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ABSTRACT
The cooperative bandit problem is a multi-agent decision problem
involving a group of agents that interact simultaneously with a
multi-armed bandit, while communicating over a network with
delays. The central idea in this problem is to design algorithms that
can efficiently leverage communication to obtain improvements
over acting in isolation. In this paper, we investigate the stochastic
bandit problem under two settings - (a) when the agents wish to
make their communication private with respect to the action se-
quence, and (b) when the agents can be byzantine, i.e., they provide
(stochastically) incorrect information. For both these problem set-
tings, we provide upper-confidence bound algorithms that obtain
optimal regret while being (a) differentially-private and (b) tolerant
to byzantine agents. Our decentralized algorithms require no infor-
mation about the network of connectivity between agents, making
them scalable to large dynamic systems. We test our algorithms on
a competitive benchmark of random graphs and demonstrate their
superior performance with respect to existing robust algorithms.
We hope that our work serves as an important step towards creating
distributed decision-making systems that maintain privacy.
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1 INTRODUCTION
Cooperative decision-making in multiagent systems has been a
prominent area of scientific inquiry, with interest from a variety of
disciplines from robotics and control systems to macroeconomics
and game theory. Applications of cooperative decision-making
range from robotics [9, 21] to sensor networks [8, 20].

However, as the availability of large-scale dense data (often col-
lected through a network of sources) increases, the problem of
cooperative learning among multiple agents becomes increasingly
relevant, moving beyond systems that are “effectively” single-agent
to much larger, real-time systems that are decentralized and have
agents operating independently. Examples of such applications
include seamless personalization across multiple devices in IoT
networks [19, 33, 43], that constantly share data between agents.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
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In such a framework, it is imperative to ensure that information
is securely and robustly shared between agents, and individual con-
cerns around privacy are not violated in the pursuit of performance
on inference problems. Most generally, the learning setting assumed
in such problems and applications is sequential decision-making,
where observations are provided in a sequence, and each agent
takes actions with the knowledge of this stream of information.

The multi-armed bandit [38] is a classic framework to investigate
sequential decision-making in. It provides an elegant mathemati-
cal framework to make precise statements about the exploration-
exploitation dilemma that is central to sequential decision-making,
and has thus become the environment of choice across a wide va-
riety of application domains including, most prominently, online
advertising [17]. An extension is the cooperative multiagent bandit,
where a group of agents collectively interact with the same decision
problem, and must cooperate to obtain optimal performance.

However, in a decentralized environment, cooperative decision-
making comes with several caveats. Since it is impossible to control
any individual agents’ behavior from a centralized server, enforcing
important constraints such as private computaiton with respect to
observations becomes a difficult technical challenge. Additionally,
if any agent is malicious (i.e. provides incorrect or adversarial com-
munication), achieving optimal performance becomes non-trivial.

In this paper, we consider two problems in the context of cooper-
ative multiagent decision-making. In the multi-armed (context-free)
bandit environment, we investigate (a) privacy in inter-agent com-
munication and (b) tolerance to byzantine or malicious agents that
deliberately provide stochastically corrupt communication. Our
contributions can be listed as follows.

1. We provide a multi-agent UCB-like algorithm Private Mul-
tiagent UCB for the cooperative bandit problem, that guarantees
communication of the reward sequence of any agent to be private to
any other receiving agent, and provides optimal group regret. Our
algorithm is completely decentralized, i.e., its performance or opera-
tion does not require any knowledge of the agents’ communication
network, and each agent chooses actions autonomously (i.e., with-
out a central server). It also maintains privacy of the source agents’
messages regardless of the individual behavior of any receiving
agent (i.e., it is robust to defection in individual behavior).

2.We provide amulti-agent UCB-like algorithm, dubbed Byzantine-
Proof Multiagent UCB for the cooperative bandit problem with
byzantine agents, that corrupt their messages following Huber’s
ϵ-contamination model, and provide optimal (in terms of commu-
nication overhead) group regret bounds for its performance. Like
our private algorithm, this too is completely decentralized, and
operates without any knowledge of the communication network.

3. We validate the theoretical bounds on the group regret of our
algorithm on a family of random graphs under a variety of different
parameter settings, and demonstrate their superiority over existing
single-agent algorithms and robustness to parameter changes.
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The paper is organized as follows. First, we provide an overview
of the background and preliminaries essential to our problem setup.
Next, we examine the private setting, followed by the byzantine
setting. We then provide results on our experimental setup and
survey related work in this problem domain before closing remarks.

2 BACKGROUND AND PRELIMINARIES
The Cooperative Stochastic Bandit. The multi-armed stochastic
bandit problem is an online learning problem that proceeds in
rounds. At every round t ∈ {1, 2, ...,T } (denoted in shorthand as
[T ]), the learner selects an arm At ∈ [K] and the bandit draws a
random reward Xt from a corresponding reward distribution νAt
with mean µAt . We assume the rewards are drawn from probability
densities with bounded support in [0, 1]1, a typical assumption in
the bandit literature. The objective is to minimize the Regret R(T).

R(T ) = T · max
k ∈[K ]

µk −
∑
t ∈[T ]

µAt . (1)

The cooperative multi-armed bandit problem is a distributed exten-
sion of the stochastic bandit problem. In this setting, a group of M
agents that communicate over a (connected, undirected) network
G = (V , E) face an identical stochastic K-armed bandit, and must
cooperate to collectively minimize their group regret RG(T ).

