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ABSTRACT
Moving nodes in a Mobile Wireless Sensor Network (MWSN) typi-

cally have two maintenance objectives: (i) extend the coverage of

the network as long as possible to a target area, and (ii) extend

the longevity of the network as much as possible. As nodes move

and also route traffic in the network, their battery levels deplete

differently for each node. Dead nodes lead to loss of connectivity

and even to disengaging full parts of the network. Several reactive

and rule-based approaches have been proposed to solve this issue

by adapting redeployment to depleted nodes. However, in large

networks a cooperative approach may increase performance by

taking the evolution of node battery and traffic into account. In

this paper, we present a hybrid agent-based architecture that ad-

dresses the problem of depleting nodes during the maintenance

phase of a MWSN. Agents, each assigned to a node, collaborate

and adapt their behaviour to their battery levels. The collaborative

behavior is modeled through the willingness to interact abstraction,

which defines when agents ask and give help to one another. Thus,

depleting nodes may ask to be replaced by healthier counterparts

and move to areas with less traffic or to a collection point. At the

lower level, negotiations trigger a reactive navigation behaviour

based on Social Potential Fields (SPF). It is shown that the proposed

method improves coverage and extends network longevity in an

environment without obstacles as compared to SPF alone.

KEYWORDS
self-organisation; multi-robot systems; networked systems and dis-
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1 INTRODUCTION
Wireless sensor networks (WSNs) consist of a number of intercon-

nected spatially distributed nodes equipped with sensors to capture

information from the environment. WSNs are fit for different sce-

narios, ranging from emergency deployment – where the network

needs to be established as fast as possible – to long term monitoring

— where the network must last as long as possible, e.g., sensors for

irrigation or vibration sensors for seismic areas. In all cases, the

network needs to provide an appropriate coverage of the target

area. WSNs may be homogeneous, when all nodes have the same

role, or heterogeneous. In both cases, WSNs typically include one

or more sink nodes, Access Points (APs), to redirect gathered data

to external networks. The locations of the APs are typically prede-

fined and stationary, because they are usually connected to a main

power supply to route all the network traffic to an external net-

work. However, most nodes in WSNs are typically battery-operated.

Battery life depends on connectivity and throughput, which in turn

primarily depend the on deployment method [29]. Unfortunately,

WSN deployment cannot be optimized in many scenarios and it

becomes quite complex for large networks [8]. The locations of the

nodes in the network could be computed with optimal approaches.

However once the nodes begin to fail, those configurations are no

longer optimal. Thus, optimal approaches are not suitable for WSN,

since their nodes are prone to failure [25].

Mobile WSN (MWSN) try to solve this problem by providing

nodes some degree of mobility, so that they can deploy themselves

(self-deployment) or, at least, adjust their locations (self-healing)

when other nodes start to fail, in order to cover the gaps that appear

in the network [36]. Although there are other options, Multiple

Robot Systems (MRS) have been often used in combination with

MWSN to transport nodes when needed [20, 21, 25].

As in traditional autonomous robot navigation problems, there

are deliberative and reactive approaches for MWSN navigation.

Deliberative approaches aremeant to optimize efficiency [11, 18, 23–

25, 35], however, they require a reliable model of the environment

– including network configuration, environment layout, traffic, etc.

– and they are computationally expensive. Reactive approaches rely

on local factors instead [5, 7, 22, 27, 37], e.g., setting a local behavior
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for each node or a set of local rules that the nodes must follow.

The combination of all local behaviors provide an emergent global

behaviour with reduced computational cost, where results are not

optimized and local minima may appear. In order to avoid the

drawbacks mentioned above, in the robotics domain it is common

to combine both deliberative and reactive strategies into a hybrid

approach.

A reactive approach to MWSN deployment and self-healing was

proposed in [17, 32]. The proposed approaches are a variation of the

Social Potential Fields (SPF) [28], originally proposed for navigation

in a robot swarm. The underlying idea is that each robot is affected

by a number of forces, namely: (i) a repulsion force depending on

the Received Signal Strength (RSS) that leads to network dispersion;

(ii) an attraction force depending on how many nodes each one

is linked to that preserves connectivity; and (iii) a repulsion force

depending on nearby obstacles that avoids collisions. Nodes in the

MWSN move until the sum of these forces is equal to zero, i.e.,

the network is balanced. Then, they stay at their locations until a

number of nodes run out of battery and the network needs to be

balanced again. This algorithm successfully extended the network

life preserving coverage as much as possible and outperformed rule-

based systems like the Backbone algorithm [9]. However, given

its reactive nature, it had a number of problems because no high

level strategy was used to determine specific node locations. In this

work, we propose to use an agent architecture to add a cooperative

layer to the reactive system.

