionC ⊆ N .

We typically require f (∅) = 0: a coalition with no players earns no

reward. In this paper, we restrict our attention to 3-player trans-

ferable utility games, where N = {A,B,C}, and we refer to the

characteristic function f as a “game”. For convenience, we often

write the set {i} as i and {i, j} as ij.
A player i’s marginal contribution to a coalition C ⊆ N \ i is

mc(i, f ,C) = f (C ∪ i) − f (C): the amount of value that a player

adds to a coalition by joining it. Players i and j are symmetric if
mc(i, f ,C) = mc(j, f ,C) for all C ⊆ N \ ij, and player i is a null
player ifmc(i, f ,C) = 0 for all C ⊆ N \ i . A game is monotonic if
every marginal contribution is non-negative, and a game is zero-
normalized if f (i) = 0 for all players i ∈ N .

A value is a function v : R2
N
→ RN that assigns a reward vi (f )

to each of the players i in a game f . A simple example is the equal

division value ED, which gives each player an equal fraction of the

total: EDi (f ) = f (N )/n. The most celebrated value is the Shapley

value [36], which is the unique value Sh that satisfies four axioms:

• Efficiency:
∑
i Shi (f ) = f (N ).

• Symmetry: if players i and j are symmetric, Shi (f ) = Shj (f ).
• Null players: if player i is a null player, Shi (f ) = 0.

• Additivity: for any two games f and д, let (f + д)(C) =
f (C) + д(C) for all C ⊆ N . Then, Sh(f + д) = Sh(f ) + Sh(д).

This value has a simple interpretation: considering all possible

orders that the players could form the grand coalition, each player

is given their average marginal contribution. Equivalently,

Shi (f ) =
∑

C⊆N \i

|C |!(n − |C | − 1)!

n!
mc(i, f ,C).

A number of modifications to the Shapley value have been pro-

posed. Each of them satisfy efficiency, symmetry, and additivity,

modifying the null player axiom. One is the family of egalitarian
Shapley values [6, 18], which are convex combinations of the equal

division and Shapley values:

Shα (f ) = αSh(f ) + (1 − α)ED(f ).

Here, the parameter α describes a social norm of equality: α = 0

gives the equal division, while α = 1 recovers the Shapley value.

Another is Nowak and Radzik’s solidarity value [32], which is

Soli (f ) =
∑
C ∋i

(n − |C |)!(|C | − 1)!

n!
Af (C)

where Af (C) = 1

|C |

∑
i ∈C mc(i, f ,C) is the average marginal con-

tribution of any player to C . Nowak and Radzik suggest that the

solidarity value is more human, capturing some subjective psycho-

logical aspects of the game, while the Shapley value is the “pure

economic” solution. Finally, these two ideas are generalized by the

family of procedural values [28, 35], which are

Ps (f ) =
∑

C⊆N \i

|C |!(n − |C | − 1)!

n!

[
s |C |+1 f (C ∪ i) − s |C | f (C)

]
.

Procedural values are described by tuples s = (s1, . . . , sn−1), with
the convention s0 = sn = 1. Each term sk is a measure of equality:

when a player joins a coalition of size k , they keep a fraction sk of

their marginal contribution, splitting the remaining fraction (1−sk )
equally among the other players. The family of procedural values

includes all of the values described previously: ED(f ) has sk = 0,

Sh(f ) has sk = 1, Shα (f ) has sk = α , and Sol(f ) has sk =
1

k+1 .

We note that there is a separate set of solution concepts that

focus on stability of the players’ rewards, such as the core, the

kernel, and the bargaining set [7]. These concepts are based on the

behaviour of rational players instead of fair and impartial reward

divisions, which is the focus of this paper.

3 METHOD
We used two crowdsourced experiments to study people’s reward

divisions in 3-player cooperative games. In the first experiment, we

tested whether the values of the 1- or 2- player coalitions had more

influence on people’s reward divisions. We took this idea further

in the second experiment, testing whether the 1-player coalitions

could “mislead” people’s reward divisions.
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3.1 Games
We designed the games for our experiments to vary two main fac-

tors. First, we considered different distributions of power between

the players, making games where some players were more valuable

than others. Second, we realized these differences in a variety of

ways by carefully controlling each player’s marginal contributions.