RG(T ) = TM max
k ∈[K ]

µk −
∑

m∈[M ]

∑
t ∈[T ]

µAm,t . (2)

Here, we denote the action taken by learnerm at time T as Am,t
and the corresponding reward received as Xm,t , d(m,m′) denotes
the length of the shortest path between agentsm andm′. For anyT ,
nk (T ) denotes the total number of times any arm k is pulled across
all agents, and nmk (T ) denotes the times agent m has pulled the
arm. In the cooperative bandit setting, we denote the policy of each
agentm ∈ [M] by (πm,t )t ∈[T ]. The collective policy for all agents
is denoted by Π = (πm,t )m∈[M ],t ∈[T ]. Since G is not assumed to be
complete (i.e. each agent can communicate with every other agent),
it introduces a delay in how information flows between agents.
However, to provide an understanding of the limits of cooperative
decision-making, consider the scenario when G is complete. In this
setting, after every trial of the problem, agents can instantaneously
communicate all required information, and therefore the problem
can effectively be thought of as a centralized agent pullingM arms
at every trial. Anantharam et al.[2] provide a lower bound on the
group regret achievable in this setting, given as follows.

Theorem 2.1 (Lower Bound on Centralized Estimation[2]).
For the stochastic bandit with K arms, each with mean µk , let ∆k =
maxk ∈[K ] µk − µk and D(µ∗, µk ) denote the Kullback-Liebler diver-
gence between the optimal arm k∗ = arg maxk ∈[K ] µk and arm k .
Then, for any algorithm that pullsM arms at every trial t ∈ [T ], the
total regret incurred satisfies

lim inf
T→∞

R(T ) ≥
©­«

∑
k :∆k>0

∆k
D(µ∗, µk )

ª®¬ lnT .

1This can be extended to any bounded support by renormalization, and we choose
this setup for notational convenience.

This implies that the per-agent regret in this case is O(M−1 lnT ).
While the above result holds for centralized estimation, we see that
one cannot hope for (a) a dependence on T that grows sublogarith-
mically, and (b) a per-agent regret with a better dependence on M
thanO(M−1), since delays will only limit the amount of information
possessed by any agent. We will demonstrate that this bound can
be matched (up to additive constants, in some algorithmic settings)
in the two problems we consider, for any connected G.

Communication Protocol. While the existing work on the co-
operative bandit problem assumes communication via a gossip or
consensus protocol [23, 24], this protocol requries complete knowl-
edge of the graph G, which is not feasible in a decentralized setting.
In this paper, we therefore adopt a variant of the Local communica-
tion protocol that is utilized widely in distributed optimization [31],
asynchronous online learning [36] and non-stochastic bandit set-
tings [4, 10]. Under this protocol, at any time t , an agentm ∈ [M]

creates a message qm (t) that it broadcasts to all its neighbors in G.
qm (t) is a tuple of the following form.

qm (t) = ⟨m, t, f1(Hm (t)), ..., fL(Hm (t))⟩ . (3)

Here Hm (t) denotes the history of action-reward pairs obtained by
the agent until time t , i.e. Hm (t) =

{
Xm,1,Am,1, ...,Xm,t ,Am,t

}
,

and f1, ..., fL are real-valued functions for some message length
L > 0. When a message is created, it forwarded from agent-to-
agent γ times before it is discarded. Hence, at any time t , the oldest
message being propagated in the network would be one created
at time t − γ . As long as a message has not already been received
by an agent previously, the agent will broadcast the messages it
receives (including its own) to all its neighbors. Under this protocol,
we see that two agents that are a distance γ apart can communicate
messages to each other, and they will receive messages from each
other at a delay of γ trials. An important concept we will use in the
remainder of the paper, based on this protocol is the power graph
of order γ of G, denoted as Gγ , which is a graph that contains an
edge (i, j) if there is a path of length at most γ between i and j in G.

In the single-agent setting, the policy of the learner π = (πt )t ∈[T ]
is a sequence of functions πt that define a probability distribution
over the space of actions, conditioned on the history of decision-
making of the learner, i.e. πt = πt (· ∈ [K]|X1,A1, ...,Xt ,At ). In
the decentralized multi-agent setting, we have a set of policies
Π = (πm )m∈[M ] for each agentm ∈ [M], where πm = (πm,t )t ∈[T ]
defines a probability distribution over the space of actions condi-
tioned on both the history of the agents and the messages it has
received from other agents until time t . If for any pair of agents
m,m′ in G, d(m,m′) denotes the distance between the two agents
in G, the policy for agentm at time t is of the following form.

πm,t = πm,t

(
· ∈ [K]|Hm (t) ∪m′∈N(m,Gγ ),t ∈T

(
qm′

(
t − d(m,m′)

) ) )
(4)

Here Nγ (m) denotes the γ -neighborhood of agentm in G, and use
the short notation Im (t) = ∪m′∈Nγ (m),t ∈T (qm′ (t − d(m,m′))) to
denote the set of all messages possessed by the agentm at time t .
We will now describe the first class of algorithms that are designed
for privacy in the cooperative setting.
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3 PRIVATE COOPERATIVE BANDITS
We begin by first providing an overview of ϵ-differential privacy
and the techniques we will use in our algorithm.