Agents have already been used in MRS, specifically in robot

teams and swarms [4, 31, 34]. Coalition formation algorithms de-

signed for multi-agent systems have been adapted for the multi-

robot domain in order to solve tasks such as box-pushing, cleaning,

and sentry duty [33, 34]. Cognitive agents have been integrated

into robotic swarm architectures with the purpose of guiding the

behaviour of the group without losing the advantages of the swarm

approach [4]. Others have applied distributed scheduling mecha-

nisms in robot teams operating in a hospital environment, mapping

an agent to a robot, thus allowing each robot to compute its own

schedule in a distributed way [31].

Another relevant aspect relates to the autonomy of agents in-

volved in the decision-making. Autonomy can be defined based

on the dependencies between agents, i.e., when an agent a needs

the intervention of another agent b in order to complete its goal

G, then a depends on b for G, and is not autonomous with re-

spect to b in this context [6]. Furthermore, mechanisms with which

agents change their levels of autonomy based on the circumstances,

have also been investigated. They range from adjustable autonomy,

where there is a human in the loop, an operator, which makes the

decision on whether to change autonomy levels of the agents, to

adaptive autonomy, where agents themselves decide their own level

of autonomy [19].

In this work we present a hybrid control architecture for a swarm

of robotMWSNnodeswhere the reactive layer is controlled by a SPF

and the cooperative layer relies on an agent architecture that allows

agents to adapt their autonomy during their operation. This agent

approach is based on the willingness to interact abstraction, which

determines when agents ask and give help to one another [12]. As

in most works involving a large number of robotic entities [21, 25],

the evaluation of our hypothesis – that the hybrid agent approach

yields better performance than SPF alone – relies on simulations.

However, the working parameters for the presented algorithm have

been set using a reduced number of real robots. Results show that

the proposed method increases the coverage in the network, as well

as the network longevity as compared to SPF alone. Furthermore,

the achieved improvement is consistent for the whole operation of

the network.

The rest of this paper is organized as follows. Section 2 describes

in detail the problem to be solved. Section 3 presents the previ-

ously proposed low level reactive navigation algorithm. Section 4

describes the hybrid agent approach and the willingness to interact

abstraction that affects how agents collaborate with one another.

Section 5 describes the design of the experiment, while Section 6

presents our results. Concluding remarks and an outline of direc-

tions for future work are given in Section 7.

2 PROBLEM FORMULATION
Let’s assume an area Z with known dimensions ⟨dw ,dh⟩, and n
agents

1 ai ∈ {a1, . . . ,an } allowed to move in Z . Each agent is

characterized by its battery level bi , and it is able to connect to

others within its communication range rC . An agent’s battery is

impacted by: (i) its motion in Z ; and (ii) the amount of traffic it

routes. Therefore, agents will have different life-spans, depending

on howmuch distance they have covered, and howmuch traffic they

have routed. The amount of traffic depends on the topology of the

network and on the routing algorithm, thus, it is very hard to predict

a priori in MWSN. Similarly, the robot motion in a configuration

with a large number of agents is also hard to predict. Instead, these

parameters are measured by each node through its life.

Agents have two goals, (i) to provide as much coverage for the

network as possible, and (ii) to extend the longevity of the network

as much as possible. Coverage depends on the network topology,

so it is important to distribute robots adequately. The longevity of

the network depends on the lifespans of the robots in the MWSN.

Therefore, the second goal is addressed by both minimizing the

travelled distance of the agents, which aims at potentially extending

their lifespans, and by distributing the traffic load uniformly among

nodes.

3 SPF
As commented, the reactive system consists of a cooperative agent

based layer and a reactive low level algorithm. Specifically, the

reactive layer uses SPF algorithm proposed previously [32] for

deployment and self-healing. The original SPF was proposed for

autonomous navigation in swarm robots by Reif and Wang [28].

SPF defines attraction and repulsion forces to set goals and/or con-

straints. In our system, our goals are: i) to spread the network to

achieve the maximum possible coverage with living nodes; ii) to pre-

serve connectivity among living nodes; and iii) to avoid collisions

when the robots move. Hence, three forces are defined.