Experiment 1:We began by designing three games with a Shap-

ley value of [25, 25, 10]. Since player C is less valuable than players A

and B, we call this reward division the 1-Worse value. In these three

games, we controlled the players’ marginal contributions through

the values of the Solo coalitions, the Pair coalitions, or Both. In

the Solo game, we chose identical values for each of the 2-player

coalitions, so the players only differed in the values of their 1-player

coalitions. Conversely, in the Pair game, the 1-player coalitions

had identical values, and the only differences were in the 2-player

coalition values. In the Both game, these two coalition sizes had

identical effects on the Shapley values. We repeated this process for

Shapley values of [30, 15, 15] (1-Better) and [30, 20, 10] (Distinct).

Finally, we included a purely additive game with Sh = [30, 20, 10]

and a purely symmetric game. These 11 games are listed in Table 1.

Experiment 2: We considered the 1-Worse value again, but we

chose six games with 1-player coalition values that made player

A appear more valuable than player B. For the first three of these

games, we gave player A’s solo coalition a value of 2, 5, or 10,

fixing player B and C’s solo values to 0; we call these the Zeros2,

Zeros5, and Zeros10 games. For the latter three, we made player

A’s solo value 15 higher than players B and C, choosing solo values

that summed to 30, 45, or 60; we call these the Sum30, Sum45, and

Sum60 games. We chose six analogous games for the 1-Better

value, choosing 1-player coalition values that made players A and

B appear equal.

We also designed four games with a Shapley value of [40, 20, 0].

Since player C is a null player, we call this value the 1-Null value.

We chose these games by setting player B’s solo coalition value to 0

(Zeros) or having player A and B’s solo values sum to 40, 50, or 60

(Sum40, Sum50, Sum60). Finally, we included the Symmetric game

again. All 17 games are listed in Table 2.

3.2 Experiments
Participants: We hired participants from Mechanical Turk. For

experiment 1, we posted human intelligence tasks (HITs) titled

“Divide rewards in fictional scenarios (10 mins)” with a payment of

$1.25 USD. For experiment 2, we changed these values to 15 minutes

and $1.75 USD. We used Mechanical Turk’s qualification system to

restrict the HIT to workers who were located in the United States,

had at least 1000 approved HITs with 95% or higher approval rate,

and had not previously started the experiment.

Task: During the experiment, participants were presented with

a series of scenarios about three fictional characters – Alice, Bob,

and Charlie – playing a video game online. Each of these scenarios

was associated with one of the cooperative games. We displayed

the details of the game in a colour-coded table, listing the amount

of gold that each combination of players could earn. Then, we

told workers that all three players chose to work together, and

we asked how the gold should be divided. Workers entered their

responses by adjusting three sliders and clicking the submit button.

Characteristic function (f ) Sh(f )
Game A B C AB AC BC A B C

1-Worse-Solo 40 40 10 60 60 60 25 25 10

1-Worse-Both 15 15 0 45 30 30

1-Worse-Pair 0 0 0 45 15 15

1-Better-Solo 40 10 10 60 60 60 30 15 15

1-Better-Both 15 0 0 45 45 30

1-Better-Pair 0 0 0 45 45 15

Distinct-Solo 40 20 0 60 60 60 30 20 10

Distinct-Both 20 10 0 60 50 40

Distinct-Pair 0 0 0 60 40 20

Additive 30 20 10 50 40 30 30 20 10

Symmetric 20 20 20 40 40 40 20 20 20

Table 1: The 11 games used in experiment 1. All games have
f (∅) = 0 and f (ABC) = 60.

Characteristic function (f ) Sh(f )
Game A B C AB AC BC A B C

1-Worse-Zeros2 2 0 0 40 10 12 25 25 10

1-Worse-Zeros5 5 0 0 40 10 15

1-Worse-Zeros10 10 0 0 40 10 20

1-Worse-Sum30 20 5 5 60 30 45

1-Worse-Sum45 25 10 10 60 30 45

1-Worse-Sum60 30 15 15 60 30 45

1-Better-Zeros2 2 2 0 38 40 10 30 15 15

1-Better-Zeros5 5 5 0 35 40 10

1-Better-Zeros10 10 10 0 30 40 10

1-Better-Sum30 15 15 0 45 60 30

1-Better-Sum45 20 20 5 45 60 30

1-Better-Sum60 25 25 10 45 60 30

1-Null-Zeros 20 0 0 60 20 0 40 20 0

1-Null-Sum40 30 10 0 60 30 10

1-Null-Sum50 35 15 0 60 35 15

1-Null-Sum60 40 20 0 60 40 20

Symmetric 20 20 20 40 40 40 20 20 20

Table 2: The 17 games used in experiment 2. All games have
f (∅) = 0 and f (ABC) = 60.