3.1 Differential Privacy
Differential privacy, proposed by Dwork [13] is a formalisation
of the amount of information that is leaked about the input of an
algorithm to an adversary observing its output. Existing work in the
single agent [30, 40] and the (centralized) multi-agent [40] bandit
setting has assumed the algorithms only to have actions (outputs)
that are differentially-private with respect to their rewards (inputs).
However, since we are considering a decentralized setting, we as-
sume here that each learner acts in isolation, while communicating
with other agents by sharing messages. Its policy, therefore, is a
function of its own decision history and the messages it receives
from other agents. By making the messages differentially-private
with respect to the reward sequence an agent observes, we can
ensure that any policy using these messages is also private with
respect to the rewards obtained by other agents. We use this to
define differential privacy in the decentralized bandit context.

Definition 3.1 (ϵ-differentially private message protocol). A mes-
sage qm (t) composed of L functions (fi )i ∈[L] for agentm at time t
is ϵ-differentially private with respect to the rewards it obtains if
for all histories Hm (t) and H ′

m (t) that differ in at most one reward
sample, we have for all i ∈ [L], S ⊆ R:

e−ϵ ≤
Pr (fi ∈ S |Hm (t))

Pr (fi ∈ S |H ′
m (t))

≤ eϵ

There are several advantages of having such a mechanism to
introduce privacy in the cooperative decision-making process. First,
we see that unlike centralized or single-agent bandit algorithms
that inject noise as a part of the central algorithm itself, our defini-
tion requires each message to individually be private, regardless of
the recipient agents’ algorithm. Such a protocol ensures that if any
learner decides to reveal information about the reward sequence
obtained by its neighbors, it will not be able to do so. In the later
sections we will demonstrate that for any agent, guaranteeing the
differential privacy of the messages it generates with respect to
its own rewards suffices to ensure that our algorithm is differen-
tially private with respect to the rewards of other agents. We now
introduce concepts crucial to the development of our algorithm.

The Laplace Mechanism. One of the main techniques to in-
troduce differential privacy for univariate problems is the Laplace
mechanism, that operates on the notion of sensitivity. For any do-
main U and function f : U∗ → R, we can define sensitivity of f
for two datasets D,D ′ ∈ U∗ that are neighbors (differ only in one
entry) as follows.

s(f ) = max
D ,D′∈U∗

| f (D) − f (D ′)| (5)

The Laplace mechanism operates by adding zero-mean noise to the
output of f with a scale that is governed by the level of privacy
required and the sensitivity of f , as determined by the following.

Lemma 3.2 (Theorem 4 of Dwork and Roth [14]). For any real
function f of the input data D, adding a Laplace noise sample X with
scale parameter β ensures that f (D) + X is (β/s(f ))-differentially
private with respect to D, where s(f ) is the sensitivity of f .

The Laplace mechanism is the underlying approach that we uti-
lize in guaranteeing privacy in the multi-agent setting. We will now
describe our message-passing protocol, which uses this mechanism
to guarantee differential privacy between any pair of agents.

3.2 Private Message-Passing
The general approach to privacy in the (single-agent) bandit setting
involves using a binary tree or hybrid mechanism to compute the
running sum of rewards for any arm [30, 40]. This mechanism
involves maintaining a binary tree of individual rewards, where
each node in the tree stores a partial sum. This implies that updating
the tree would be logarithmic in the number of elements present,
and a similar (logarithmic) bound on the sensitivity can be derived,
therefore, for any arm k that has been pulledm times, one requires
introducing Laplace noise L( lnm

ϵ ) to achieve ϵ-differential privacy.
Under this mechanism, [40] provide a bound on the regret.

Theorem 3.3 (Regret of DP-UCB Algorithm [40]). The single-
agent DP-UCB algorithm, when run for T trials, obtains regret of

O
(
K lnT · max

{
4
√

8
ϵ ln (lnT ) , 8

∆min

})
.

While this approach is feasible in the single-agent case, in the
distributed setting, we will have to maintain M separate binary
trees (one for each agent), which would create an overhead of a
factor ofM in the regret (since the sensitivity is increased by a fac-
tor ofM). To mitigate this overhead we can alternatively utilize the
interval mechanism, introduced in [40] to the multi-agent setting.
Under this mechanism, the mean of an arm is updated only (ap-
proximately) T /ϵ times, which makes it possible to add Laplacian
noise that is of a lower scale, greatly improving the regret obtained
by the algorithm: [40] demonstrate that this mechanism obtains
the optimal single-agent regret with an additive increase due to
differential privacy. We demonstrate that using a message-passing
algorithm that is inspired by the interval mechanism, we obtain a
group regret that has a much smaller than O(M) dependence on the
number of agents, and is additive in terms of the privacy overhead.

For the private setting, in themessage-passing protocol described
in the earlier sections, consider for any agent m, the following
message created at time t ∈ [T ].

qm (t) = ⟨m, t,γ , v̂m (t),nm (t)⟩ (6)

Here, v̂m (t) = (v̂mk (t))k ∈[K ] is a vector of arm-wise reward means
that comprise the empirical mean of rewards with specific Laplace
noise added, andnm (t) = (nmk (t))k ∈[K ] is a vector of the number of
times an arm k has been pulled by the agentm. Since the interval
mechanism proceeds by making the updates to the mean estimate
infrequent, this strategy is adopted in our message-passing protocol
as well, which is described in the Lemma below. We describe the
complete message- passing protocol in Algorithm 1.