• Obstacle repulsion force(s) fr1(ri , j ) repel the robot from

other robots or physical obstacles in its vicinity to prevent

collisions. This force is only significant in the vicinity of

physical objects.

1
In this paper the terms agent, robot, and WSN node are used interchangeably, as we

have one agent per robot.
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• Deployment repulsion force(s) fr2(ri , j ) moves robots away

from each other to spread them and increase coverage.

• Cohesion force (connectivity attraction) fc (ri , j ) increases
with ri , j to avoid loss of communication among nodes.

ri , j being the distance between robots i and j . In order to estimate

relative distances between robots and with respect to the cover-

age area boundaries, we need a node localization technique. The

locations of all elements under simulation is always known. In real

tests, locations could be estimated by combining robot odometry

and RSS-based trilateration [1, 26].

The combination of all three forces for each node in the network

returns an emergent motion vector. A node stops moving when that

vector is under a threshold fu . When all nodes stop, the network is

balanced. Afterwards, if any force changes for a node, e.g., nearby

nodes die or they have to move significantly for one reason or

another, that node moves again. If it affects other nodes in the

region, the network will need to be balanced again. This process is

repeated in time until the performance of the network is deemed

insufficient after enough nodes have died.

It can be observed that there is no high level strategy in the robot

motion at this point. Nodes simply respond to the defined forces

and no plan is made to increase the network life by considering the

specifics of each node. The main novelty of the present work is the

addition of an agent layer over the SPF. We assign an agent to each

robot in the network, which is aware of the different parameters

that the robot uses to calculate SPF forces, in addition to its battery

level and routed traffic. Agents may decide that some robots need

to switch location with others when their battery level is not fit

to route the traffic in the area. Thus, by purposefully redirecting

nodes when necessary to adapt to the network traffic specifics,

we increase its average life. The following sections describe this

proposal in detail.

4 AGENT APPROACH
This section describes how a cooperative agent approach based

on the willingness to interact is combined with the presented re-

active SPF method, in order to address the problem described in

Section 2 for maximising the coverage and extending the longevity

of a wireless sensor network. A detailed account is given on how

agents compute their willingness to interact, and on the negotiation

protocol used.

4.1 Agent Behaviour in the MWSN
The operation of agents in a wireless sensor network follows three

phases, initialization, deployment, and maintenance. During the

first phase agents are started and their state variables are initialized.

Afterwards, the deployment phase follows using SPF, in which

agents move away from the initial locations in order to extend

coverage of the target area as much as possible, while keeping the

connectivity to the AP. When the deployment is complete and the

network is stabilized, agents continue draining their batteries due to

traffic routing. As commented, not all agents have the same battery

level after deployment, as they have not travelled the same distance.

Furthermore, depending on their location and the routing algorithm,

some may route far more traffic than others. Hence, some agents

may be depleted before others. If an agent is depleted, it may stay

on location as a new obstacle or travel back to a battery charging

station, leaving a "hole" in the network. When a number of agents

have died, the SPF needs to be run again to re-stabilize the network.

Alternatively, rather than waiting for nodes to be depleted, the

proposed approach gets nodes with higher battery levels to replace

the ones that are about to be depleted. Thus, allowing for a more

graceful degradation of the coverage, and extension of the life of

the network.

Let’s assume a critical battery level bl0 defined as the amount

of battery that an agent needs to go to a collection point, e.g., an

AP. This value could be different for every agent, as it depends on

where in the network an agent is positioned, or we could have a safe

threshold that guarantees that a node can reach the collection point

from any location in the coverage area for simplicity. Furthermore,

let’s assume two battery levels blh and bl1 defined as bl0 ≤ blh ≤

10% · bl0 + bl0, and bl0 ≤ bl1 ≤ 30% · bl0 + bl0, respectively. The
thresholds are selected heuristically and are used to indicate how

close a robot’s battery is to its critical level.

The first agent to reach the bl0 triggers the first negotiation

round in the network. Then, all agents with battery level below

b
(t )
l1 start sending help requests to the network to ask agents with

battery above b
(t )
l1 to replace them. The urgency of a request sent by

an agent in need, as well as the disposition to help by other agents

is captured in the willingness to interact, as described in the next

subsection. The agents with battery above b
(t )
l1 are the ones that

will respond to these help requests and move to new locations if so

decided.