The interface disabled the submit button as long as there was a

surplus, only allowing efficient responses to be submitted. The

experiment interface is shown in Figure 1.

Procedure: After workers accepted the HIT, they filled out a

consent form and completed a brief tutorial. In this tutorial, we

described the interface and asked comprehension questions about

the reward displays. Then, workers completed several rounds of

the task, with each round corresponding to one of the games above.

We randomized the order of the games. We also randomly labelled

players A, B, and C as Alice, Bob, and Charlie in each game. Finally,

workers received a confirmation code and submitted the HIT.
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Figure 1: The task interface. Participants were presented
with a tabular representation of the game and asked to di-
vide the reward between the three players. The “submit” but-
ton was enabled when the entire reward was allocated.

4 RESULTS
In both experiments, a total of 100 workers completed the HIT.

To deal with workers that submitted low-quality answers (such

as [30, 30, 0] in the Symmetric games), we filtered out workers

that spent less than 5 seconds on any game, removing 21 workers

from each experiment. We also manually removed workers that

submitted multiple nonsensical answers (for example, [1, 1, 58] in

Distinct-Both). After filtering, we were left with 75 workers in

Experiment 1 and 74 workers in Experiment 2. We confirmed that

this criteria was appropriate by checking the Symmetric games:

the most extreme reward remaining was [20, 22, 18].

4.1 Experiment 1
The rewards that each participant submitted for each game in Ex-

periment 1 are shown in Figure 2. Each of these plots shows the

distribution of selected rewards, along with the equal division (red)

and the Shapley value (blue).

The majority of the rewards are close to a few key points. The

most common is the equal division, which was picked by at least 25

of the 75 participants in each game. Other frequent points are the

Shapley value and rewards that are half or double the distance from

the equal division to the Shapley value. However, the frequencies

of these unequal rewards differ between the games. For all three

Shapley values, the Solo games have the most extreme rewards,

while the Both and Pair divisions are generally more equal. For

instance, in 1-Better-Solo, 14 participants submitted rewards close

to [40, 10, 10]; in 1-Better-Both, only 3 such rewards remained.

We confirmed this trend using non-parametric statistical tests.

For each division, we calculated the ℓ1 distance to the equal division,

and we compared these distances using Holm-Bonferroni-corrected

Wilcoxon signed-rank tests. For all three Shapley values, we found a

significant difference between the Solo and Pair games (p < 0.001)

and between the the Both and Pair games (p < 0.01). We also

found a significant difference between the 1-Better-Solo and 1-

Better-Both games (p < 0.001). These results confirm that people

gave more equal divisions in the Pair games and more unequal

rewards in the Solo games, suggesting that the values of the 1-

player coalitions are more important in their reward divisions.

4.2 Experiment 2
The rewards that participants submitted in Experiment 2 are plotted

in Figure 3. These rewards show striking differences from the data

in Experiment 1. First, few of the rewards lie between the equal

division and the Shapley values. Further, in the 1-Worse and 1-

Better games, the Shapley values are quite uncommon: in fact,

no participants chose the Shapley values in four 1-Better games.

However, there is still a clear linear pattern to the rewards in most

games. In the 1-Worse games, most of the rewards lie between the

equal division and the value [60, 0, 0]; in the 1-Better games, they

lie between the equal division and [30, 30, 0]. The 1-Null-Zeros

game appears to be similar to the 1-Worse games, with many of

the responses giving a disproportionately high amount of reward

to player A. Lastly, the other 1-Null games have more rewards

close to the Shapley values.

We described these trends using principal component analysis

(PCA). For each game, the first principal component of the rewards

is plotted as a green lines in Figures 3. Due to the high number of

participants selecting equal splits in all games, we plotted these

components as passing through the equal division. These compo-

nents are highly consistent, with nearly identical directions in each

1-Worse game and in each 1-Better game. They also show the dif-

ferences between the 1-Null games, where the components steadily

shift from the extreme value in 1-Null-Zeros towards the set of

egalitarian Shapley values in 1-Null-Sum50 and 1-Null-Sum60.

To formally compare the data to the Shapley values, we found

bootstrapped 99% confidence intervals for the angles of each of

these PCA components. Specifically, to compute one bootstrapped

estimate, we sampled 74 points with replacement from our Exper-

iment 2 dataset. We calculated the main PCA component of this

resampled data and found the angle of this component as it would

appear on a ternary plot. We simulated 10000 bootstrapped samples

for each game to get a distribution of the PCA angles, and we took

the middle 99% of these angles as the confidence interval. Only

three of these confidence intervals, for the 1-Null-SumX games,

contain the angle between the equal division and the Shapley value.