Lemma 3.4 (Private release of means [40]). The intervalw to
update the mean for each arm follows a series such that for the given
value of ϵ ∈ (0, 1),v ∈ (1, 1.5),wn =Wn+1 −Wn withW0 = 0, and
Wn+1 such that,

Wn+1 = inf
x ′∈N

x ′ ≥Wn + 1 :
x ′∑

Wn+1

1
√
iv

≥
1

ϵy′v

 .
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Protocol Description: The protocol followed is straightfor-
ward: at any time t , the agent updates the sum of its own re-
wards with the reward obtained from the bandit algorithm for
the arm pulled. Then, for a set of intervals w0, ...,wT as defined
in Lemma 3.4, the broadcasted version of this personal mean is
updated to the latest version, with an additional Laplace noise
L(nmk (t)v/2−1), for some constant v ∈ (1, 1.5). This mechanism
ensures that the broadcast of the personal mean is differentially-
private to the reward sequence observed, for each arm. After this
update procedure has concluded for each arm, the agent broadcasts
this (and all previously incoming messages from other agents) to
its neighbors using the system routine SendMessages, which is
assumed to be constant-time. It then updates its own group mean
estimates of the mean for each arm (µ̂mk (t)) using the incoming mes-
sages from all other agents. This is done by using the latest message
from each agent inNγ (m). It then discards stale messages (with life
parameter l = 0), and returns the updated group means for all arms
for the bandit algorithm to use. We now describe the privacy guar-
antee for the messages, and then describe the Private-Multi-UCB
algorithm and its privacy and regret guarantees.

Lemma 3.5 (Privacy of Outgoing Messages). For any agent
m ∈ [M], t ∈ [T ],v ∈ (1, 1.5), each outgoing message qm (t) is
nmk (t)−v/2-differentially private w.r.t. the sequence of arm k ∈ [K].

Proof. This follows directly from the fact that the only element
that is dependent on the reward sequence of arm k is its noisy
mean µ̂mk (t), which is nmk (t)−v/2- differentially private since we
add Laplace noise of scale nmk (t)v/2−1 and that the sensitivity of
the empirical mean is nmk (t)−1. □

3.3 Private Multi-Agent UCB
The private multi-agent UCB algorithm is straightforward. During
a trial, any agent m ∈ [M] constructs the group means for each
arm using the reward samples from its own pulls and the pulls
obtained from its neighbors in Nγ (m). This mean is given by the
estimate µ̂mk (t) for any arm k , as obtained in Algorithm 1. Using
these samples, it then follows the popular UCB strategy, where
it constructs an upper confidence-bound for each arm, and pulls
the arm with the largest upper confidence bound. The complete
algorithm is described in Algorithm 2. First, we describe the privacy
guarantee with respect to its neighboring agents in Nγ (m), and
then prove the regret (performance) guarantee on the group regret.

Lemma 3.6 (Privacy Guarantee). After t trials, any agentm ∈

[M] is (e ′m′, δ ′m )-differentially private with respect to the reward se-
quence of any arm observed by any other agentm′ ∈ Nγ (m) commu-
nicating via Algorithm 1 with privacy parameter v ∈ (1, 1.5), where,
for ϵ ∈ (0, 1], δ ′m ∈ (0, 1], ϵ ′m′ satisfies

ϵ ′m ≤ min

(
ϵ
(t − d(m,m′))1−v/2

1 −v/2
, 2ϵζ (v) +

√
2ϵζ (v) ln(1/δ ′)

)
.

Proof. We can see that for any arm k , the estimate µ̂mk (t) is
composed of the sum of rewards from all other agents in Nγ (m).
However, with respect to the reward sequence of any single agent
m′ ∈ Nγ (m), this term only depends on the differential privacy
of the outgoing messages qm′ obtained by agentm until time t −

Algorithm 1 Private Message-Passing Protocol

1: Input: Agent m ∈ [M], Iteration t ∈ [T ], series W =

(w0,w1, ...wT ), such thatW (i) = wi , series counter imk for each
k ∈ [K]; imk = w0 if t = 0 ∀k , set of existing messagesQm (t −1),
Qm (t) = ϕ if t = 0, privacy constant v ∈ (1, 1.5), existing
reward sums sm,k (t) ∀k ∈ [K] such that sm,k (0) = 0∀k .

2: Obtain Xm,t ,Am,t from bandit algorithm.
3: Set sm,k (t) = sm,k (t − 1) + Xm,t for k = Am,t .
4: Set nmk (t) = nmk (t − 1) + 1 for k = Am,t .
5: for Arm k in [K] do
6: if nmk (t) =W (imk ) then
7: Set v̂km (t) = sm,k (t)/n

m
k (t) + L(nmk (t)v/2−1).

8: Set imk = i
m
k + 1.

9: else
10: Set v̂km (t) = vkm (t − 1).
11: end if
12: end for
13: Set qm (t) = ⟨m, t, v̂m (t),nm (t)⟩.
14: Set Qm (t) = Qm (t − 1) ∪ {qm (t)}.
15: for Each neighborm′ in N1(m) do
16: SendMessages(m,m′,Qm (t)).
17: end for
18: for Each neighborm′ in N1(m) do
19: Q ′ =ReceiveMessages(m′,m)

20: Qm (t) = Qm (t) ∪Q ′.
21: end for
22: Set Nm

k (t) = nmk (t), µ̂mk (t) = sm,k (t) ∀k ∈ [K].
23: for q′ = ⟨m′, t ′, x ′1, ..., x

′
K ,a

′
1, ...,a

′
K ⟩ ∈ Qm (t) do

24: if IsLatestMessage(q′) then
25: for Arm k ∈ [K] do
26: Set Nm

k (t) = Nm
k (t) + a′k .