After a negotiation round is complete, all agents with battery

level below b
(t )
lh move towards their collection point. These agents

are too depleted to be useful anymore. Note that we do not remove

only the one node that reached b
(t )
l0 , but a percentile of nodes that

will reach it in the near future. Since most nodes will probably move

during the balancing stage, nodes with the lowest battery would

probably reach the removal threshold shortly after. Hence, setting

two thresholds avoids running SPF each time a single node needs

to leave. After the assignment to locations is complete, negotiation-

winning agents move towards their target positions. Nodes with

battery between [b
(t )
l0 ,b

(t )
l1 ] do not move at all. During this motion

stage, only obstacle repulsion forces are active to avoid collisions.

Finally, after all moving agents have reached their target locations,

the SPF is run again in order to balance the network.

4.2 Willingness to Interact
The willingness to interact defines a general disposition of an agent

to interact with other agents, by either asking or giving help [12].

The willingness at time t , w(t ) ∈ [−1, 1], depends on the internal

state of an agent, and is not related to any particular task or help

request that may have been received from others. In this paper, the

calculation of the willingness to interact is influenced only by the

current battery level bc . Note, further, that the previously proposed

equation [12] has been adapted in order to include WSN related
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parameters. The willingness to interact at a time t is given by,

w(t ) =


−1, if b

(t )
c ≤ b

(t )
l0 ,

−
b (t )
c −b (t )

l0

b (t )
c
, if b

(t )
l0 < b

(t )
c ≤ b

(t )
l1 ,

b (t )
c −b (t )

l1

b (t )
c
, if b

(t )
l1 < b

(t )
c .

(1)

This equation states that when an agent’s battery is below b(t)l1,
the corresponding willingness will be negative, and the agent is in

a state where it is ready to ask for help. Furthermore, the closer

b
(t )
c is to b

(t )
l0 , the more negative the willingness will be. If the

value for the willingness goes below the thresholdwH = −
b (t )
lh −b

(t )
l0

b (t )
c

corresponding tob
(t )
lh , the agentmight soon reach the critical battery

level. When at least one agent’s willingness value becomes −1, i.e.,

at least one has reached the critical battery level, then agents below

wH start asking for help and moving toward the collection point,

whereas agents with wH ≤ w ≤ 0 stay where they are and start

asking for help. If b
(t )
l1 ≤ b

(t )
c then an agent’s willingness is positive,

therefore the agent can respond to help requests from others in the

WSN.

Once a request for help is initiated, agents with positive will-

ingness will reason to meet this request. Furthermore, all requests

for agents belowwH are considered, whereas for the others only

those requests where the willingness is not more than 20% over

wH are considered. This threshold is also set heuristically, and is

used to indicate which agents are closest to the hysteresis level. The

willingness specifies the overall disposition of an agent to interact

based on its own state. Nevertheless, when an agent gets a request

for help, the willingness needs to be refined to reflect the trade-off

between staying in the current position with a particular traffic

load, and moving to a new position with another traffic load. This

adjustment is done by incorporating in the willingness the utility

of an agent for moving to a new position with a known traffic load

(Equation 2).

W (t ) = w(t ) + u(t ), (2)

where u(t ) is the utility for moving to a new position, calculated as,

u(t ) =


1 −

b
(t )
m + b

(t )
n

b
(t )
c

+

b (t )
c

b (t )
A

−
b (t )
c

b (t )
B

b (t )
c

b (t )
A

+
b (t )
c

b (t )
B

, if 1 −
b (t )
m +b

(t )
n

b (t )
c

≥ 0.3,

−w(t ), otherwise,

(3)

where b
(t )
m is the battery required to move to the new position, b

(t )
n

is the battery level to go from the new position to the collection

point,b
(t )
A is the battery spent on routing per iteration in the current

position, andb
(t )
B is the battery that would be spent for routing in the

new position. This means that, if an agent has at least 30% of battery

on top of what is needed to go to a new position, and the collection

point thereafter, then it proceeds with reasoning on whether to

help. Otherwise, the utility is set to −w(t )
and, given Equation 2,

the willingness of the agent will be 0, thus it will not take part

in the negotiation. When an agent has enough battery for useful

motion, then the impact of the traffic load is also considered. If the

new position requires more battery, then the utility is decreased,

otherwise it is increased. In brief, agents with more battery will

favor more traffic intense locations and vice-versa.