In contrast to De Clippel and Rozen’s findings, our data strongly

suggests that egalitarian Shapley values are not a good model for

people’s reward divisions.

5 DISCUSSION
Our results suggest that people place a great deal of importance

on the values of the single-player coalitions in cooperative games,

resulting in reward divisions that are substantially different from the

Shapley value. In this section, we provide additional insights about

these reward divisions, comparing them to alternative solution

concepts and fairness axioms.
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Figure 2: The rewards that participants submitted for each game in Experiment 1. On each plot, ED(f ) is circled in dark red,
and Sh(f ) is circled in light blue.

5.1 Fitting Procedural Values
In De Clippel and Rozen’s experiments [8], most people chose egal-

itarian Shapley values: convex combinations of the Shapley value

and the equal division. The natural generalization of egalitarian

Shapley values to our data is the family of procedural values, which

can treat the 1- and 2-player coalitions differently. Can these proce-

dural values accurately describe our participants’ reward divisions?

To answer this question, we tried finding procedural values that

accurately described each participant’s rewards. We say that the er-
ror of a pair of parameters (s1, s2), relative to a participant’s reward
divisions, is the maximum ℓ1 distance between the participant’s re-

wards and the procedural values P (s1,s2) across all of the games they

saw in the experiment. For each participant, we performed a grid

search for the combination of parameters (s1, s2) that minimized

this error, testing each value in [−2, 2] in steps of 0.05.

We had little success fitting these procedural values to partici-

pants’ reward divisions. Figure 4 shows the empirical CDF of the

errors of these fits. Even allowing for a large ℓ1 distance of 10 gold

pieces, only 40% of the participants’ choices could be described

by procedural values. Further, most of these participants (25/75 in

experiment 1; 19/74 in experiment 2) were the ones who submitted

equal divisions in every round of the experiment. We conclude

that procedural values are generally not suitable for describing

individual people’s reward divisions.

5.2 Testing the Shapley Value Axioms
While this negative result shows that people’s reward divisions

differ from the Shapley value, it does not explain why this differ-

ence arises. To gain further insight about this difference, we took

inspiration from De Clippel and Rozen’s analysis, using our data to

check whether people obeyed each of the Shapley value’s axioms.

In both of our experiments, we only allowed participants to submit

efficient rewards, but we made no restrictions related to the other

three axioms. Did participants obey these axioms?

Symmetry: Six of the games in Experiment 1 have two sym-

metric players. In the three 1-Worse games, players A and B are

symmetric; in the 1-Better games, players B and C are symmetric.
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Figure 3: The rewards that participants submitted for each game in experiment 2. In each plot, ED(f ) is circled in dark red, and
Sh(f ) is circled in light blue. Green lines indicate the direction of the main PCA component.

In these games, we found that 455/525 (86.7%) of the reward divi-

sions obeyed symmetry, with 58/75 (77.3%) participants selecting

no more than one division violating symmetry. We formalized this

check by using paired Wilcoxon signed-rank tests to test whether

the two symmetric players received different rewards. We found no

significant differences between these rewards in any of these six

games (all p > 0.1). Together, these results provide strong evidence

that the symmetry axiom is consistent with our data.

Null Players: In all four of the 1-Null games in Experiment 2,

player C is a null player. It is clear from Figure 3 that most partici-

pants gave a positive reward to player C, breaking the null player

axiom. To quantify this behaviour, Figure 5 shows the cumulative

distribution of the rewards that people assigned to player C in

these games. This plot shows that few participants satisfied the

null player axiom, with only 11% of their reward divisions giving

a reward of 0 to the null player. Instead, many of the participants
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to null players in Experiment 2.

tended to assign small, round rewards to the null player, with re-

wards of 5, 10, and 15 being most common, and a large jump at 20

due to the large number of equal divisions. While participants tend

to recognize that null players contribute little to the group, they

rarely go so far as to assign no reward to these null players.

Additivity: Several games in Experiment 2 are closely related.

For instance, the 1-Worse-Sum30 and 1-Worse-Sum45 games only

differ by the game

f (C) =

{
5, |C | = 1,

0, |C | , 1.