27: Set µ̂mk (t) = µ̂mk (t) + a′k · x ′k .
28: end for
29: end if
30: end for
31: for Arm k ∈ [K] do
32: µ̂mk (t) = µ̂mk (t)/Nm

k (t).
33: end for

d(m,m′) (since it takes at least d(m,m′) trials for a message from
m′ to reachm). However, since for each arm, a newmean is released
only t/f times (where f is the interval in Algorithm 1), a k-fold
composition theorem [15] identical to [40] can be applied with
t ′ = t −d(m,m′). Using Theorem 3.4 and then Corollary 3.1 of [40]
subsequently provides us the result. □

Remark 1 (Robustness to Strategy). It is important to note
that if all agentsm ∈ [M] follow the protocol in Algorithm 1, then
the privacy guarantee is sufficient, regardless of the algorithm any
agent individually uses to make decisions. This is true since for any
agent, the the complete sequence of messages it receives from any
other agent is differentially private with respect to the origin’s reward
sequence for any arm and at any instant of the problem. Hence, if the
agent chooses to ignore other agents and follow another an arbitrary
decision-making algorithm, the privacy guarantee only gets stronger,
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Algorithm 2 Private Multi-Agent UCB

1: Input: Agent m ∈ [M], trial t ∈ [T ], arms k ∈ [K], mean
µ̂mk (t) and count nmk (t) estimates for each arm k ∈ [K], from
Algorithm 1.

2: if t ≤ K ⌈1/ϵ⌉ then
3: Am,t = t mod K .
4: else
5: for Arm k ∈ [K] do

6: UCBmk (t) =

√
2 ln t
Nm
k (t ) .

7: end for
8: Am,t = arg maxk ∈[K ]

{
µ̂mk (t) + UCB(m)

k (t)
}
.

9: end if
10: Xm,t = Pull(Am,t ).
11: return Am,t ,Xm,t .

never worse (since it cannot gain any additional information from the
messages). Therefore, this communication protocol is robust to any
agent’s individual decision-making policy.

Remark 2 (Robustness to Defection). The communication pro-
tocol crucially involves broadcasting rewards with privacy alterations
at the source, and not at the destination. Consider an alternate proto-
col where the agents broadcasted their true personal average rewards
(without noise), and the receiving agent added an appropriately scaled
Laplacian noise on receiving a message. While this protocol would
yield slightly better guarantees (both on privacy and regret, since the
noise will be one Laplace sample, and not the sum of several samples
in the current case), it is not robust to defection i.e. if the agent decides
to learn the individual reward sequence, it can. Since our mechanism
adds noise at the source, it maintains robustness under defection.

Theorem 3.7. If all agents m ∈ [M] each follow the Private
Multi-Agent UCB algorithm with the messaging protocol described
in Algorithm 1, then the group regret incurred after T trials obeys the
following upper bound.

RG(T ) ≤
∑

k :∆k>0
χ̄ (Gγ )

(
8 lnT
∆k

)
+

©­«
∑

k :∆k>0
∆k

ª®¬
(
χ (Gγ ) (Mγ + 2) +M

(
1
ϵ
+ ζ (1.5)

))
.

Here, χ̄ is the clique covering number, and ζ is the Riemann zeta
function.

Proof. (Sketch) The proof proceeds by decomposing Gγ into
its minimum clique partitions, and analysing each clique individu-
ally. We then derive a UCB-like decomposition for the group regret
of each clique. We first bound the delay in information propaga-
tion through this clique, and then, using concentration results for
bounded and Laplace random variables, we bound the number of
pulls of a suboptimal armwithin the clique, and subsequently bound
the total group regret. A full proof is presented in the Appendix. □

Remark 3 (Deviation from Optimal Rates). Upon examining
the bound, we see that there are twoO(1) terms - the first,O(χ̄ (Gγ )Mγ )
is the loss from delays in communication, since information flows

between two agents with delays, and path lengths between agents
are (on average) larger than 1 (unless G is connected). When G is
connected, this reduces to a constantM + 2, that matches the single-

agent UCB case forMT total pulls. The second term,M
(

1
ϵ + ζ (1.5)

)
,

arises from the level of differential privacy required. When ϵ = 1,
i.e. no privacy, this term also reduces to a constant of M , matching
the single-agent non-private case withMT pulls. Finally, consider the
overhead in the logarithmic term, χ (Gγ ). This too, arises from the
delays in the network. When G is complete, this reduces to 1, matching
the optimal lower bound.

Remark 4 (Dependence on γ and Asymptotic Optimality).
In addition to the dependencies discussed earlier, a major factor in
controlling the asymptotic optimality is via the life parameter γ , that
controls “how far” information flows from any single agent. This
dependence is present within the bound as well, as we can tune the
performance of the algorithm greatly by tuning γ . If we set γ =
diameter(G), then χ (Gγ ) = 1 (since Gγ will be fully connected),
which implies that the group regret incurred asymptotically (limT →

∞) matches the lower bound. Alternatively, if we were to run the
algorithm with γ = 0, i.e. no communication, then we obtain a regret
of O(M lnT ), that is equivalent to the group regret obtained by M
agents operating in isolation. Interestingly, there is no dependence of
G and γ on the privacy loss. This is intuitive, since our mechanism
introduces suboptimality at the source, and not at the destinations.

We defer experimental evaluations to the end of the paper. We
now describe the algorithm and message-passing protocol for the
setup with byzantine agents.