In this paper, the willingness to interact is only dependent on

the battery level, however, in other applications there might be

other state variables to consider, e.g., number of tasks needed to

be achieved concurrently. The same consideration holds for the

calculation of the utility.

4.3 Negotiation Protocol
The negotiation protocol is triggered when at least one agent in

the system reaches its critical battery level bl0, or when the AP
identifies a dead node in the network that did not ask for help in

time. In the former case, agents with negative willingness will send

a help request to all alive nodes in the network, collect the responses,

assign the agent with the highest positive willingness, and notify

the assigned agent by sending a packet in the network. In the latter

case, the AP will send a help request to all alive agents on behalf

of the dead node. Moreover, the AP handles only one dead dead

per negotiation round. Afterwards, from the responses, the agent

with the highest positive willingness is assigned to the location of

the dead robot, and notified. Agents with positive willingness will

process the requests and send their answers back to the requesting

agents. A request will be considered if it comes from those agents

belowwH , as well as those agents with willingness not more than

20% on top ofwH .

All additional packets generated due to the negotiation between

agents, and how they affect the battery drainage, are computed.

For the calculation of the number of packets that flow through

the network and are routed by the nodes, we assume that the

network uses a limited flooding strategy known as geographic

routing, according to which each packet sent by an origin towards

a destination is re-transmitted by other nodes but only if they are

nearer to the destination. This type of strategy is widely used in

WSN when the network deployment is not planned and signaling

traffic needs to be very limited to extend the network life as much

as possible [14, 25]. More details are provided in Section 5.2.

5 EXPERIMENT DESIGN
This section describes the hypothesis investigated in this paper, the

metrics used for the evaluation of our approach and its comparison

with SPF, the communication model, and the simulation setup used

for generating the data used in the analysis.

5.1 Hypothesis and Evaluation Metrics
The hypothesis investigated in this paper is formulated as follows:

Hypothesis 1. The hybrid approach that combines agent collabo-
ration with a reactive layer for adaptation, yields better results with
respect to network coverage and longevity of the network in the main-
tenance phase of a MWSN, as compared to a solely reactive approach.

In order to evaluate the hypothesis, the following metrics are

defined: blanket coverage, which addresses the coverage concern,

and energy efficiency and consumption which indirectly address

the longevity of the network. Blanket coverage refers to any point

of the area of interest covered by at least one node [13]. Assume a

node i that covers an area Ai . Then the coverage for n nodes over
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the whole area A is calculated as:

C =

⋃
i=1, ...,n Ai

A
. (4)

Equation 4 is transformed into a probabilistic model [16] as follows:

C =
m∑
i=1

pi
m
, (5)

where pi is the probability of detecting an event in cell i , in a

probabilistic grid withm cells. The probability is given by:

pi = 1 − p j = 1 −

n∏
j=1

(1 − pi j ), (6)

where pi j is the probability that node j detects an event at location

i .
Aspects that relate to energy are captured on one hand by the

uniformity of the network U for n nodes (Equation 7).

U =
1

n

n∑
s=1

Us , (7)

Us =

√√√√
1

Ks

Ks∑
j=1

(rs , j − r s )2, (8)

where Ks , j represents the number of nodes close to node s , rs , j
the distance between nodes s and j, and r s the average distance

between s and its closest neighbours.

On the other hand, such aspects are also reflected in the average

power consumed by the nodes to send a message P (Equation 9).

P =
1

n

n∑
j=1

P j , (9)

P j =
1

n

n−1∑
j=1

Ps , j , (10)

Ps , j = Ps1 + · · · + Psk , (11)

where P j is the average power for node j to send a packet to the net-
work, and Ps , j is the power consumed to send a message from node

s to j, over k hops needed for the packet to reach the destination.

Finally, the overhead produced by the packets generated due to

the negotiation between agents is estimated and compared to the

total number of packets routed in the network.

5.2 Simulation Setup
The hypothesis has been evaluated in simulation

2
, by comparing the

performance of SPF alone [17], with the proposed hybrid approach

combining both SPF and agent collaboration. The environment used

for the evaluation of the SPF approach, proposed previously [32],

has been extended to support agent negotiation, and relies on the

tools provided by the Player/Stage simulator [15].

The simulated area has a size of 150x150m2
, scale 1 : 10, and is

populated by n = 100 robots. Each robot is initiated with a battery

level b0 = 3000mAh. Only the sink is assumed to be connected to

the power supply, and will not deplete. We have considered two

2
The code for running the simulations is publicly available at https://bitbucket.org/

gitagent/gitagent_wsn/src/master/

main causes of battery drainage: the routing of packets through the

network and the movement of the robots.