It is difficult to argue that any value other than [0, 0, 0] is reasonable

for this f : f (N ) = 0, and all three players are symmetric. Thus,

to satisfy additivity, participants must select the same rewards for

all three of the 1-Worse-SumX games and for all three of the 1-

Better-SumX games. We found that this was unlikely: only 258/444

(58.1%) of these comparisons succeeded, with only 26/74 (35.1%)

participants violating the axiom at most once. Further, most of the

successes (182/444 rewards and 21/74 participants) were explained

by participants that always submitted equal divisions.

We made these comparisons rigorous using 6 within-subjects

Friedman tests.
1
We found that the rewards for players A and C

varied significantly in the 1-Worse games (both p < 0.01). We also

found marginally significant results in the 1-Better games, with

inconsistent rewards assigned to player A (p = 0.08) and player C

(p = 0.07). These results imply that our data violates additivity.

1
For instance, one test checked whether participants assigned the same rewards to

player A in the 1-Worse-Sum30, 1-Worse-Sum45, and 1-Worse-Sum60 games.

5.3 Alternative Axioms for Reward Divisions
Knowing that people’s reward divisions do not obey additivity

leaves us with an enormous space of values: after removing addi-

tivity, any efficient reward division is acceptable in games with no

symmetric or null players. Searching through this space for values

that are a close match to people’s rewards is a hopeless task.

We argue that the approach of testing alternative axioms against

experimental datasets is a powerful methodological tool that can

help structure this search. These alternative axioms are commonly

proposed for the sake of characterizing existing solution concepts.

For example, Young [40] famously showed that Shapley’s null player

and additivity axioms can be replaced with a strong monotonicity
property. We propose using these axioms for a different purpose:

rather than recovering existing values, we intend to use them to

find additional structure on the people’s reward divisions.

We illustrate this idea with the class of monotonicity axioms.

While people must not obey strong monotonicity – if they did,

they could not have violated the null player and additivity axioms

– we consider two weaker alteratives. First, local monotonicity [6]

puts an ordering on the players: if player i never makes a smaller

marginal contribution to any coalition than player j, then i must

not receive a smaller reward. Second, coalitional monotonicity [40]

requires that, if a single coalition increases in value, its members’s

rewards cannot be decreased. Do people’s rewards satisfy these two

weaker axioms?

Local monotonicity: Every game tested in our experiments

supports the hypotheses of local monotonicity in some capacity.

For example, for a reward division r to be locally monotonic for any

the 1-Worse games in Experiment 1, it must have rA = rB ≥ rC ; in
Experiment 2, it must have rA ≥ rC and rB ≥ rC . We tested each

participant’s reward divisions to check if they met these conditions.

In Experiment 1, we found that 734/825 (89.0%) reward divisions

satisfied this property, with 59/74 participants (76.0%) submitting

no more than one division violating local monotonicity. Experiment

2 was similar, with 1203/1258 (95.6%) reward divisions and 59/74

(79.6%) participants. These results indicate that local monotonicity

is a reasonable description of people’s rewards.

Coalitionalmonotonicity:The conditions of coalitionalmono-

tonicity hold for two pairs of games in Experiment 1. Between

1-Better-Solo and 1-Worse-Solo, only the value of player B’s

solo coalition is increased; 73/75 (97.3%) of participants gave player

B a weakly higher reward in the latter. Then, 1-Worse-Pair and

1-Better-Pair only differ in the value of the coalition {A,C}, and
58/75 (77.3%) participants gave weakly higher rewards to both of

these players. These results appear promising, but more work is

required to make this evaluation rigorous.

While these two examples illustrate a first step toward testing al-

ternative axioms, there are others that our data cannot validate. For

some of these axioms, we would only need to adjust the coalitions’

values. Aggregate monotonicity [40] and weak monotonicity [37]

involve comparisons between games with different grand coalition

values; our games all used a grand coalition value of 60. Others

require more significant changes to the games. For example, there

are a number of consistency axioms [37] that relate reward divisions

between games with different numbers of players.
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We note that the choice of interface is important when testing

these axioms. Displaying the games in a tabular format worked well

for relatively small and simple games, but might become unwieldy

with more than 3 players. To test axioms in a wider variety of

games, it might be necessary to design a new interface, taking ideas

from MC-net [17] or coalitional skill game [2] representations of

cooperative games. Studying how these alternative displays affect

people’s reward divisions is an interesting direction for future work.

5.4 A Data-Driven Axiomatic Approach
While the focus of our experiments was on cooperative games, the

same high-level methods can be applied more broadly to fair algo-

rithms in other domains. One exemplary problem is fair division,

which also has a rich body of axiomatic work. For these problems,

our methods can help to close the gap between axiomatic solutions

and people’s opinions. This process requires two key ingredients: a

source of data and the ability to test axioms.
The first requirement is a source of data about people’s opinions.