4 BYZANTINE-PROOF BANDITS
In this section, we examine the cooperative multi-agent bandit
problem where agents cannot be trusted. In this setting, there exist
byzantine agents, that, at any trial, instead of reporting their true
means, give a random sample from an alternate (but fixed) distribu-
tion, with some probability ϵ . Once a message is created, however,
we assume that it is received correctly by all subsequent agents,
and any corruption occurs only at the source.

One might consider the setting where in addition to messages
being corrupted at the source, it is possible for a message to be
corrupted by any intermediary byzantine agent with the same prob-
ability ϵ . From a technical perspective, this setting is not different
than the first setting, since the probability of any incoming message
being corrupted becomes at most γϵ (by the union bound and that
d(m,m′) ≤ γ for any pair of agentsm,m′ that can communicate),
and the remainder of the analysis is identical henceforth. Therefore,
we simply consider the first setting. We now formalize the problem
and provide some technical tools for this setting.

Problem Setting andMessaging Protocol. For the byzantine-
proof setting, in the message-passing protocol described in the
earlier sections, consider for any agentm, the following message
created at time t ∈ [T ].

qm (t) =
〈
m, t,Am,t , X̂m,t

〉
(7)

Where, for byzantine agents, X̂m,t = Xm,t with probability (1 − ϵ),
and a random sample from an unknown (but fixed) distribution Q
with probability ϵ . For non-byzantine agents, X̂m,t = Xm,t with
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probability 1. Contrasted to the protocol used in the previous prob-
lem setting, there are several key differences. First, instead of com-
municating reward means from all arms, we simply communicate
just the individual rewards obtained along with the action taken.
This is essential owing to the nature of our algorithm, as will be
made precise later on (cf. Remark 6).

4.1 Robust Estimation
The general problem of estimating statistics of a distribution P
from samples of a mixture distribution of the form (1 − ϵ)P + ϵQ
for ϵ < 1/2 is a classic contamination model in robust statistics,
known as Huber’s ϵ-Contamination model [18]. In the univariate
mean estimation setting, a popular approach is to utilize a trimmed
estimator of the mean that is robust to outlying samples, that works
as long as ϵ is small. We utilize the trimmed estimator to design
our algorithm as well, defined as follows.

Definition 4.1 (Robust Trimmed Estimator). Consider a set of
2N samples X1,Y2, ...,XN ,YN of a mixture distribution (1 − ϵ)P +
ϵQ for some ϵ ∈ [0, 1/2). Let X ∗

1 , ≤ X ∗
2 ≤ ... ≤ X ∗

N denote a
non-decreasing arrangement of X1, ...,XN . For some confidence
level δ ∈ (0, 1), let α = max(ϵ, ln(1/δ )

N ), and let Z be the short-

est interval containing N

(
1 − 2α −

√
2α ln(4/δ )

N −
ln(4/δ )
N

)
points

of {Y ∗
1 , ...,Y

∗
N }.

Then, the univariate trimmed estimator µ̂R ({X1,Y2, ...,XN ,YN }, δ )
can be given by

µ̂R =
1∑N

i 1 {Xi ∈ Z}

N∑
i=1

Xi1 {Xi ∈ Z} . (8)

The fundamental idea behind the trimmed mean is to use half of
the input points to identify quartiles, and then use the remaining
half to estimate the “trimmed” mean around those quartiles. A
natural question arises regarding the optimality of this estimator
and its rate of concentration around the true mean of P . Recent
work from [32] provides such a result.

Theorem 4.2 (Confidence bound for the TrimmedMean [32]).
Let δ ∈ (0, 1). Then for any distribution P with mean µ and finite
variance σ 2, we have, with probability at least 1 − δ ,

|µ̂R − µ | ≤ σ
√
ϵ +

√
σ ln(1/δ )

N
.

Using these results, we can design an algorithm for the byzantine
cooperative bandit problem, as described next.

4.2 Byzantine-Proof Multi-Agent UCB
The byzantine-proof algorithm works for an agentm by making
a conservative assumption that all agents (including itself) are
byzantine, and constructing a robust mean estimator under this
assumption. It then uses this estimator and an associated upper
confidence bound (UCB) to choose an arm, similar to the single-
agent UCB algorithm. The assumption of all agents being byzantine
primarily is made to aid in the analysis of the algorithm: from
the perspective of any agent, if all M agents are byzantine, then it
can expect to obtain approximately O(TMϵ) corrupted messages.

Algorithm 3 Byzantine-Proof Multi-Agent UCB

1: Input: Agentm, arms k ∈ [K], mean estimator µ̂R (n, δ )
2: Set Smk = ϕ ∀k ∈ [K], Qm (t) = ϕ.
3: for For t ∈ [T ] do
4: if t ≤ K then
5: Am,t = t .
6: else
7: for Arm k ∈ [K] do
8: µ̂

(m)

k = µ̂R (S
m
k , 1/t

2).

9: UCB(m)

k (t) = σ
√
ϵ +

√
σ ln(1/δ )
|Smk (t ) | .

10: end for
11: Am,t = arg maxk ∈[K ]

{
µ̂
(m)

k (t) + UCB(m)

k (t)
}
.

12: end if
13: Xm,t = Pull(Am,t ).
14: SmAm,t

= SmAm,t
∪ {Xm,t }

15: Qm (t) = PruneDeadMessages(Qm (t)).
16: Qm (t) = Qm (t) ∪ {

〈
m, t,γ ,Am,t ,Xm,t

〉
}.