Assuming that the robots move at a constant speed, the charge

drained from the battery (in mA · h) when a robot moves 1m can

estimated as:

b1m =
mC

v · 3600
= 1.11mA · h/m, (12)

wheremC = 200mA is the electric current that flows through

the motor while the robot is moving, and v = 0.05m/s is the robot

speed, in accordance with the consumption model of the Hexbug

robot toys derived in previous work [17].

The other cause of battery drainage is the network operation,

which is heavily influenced by the nature of the data traffic and also

by the behaviour of the communication protocols, and in particu-

lar by the routing strategy and the medium access control (MAC)

mechanism. A typical low-power and short-range communication

transceiver requires a supply current of 10-20mA during its trans-

mission and reception operations [30]. Therefore, each time a node

sends a packet some battery charge is consumed, but also the bat-

tery is drained when reception is enabled (either if data is actually

being received or not). The MAC strategy of the link layer deter-

mines how much time the transceiver spends in each possible state

(transmission, reception or sleep) during its operation. In order to

save battery, a duty-cycling MAC strategy is typically used to allow

the transceiver to remain in a low-power state most of the time [3]

while maintaining the network operational. Thus, our simulation

model considers two main sources of battery consumption due to

network operations: a constant background consumption due to

the duty-cycling operation, which is equal for every node in the

network, and the consumption caused by packet transmissions,

which depends on how many packets each node is sending and/or

routing.

Assuming that the MAC parameters are properly tuned, the av-

erage current drained during duty-cycling operation can be as low

as 1% of the current required when the transceiver is in the receiv-

ing state [10], so in our simulation model we have considered that

0.15mA ·h are drained from the battery each hour of network opera-

tion. On the other hand, duty-cycling strategies require each packet

to be repeatedly transmitted over a period of time to guarantee it

is finally received, which increases the battery waste of sending a

packet. In our simulation we assume a wake-up frequency of 20 Hz

for the duty-cycling protocol, so each packet should be transmit-

ted repeatedly during a 50ms interval. The supply current of the

transceiver during the transmission operation depends slightly on

transmission power, which in turn determines transmission range.

In accordance with the datasheet of a commercial transceiver [30],

our model considers a 12.5mA supply current during transmission

for a coverage range of 25m. Regarding all this, the charge drained

from the battery each time a packet is sent and/or routed by a node

is set to 1.74 ·10−4mA ·h. To calculate the amount of packets routed

by each node, both the data traffic sent by the sensor nodes to the

AP and the packets sent during the agent negotiation rounds have

to be regarded. A simple model has been considered for the data

traffic sent by the nodes to the AP during network operation: each

node periodically tries to send one packet to the AP (at a rate of

one packet every 10 seconds), which is routed through the net-

work by intermediate nodes. Also, during the agent negotiations,
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some packets have to be exchanged between nodes requesting

help, nodes willing to help, and the AP, and these packets are also

routed by intermediate nodes in order to reach their destinations.

As mentioned in Section 4.3, a geographic routing mechanism is

adopted to compute the number of packets each nodes routes. Geo-

graphic routing operates over multi-hop mesh topologies and its

main advantages when compared to other routing strategies for

WSN are that it provides a reasonable scalability, adapts quickly to

network topological changes, and is stateless and, therefore, does

not require additional signaling for routing [2, 14]. Our simulation

model implements one of the simplest approaches to geographic

routing, the closest neighbor routing: a given node i broadcasts
a packet that is received by all of its neighbor nodes within its

transmission range. The receiving neighbor nodes broadcast the

packet to their own coverage zone, but only if they are closer to

the destination node than the one from which they received the

message. A node never re-transmits the same packet more than

once. This algorithm generates a partial flooding, but is very simple

and reasonably energy-efficient.

In regards to robot motion, the parameters of the three different

forces applied to each robot except the AP, have been obtained

heuristically, and depend on the modeled physical robots. The ob-

stacle repulsion force is calculated as:

fr1(ri , j ) = −
0.001

(ri , j )8
. (13)

The deployment repulsion force is calculated as:

fr2(ri , j ) = −
20

(ri , j )7
. (14)

The cohesion force is calculated as:

fc (ri , j ) = −
α · nf ail

n · nnearAP
, (15)

where nf ail is the number of depleted nodes, and nnearAP is the

number of nodes directly connected to the AP (i.e., located within

the coverage area of the AP).