One potential source for this data is through controlled experi-

ments, as in our work. Controlling the scenarios can make it easier

to design specific situations that allow axioms to be tested. Another

is to consider in-the-wild applications of fair algorithms, giving

scenarios that may be more representative of fair decisions in real-

istic situations. In either case, participants can reveal their opinions

in several ways. As in our experiment, they might suggest fair

outcomes [23]; they could also give fairness ratings by scoring indi-

vidual outcomes [9, 11] or through pairwise comparisons [10, 26].

The second requirement is a method for testing whether people’s

opinions align with axioms’ predictions. The simplest way to do this

is to count how often people violate an axiom when its premises

hold, as we did for each of our tests. However, a more thorough

method is to quantify how drastically each axiom has been violated.

We used this approach for the null player axiom, checking how

much reward each participant gave to the null players. In general,

it may be valuable to make this type of test more rigorous. For

cooperative games, Aguiar et al.’s Shapley error decomposition [1]

quantifies how drastically a reward division breaks each of the four

axioms. Analogous tools could apply to other domains.

It might appear unsatisfying that this approach will not lead to

a unique fair solution, but this limitation is necessary: our data

showed that people have a range of opinions on fair outcomes, so

we cannot hope to predict a unique output. This variety of opin-

ions is consistent with Lee et al.’s findings in fair division [23, 24].

Furthermore, placing structure on the set of fair outcomes is some-

times more important than choosing one decision from this set. In

“algorithm-in-the-loop” decisions, this final choice is left in human

hands [12]. Small groups can also use these ranges as a starting

point for discussions [23]. Other computational applications do not

require an exact value, either: Freedman et al. [10] used fairness

perceptions only to break ties between equally feasible outcomes.

Finally, Procaccia argues that a crucial strength of the axiomatic

method is its ability to produce natural-language explanations of

outcomes [34]. This property is important, as explaining standards

and outcomes is one of the core requirements for designing a pro-

cedurally fair algorithm [24]. Identifying alternative axioms that

match the data can help to provide these explanations for both

human and algorithmic choices. In particular, axioms that are punc-

tual [3] – putting conditions on a single outcome, rather than on

the relationship between several outcomes – can often be translated

into these simple explanations. Thus, validating axioms with data

unites two notions of fairness: it lets us create algorithms that are

aligned with stakeholders’ notions of distributive fairness without

losing the ability to explain the principles behind these outcomes.

6 VALIDITY AND LIMITATIONS
Before we conclude, we address the validity of our dataset. Our

participants were workers on Mechanical Turk, who often focus

on completing their tasks quickly. It is difficult for us to measure

workers’ comprehension or effort beyond our simple tutorial and

filters. Despite these potential issues, we still see significant value in

our results: our data shows clear trends, indicating the consistency

of these workers across many games. Thus, while crowdsourcing

these experiments might explain the high rate of equal divisions in

many games, we believe that our data successfully captures human

heuristics for these games. Future work could study how people’s

perceptions of fair reward divisions differ between populations.

We also note that it is difficult to say how our results depend on

the framing of the game. In our experiments, we gave a story of

three people playing a video game online. One participant explicitly

mentioned this story in a post-survey, stating that it is most com-

mon for parties to split their loot evenly in these games, regardless

of the members’ contributions. It would be interesting to study how

this behaviour would change if the video game setting was replaced

with a merger negotiation between several companies, or if par-

ticipants divided losses or costs instead of rewards. Reframing the

games in this way might induce more calculated, rational outcomes,

capturing fairness in a different setting.

7 CONCLUSION
In this paper, we studied how humans divide rewards as impartial

decision makers in cooperative games. Our results showed that the

values of the single-player coalitions in these games, which have

typically been fixed at zero in previous work, play an important role

in people’s reward division decisions. In many situations, the values

of these single-player coalitions appear to take precedence over

the two-player coalitions. We used our data to show that people

respect the symmetry axiom, but not the null player or additivity

axioms that are used to characterize the Shapley value.

In light of these results, we argue that our general methodology

of testing axioms against experimental data is a promising research

direction for designing practical, fair algorithms. Even when these

axioms are not used to derive a unique outcome, they help to place

structure on the set of fair outcomes. In some settings, this structure

is all that is needed to support a human decision. In others, it serves

as a first step toward combining data-driven methods with the

benefits of the axiomatic approach in designing fair algorithms.
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