17: Set l = l − 1 ∀⟨m′, t ′,a′, x ′⟩ in Qm (t).
18: for Each neighborm′ in N1(m) do
19: SendMessages(m,m′,Qm (t)).
20: end for
21: Qm (t + 1) = ϕ.
22: for Each neighborm′ in N1(m) do
23: Q ′ =ReceiveMessages(m′,m)

24: Qm (t + 1) = Qm (t + 1) ∪Q ′.
25: end for
26: for ⟨m′, t ′,a′, x ′⟩ ∈ Qm (t + 1) do
27: Sma′ = Sma′ ∪ {x ′}.
28: end for
29: end for

If however, only a fraction f < 1 of agents are byzantine, then it
can expect to obtain approximately O(TM f ϵ) corrupted messages,
which would imply that (in expectation), allM agents are byzantine
with ϵ ′ = f ϵ . This information can be incorporated at runtime
as well, and hence we proceed with the conservative assumption.
Moreover, if we overestimate ϵ during initalization, the performance
of the algorithm will remain unchanged, since the robust mean
estimator for any value ϵ is also applicable to any other mixture
proportion ϵ ′ < ϵ without any degradation in performance.

In this setting, for the our description of the algorithm, we
present both the algorithm and the message-passing protocol in
the same setup, unlike the previous case since there is no explicit
distinction to be made between the decision-making algorithm and
the message-passing algorithm, as they both operate together. The
complete algorithm for all agents is described in Algorithm 3.

Algorithm Description. We will consider an agentm ∈ [M].
The agent maintains a set of rewards Smk for each arm k , which it
updates with the reward samples it obtains from messages from
other agents, and its own rewards. At every trial, for each arm, it
uses the robust mean estimator µ̂R to compute the trimmed mean
of all the reward samples present in Smk , and uses the number of
samples to estimate an upper confidence bound as well. It then
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chooses the arm with the largest sum of the (robust) upper confi-
dence bound. After choosing an arm, it updates its set Smk and sends
messages to all its neighbors, similar to the previous algorithm.

Theorem 4.3. If all agentsm ∈ [M] run algorithm 3 with mean
estimator µ̂R , then for ϵ < ∆min/2σ , the group regret afterT iterations
obeys the following upper bound.

RG(T ) ≤ χ̄
(
Gγ

) ©­«
∑

k :∆k>0

4σ 2

(∆k − 2σ
√
ϵ)2

ª®¬ lnT+

(
3M + γ χ

(
Gγ

)
(M − 1)

) ©­«
∑

k :∆k>0
∆k

ª®¬ .
Here, χ̄ (·) refers to the minimum clique number.

Proof. (Sketch). We proceed in a manner similar to the previ-
ous regret bound, by decomposing the group regret into a sum
of clique-wise group regrets. We then construct similar UCB-like
“exploration” vs “exploitation” events, and bound the probability of
pulling an incorrect arm under these events using the confidence
bounds of the robust mean estimator coupled with the worst-case
delay within the network. The full proof is in the Appendix. □

Remark 5 (Deviation from Optimal Rates). When comparing
the group regret bound to the optimal rate achievable in the single-
agent case, there is an additive constant that arises from the delay
in the network. Identical to the differentially private algorithm, this
additive constant reduces to the constant corresponding toMT indi-
vidual trials of the UCB algorithm when information flows instantly
throughout the network, i.e. G is connected. Additionally, we observe
identical dependencies on other graph parameters in the leading term
as well, except for the modified denominator (∆k − 2σ

√
ϵ)2. This

term arises from the inescapable bias that the mixture distribution
Q introduces into estimation, and [32] show that this bias is optimal
and unimprovable in general. This can intuitively be explained by the
fact that after a certain ϵ , there will be so many corrupted samples
that it would be impossible to distinguish the best arm from the next
best arm, regardless of the number of samples (since the observed,
noisy distributions for each arms will become indistinguishable). We
must also note that the dependence on γ on the asymptotic optimality
remains identical to the previous algorithm, and when all agents are
truthful (ϵ = 0) and γ = diameter(G), this algorithm obtains optimal
multi-agent performance, matching the lower bound.

Remark 6 (Simultaneous Privacy and Robustness). A nat-
ural question to ask is whether both privacy with respect to other
agents’ rewards and robustness with respect to byzantine agents can
be simultaneously achieved. This is a non-trivial question, since the
fundamental approaches to both problems are conflicting. First, we
must notice that to achieve differential privacy without damaging
regret, one must convey summary statistics (such as the mean or sum
of rewards) directly, with appropriately added noise. However, for
robust estimation in byzantine-tolerance, communicating individual
rewards is essential, to allow for an appropriate rate of concentration
of the robust mean. These two approaches seem contradictory at a
first inquiry, and hence we leave this line of research for future work.

In the next section, we decribe the experimental comparisons of
our proposed algorithms with existing benchmark algorithms.

5 EXPERIMENTS
For our experimental setup, we consider rewards drawn from ran-
domly initialized Bernoulli distributions, with K = 5 as our default
operating environment. We initialize the connectivity graph G as a
sample from a random Erdos-Renyi [6] family with edge probability
p = 0.1, and set the communication parameter γ = diameter(G)/2.
We describe the experiments and associated benchmark algorithms
individually.