The simulation will stop when more than 70% of the robots have

depleted their battery, i.e., their current battery level is lower than

5% of the initial battery level. It is assumed that the locations of all

the robots, as well as the boundaries of the area are known. In a

physical environment the robots would rely on triangulation using

their own RF signals for localization. Ideally, the sink node will be

static as well, so its position will be also known. Usually, at least two

more beacons (with known positions) are used in the deployment

area so the other nodes can triangulate themselves. Of course, tri-

angulation errors may be up to a few meters and the error will also

propagate for nodes that triangulate themselves using information

from mobile nodes instead of beacons. Nevertheless, the error will

not accumulate over time, as the positions are recalculated from

the RSS at every new triangulation. More importantly, these errors

are not critical for the application – at most, robots will end a few

meters away from the destination or re-transmit some unnecessary

packets. If localization is critical, more beacons could be added

where necessary. Finally, there are no obstacles in the environment,

but dead robots with depleted batteries are treated as obstacles.

Table 1: Statistics for the metrics over 30 runs.

Statistics for 50% nodes dead

cov. dist.(m) uniform. time(days)

avg std avg std avg std avg std

SPF 1 0.45 0.008 84.44 1.32 0.53 0.0056 65.84 1.85

SPF 2 0.02 0.001 49.81 0.56 0.43 0.0110 106.83 5.96

AA1 0.48 0.012 94.44 4.55 0.51 0.0074 63.89 2.04

AA2 0.67 0.021 80.13 3.44 0.71 0.0152 75.77 3.37

Statistics at simulation end

cov. dist.(m) uniform. time(days)

avg std avg std avg std avg std

SPF 1 0.30 0.0088 102.23 2.05 0.45 0.0091 110.2 4.6

SPF 2 0.30 0.2435 62.76 2.12 0.54 0.1118 209.0 10.9

AA1 0.28 0.0050 144.95 8.62 0.39 0.0113 108.7 2.7

AA2 0.41 0.0097 109.73 7.53 0.55 0.0298 139.5 5.5

6 RESULTS
The comparison between the combined agent approach and the

SPF was done by considering two values for the α parameter in

the calculation of the cohesion force fc (ri , j ) active in the network,

α ∈ {5, 20}. Thus, there are two configurations for each approach,

namely (i) SPF1 with the base-line value for the cohesion force

defined as in previous work (α = 20) [17, 32], (ii) SPF2 with re-

duced cohesion force (α = 5), (iii) AA1 with the base-line cohesion

force, and (iv) AA2 with reduced cohesion force. Note that, for AA1
and AA2, the battery waste for the packets generated due to the

negotiation is taken into account in the battery consumption of

each robot.

Simulations for each of the four cases were repeated 30 times,

with the corresponding means and standard deviations (see Table 1)

taken over the values of each metric at the step where less than

50% of the nodes are alive, and at the end of the simulation. Results

in Figures 1-7 consist of the curves for each simulation run, as well

as the average over 30 runs, for every method. Visually, methods

can be distinguished by the color hue, with bolder lines for the

averages. A direct average of the curves is not possible because

each run yields different length of the simulation. The average is

therefore computed considering up to the shortest simulation for

the considered method.

The averaged values (Table 1) show the state of the network

under the different methods for two different time points as afore-

mentioned. It can be seen that when the 50% mark for the dead

nodes is reached,AA2 achieves better coverage and uniformity with

respect to the rest, whereas with respect to the distance walked it

performs better than AA1. Moreover, SPF2 is the last to reach the

50% mark, followed by AA2, with SPF1 and AA1 being the fastest
to reach such level of dead nodes. At the end of the simulation,AA2
maintains higher levels of the coverage, with the rest of the meth-

ods showing slightly worse performance. Regarding uniformity,

at the end of the simulation AA2 and SPF2 are rather compara-

ble, outperforming the other two. In terms of walked distance and

longevity of the network, the results are similar to the results for

the 50% mark. During the operation of the network, as time passes

and nodes become depleted, the AA2 method consistently achieves
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Figure 1: Coverage with respect to time
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Figure 2: Coveragewith respect to the number of alive nodes

higher coverage than the others (Figures 1-2)
3
. Note that an area

Ai is considered covered if the covering node is connected to the

AP, either directly, or through several hops. The nodes close to the

AP route higher amounts of traffic, as compared to the nodes in

the outskirts of the network. Thus, they become depleted faster.