Testing Private Multiagent UCB. In this setting, we compare
the group regret RG of M = 200 agents over 100 randomly ini-
tialized trials of the above setup. The benchmark algorithms we
compare with are (a) single-agent UCB1 [3] running individually
on each agent, and (b) DP-UCB-INT of [40] running individually on
each agent, under the exact setup for ϵ and δ as described in [40].
We choose this benchmark as it is the state-of-the-art in the single-
agent stochastic bandit case. The results of this experiment are
plotted in Figure 1(a). We observe that the performance of our algo-
rithm is significantly better than both private benchmarks, however,
it incurs higher regret (as expected) than the non-private version.

Testing Byzantine-Proof Multiagent UCB. To test the per-
formance of our byzantine-proof algorithm, we use the same setup
as the previous case, withM = 200 agents, repeated over 100 ran-
domly initialized trials, except we set the reward probability of each
arm to be constrained within [0.3, 0.7], and set the contamination
probability as ϵ = 10−3. The benchmark algorithms in this case are
(a) the single-agent UCB1 [3] running individually on each agent,
and (b) the byzantine-proof multiagent UCB with ϵ = 0 (since no
other work explicitly studies the Huber ϵ-contamination model as
used in our setting). The results of this experiment are summarized
in Figure 1(b). Similar to the previous case, we observe a large im-
provement in the group regret compared to the single-agent UCB1,
and with no contamination, the performance is better.

Testing the effect of γ . To understand the effect of γ on the
obtained regret, we repeated the same experiment (M = 200, 100
trials of randomly generated Erdos-Renyi graphs with p = 0.1) with
our two algorithms and compared their obtained group regret at
T = 1000 trials. We observe a sharp decline as γ increases from
1 to diameter(G), and matches the optimal group regret at γ =
diameter(G), as hypothesized by our regret bound. The results of
this experiment are summarized in Figure 1(c).

6 RELATEDWORK
Our work relates to a vast body of work across several fields in the
sequential decision-making literature.

Multi-AgentBanditAlgorithms. Multi-agent bandit problems
have been studied widely in the context of distributed control [5, 26–
28]. In this line of work, the problem is competitive rather than
cooperative, where a group of agents compete for a set of arms,
and collisions occur when two or more agents select the same
arms. Contextual bandit algorithms have also been explored the
context of peer-to-peer networks and collaborative filtering over
multiple agent recommendations [11, 16, 17, 22], where “agents”
are clustered or averaged by their similarity in contexts. While
some of these problem domains assume an underlying network
structure between agents, none assume “delay” in the observed feed-
back between agents, and communication is instantaneous with
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Figure 1: Experimental comparisons on random graphs. Each figure is constructed by averaging over 100 trials.

the knowledge of the graph, making these algorithms effectively
single-agent. For the cooperative bandit problem, however, general
settings have been investigated in both the stochastic case using a
consensus protocol [23–25] and in the non-stochastic case using a
message-passing protocol similar to ours [4, 10]. To the best of our
knowledge, our work is the first to consider the cooperative bandit
problem with differential privacy or byzantine agents.

Private Sequential Decision-Making. Our work uses the im-
mensely influential differential privacy framework of Dwork [13],
that has been the foundation of almost all work in private sequen-
tial decision-making. For the bandit setting, there has been signifi-
cant research interest in the single-agent case, including work on
private stochastic bandit algorithms [30, 37, 40], linear bandit algo-
rithms [35] and in the nonstochastic case [41]. In the competitive
multi-agent stochastic bandit case, Tossou and Dimitrakakis [39]
provide a UCB-based algorithm based on Time-Division Fair Shar-
ing (TDFS).

Robust Sequential Decision-Making. Robust estimation has
a rich history in the bandit literature. Robustness to heavy-tailed
reward distributions has been extensively explored in the stochastic
multi-armed setting, from the initial work of Bubeck et al.[7] that
proposed a UCB algorithm based on robust mean estimators, to the
subsequent work of [12, 42, 44] on both Bayesian and frequentist
algorithms for the same. Contamination in bandits has also been ex-
plored in the stochastic single-agent case, such as the work of [1] in
best-armed identification under contamination and algorithms that
are jointly optimal for the stochastic and nonstochastic case [34],
that uses a modification of the popular EXP3 algorithm. Our work
builds on the work in robust statistics of Huber [18] and Lugosi
and Mendelson [29].

To the best of our knowledge, our work is the first to consider
privacy and contamination in the context of the multi-agent cooper-
ative bandit problem,with the additional benefit of being completely
decentralized.

7 CONCLUSION
In this paper, we discussed the cooperative multi-armed stochastic
bandit problem under two important practical settings – private
communication and the existence of byzantine agents that follow
an ϵ-contamination model. We provided two algorithms that are
completely decentralized, and provide optimal group regret guaran-
tees when run with certain parameter settings. Our work is the first
to investigate real-world scenarios of cooperative decision-making,
however, it does leave many open questions for future work.

First, we realise that achieving both differential privacy and
byzantine-tolerance simultaneously is non-trivial, even in the sto-
chastic case: differential privacy requires the computation of sum-
mary statistics (such as the sum or average of rewards) in order
to provide feasible regret, however, for byzantine-tolerance we re-
quire the use of robust estimators, that explicitly require individual
reward samples to compute, making their combination a difficult
problem, which can be investigated in future work. Next, we anal-
ysed a very specific setting for byzantine agents, which can be
generalized to adversarial corruptions, as done in the single-agent
case. Finally, extensions of the stochastic multi-armed setting to
contextual settings is also an important direction of research that
our work opens up in multi-agent sequential decision-making.
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