When the cohesion force is reduced for SPF2, and the central nodes
start to die, the network does not shrink to keep the connectivity to

the AP. Instead a gap is created in the network (see Figure 3). The

resulting coverage goes close to 0. Nevertheless, it can happen that

the nodes manage to come closer to the AP and reconnect at the

end of the simulation, thus improving on the coverage as well as

the other metrics. In the case of AA2, when central nodes start to

die, they are replaced by nodes at the outskirts, as such the nodes

remain connected to the AP. The nodes at the outskirts are the first

3
Note that the sampling frequencies for the four methods is different. This is because

the SPF-based methods are only rerun when the nodes breakdown and the network

should balance. In between, the alive nodes are stationary. However, for the agent-

based methods, the negotiations start taking place before any nodes breakdown, i.e.,

the time between failures of nodes is simulated as well.

a) SPF2 b) AA2

Figure 3: Robot layout on the simulatedmap for an interme-
diate step of the simulation.
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Figure 4: Depleted nodes with respect to time

to move because their battery levels are highest, which is due to the

low traffic load. It is possible to observe that theAA2method yields

consistently better coverage, throughout the whole operation time

of the network, oppositely to SPF2which can by chance recuperate

close to the end of the simulation.

The network, in terms of alive nodes (Figure 4), lasts the longest

for the SPF2 method. However, in this case alive nodes become

disconnected from the AP. The SPF1 and AA1 methods are com-

parable in terms of depleted nodes over time, nevertheless with

SPF1 nodes last longer. The AA2 method has a consistently lower

rate of depleted nodes over time as compared to SPF1 and AA1,
resulting in highest network longevity. The life of the network is

extended with circa 29 days on average as compared to SPF1. With

respect to the distance traveled by nodes (Figure 5), SPF1 and AA2
are comparable, whereasAA1 has the highest distance traveled. The
SPF2 method has the lowest traveled distance, due to the reduced

cohesion force, the nodes will not move towards the AP to keep

the connectivity.

TheAA1 andAA2methods generate additional packets in the net-

work due to the negotiation between agents overtime. The averages

for the total amount of negotiation packets over the total amount
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of routed packets.

of routed packets in the network are 2.1 × 10
−4

and 1.8 × 10
−4
,

for AA1 and AA2 respectively (Figure 6). Therefore, the battery

consumption due to this overhead is negligible.

The AA2 method outperforms the other methods in our tests

with respect to uniformity (Figure 7). Whereas, SPF1 and AA1 are

comparable until the 65
th

day, approximately. Afterwards, as the

nodes keep dying, uniformity is preserved better with SPF1. Simi-

larly to the coverage metric, for some experiments SPF2 regains
connectivity close to the end of the simulation, thus improving on

the uniformity as well.

7 CONCLUSION
A hybrid agent approach, which combines a reactive layer with

explicit collaboration between agents for the self-healing phase in

mobile wireless sensor network has been presented. The reactive
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Figure 7: Uniformity in the network with respect to time.
Note that the y-axis starts from 0.35 units.

layer is based on a SPF algorithm. The agent collaboration part

is modeled through the willingness to interact abstraction, which

defines when agents ask and give help to each other based on their

battery level. It is shown that the hybrid agent approach improves

the coverage and longevity of the network, as compared to the social

potential fields algorithm. Furthermore, the proposed approach does

not require a high cohesion force to keep the nodes connected to the

AP. Instead, this comes as a result of how agents negotiate with one

another. After a negotiation, nodes at the outskirts of the network

with low traffic load, take the place of central nodes, which become

depleted at a faster pace.

There are four lines of inquiry for future work. Firstly, the com-

parison between the hybrid agent approach and the social potential

fields algorithm can be extended to account for environments with

obstacles. Secondly, machine learning techniques can be used to

adjust the forces for each node in the network, depending on in-

dividual battery levels, and traffic load. Thirdly, other delegation

strategies could be investigated, and compared to the current work

where agents drop their current positions when assigned to new

ones. Furthermore, the reassignment of agents could be negotiated

before the critical battery level is reached, in order to send depleting

agents in locations with less traffic. Lastly, it is of interest to evalu-

ate the proposed approach for hierarchical networks with several

levels of the nodes.
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