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ABSTRACT
Threshold task games (TTGs) are a class of cooperative games in

which participants form coalitions to complete tasks associated

with different rewards and thresholds for success. We provide ef-

ficient algorithms for computing approximately optimal coalition

structures in TTGs. We also present non-trivial bounds on the cost

of stability for this class. We put our theoretical results to practice;

we design a web-based framework which allows human players

to interact in a collaborative task-based model. Our analysis of

human play in two different countries shows that players succeed

in general to form optimal coalition structures, and converge to

approximately stable payoff divisions.
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1 INTRODUCTION
A group of players needs to collaborate in order to complete a set of

tasks. Their objective is twofold: first, they must form coalitions —
disjoint groups of players, each working on a separate task; second,

if players are self-interested, they must decide on a reasonable way

of dividing revenue from their tasks.

Example 1.1. Alice, Bob and Claire sign up for an online freelance

programming website (e.g. fiverr.com). The website currently has

two programming tasks: a simple script task t1 that requires a total

of 3 hours to complete, and pays $5, and a complex programming

task t2 requiring 7 hours of work, paying $15. It is possible to

complete a task more than once (so t1 can be assigned to all three

players). Alice and Bob can contribute 3 hours each, whereas Claire

can contribute 4 hours. Assuming that the task hour load is easily

divisible between the players, the (non-unique) best partition of

players into work groups would be to assign Alice and Claire to t2,
and have Bob work alone on t1. The next step would be to decide

how one should divide task revenue amongst the players. One

could reasonably argue that Claire should receive a higher share of

the revenue than Alice, as she contributed more hours to the task;

moreover, in order to complete t2, Claire has to be assigned to it.

However, each person could have worked on t1 alone and receive
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$5 for their efforts. Clearly, finding an appropriate payoff division

is not a straightforward task.

Cooperative game theory studies situations in which players form

coalitions and share revenue. One can model scenarios like that

described in Example 1.1 using a resource-task based model. Player
i controls a resource (its weight wi ), and a groups of players can

complete a task (and obtain a reward) if their combined weight

exceeds a certain threshold. The value of a group of players (also

called a coalition) is the value of the best task it can complete given

its resources. In the literature, these are known as threshold task
games (TTGs) [11, 22]. Despite their intuitive appeal, there has been
little work analyzing solution concepts for TTGs, nor how humans

behave when playing them. Our work directly addresses this gap.

1.1 Our Contribution
We study the cost of stability in TTGs: this measures the relative

overhead required in order to stabilize the underlying TTG; that

is, the amount of additional subsidy required in order to guarantee

that there exists some payoff division that assigns each coalition

a payoff exceeding its value. In Section 3.1, we present a simple

algorithm for computing coalition structures (partitions of the player
set) that guarantee at least

1

2
of the optimal social welfare for TTGs

(note that computing an optimal coalition structure for TTGs is

NP-complete [17]). Next, in Section 3.2 we provide a tight bound

on the cost of stability for TTGs.

Finally, we describe an online platform called Business Cats which

provides a negotiation environment for playing TTGs simply and

intuitively (Section 4).
1
We recruit participants in two countries

to play TTG sessions on the Business-Cats platform and analyze

the results. Our analysis (Section 5) shows that human players

form nearly-optimal coalition structures, and arrive at core-stable

payoff divisions. We identify key criteria contributing to successful

play; for example, players tend to favor power preserving proposals:
players will often refuse proposals that do not assign them a payoff

that is commensurate with their value in the game, as measured

by their relative weight value. These results provide evidence for

the use of empirical negotiation frameworks to support theoretical

results and induce good play from people.

1.2 Related Work
Our work examines both theoretical properties and actual gameplay

in TTGs. On the theoretical side, Nguyen and Zick [24] bound

1
The platform is available at http://business-cats.comp.nus.edu.sg/
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the cost of stability in TTGs, and provide efficient algorithms for

computing the optimal coalition structure. Their analysis requires

several limiting assumptions on the structure of player weights and

tasks. We do away with these assumptions in Sections 3.1 and 3.2

via careful analysis and novel techniques.

Threshold task games were introduced by Chalkiadakis et al. [11];

their work departs from the classic cooperative game model, allow-

ing players to split resources amongst several tasks. The only work

we are aware of that studies a TTG model in the classic cooperative

game setting is by Balcan et al. [7], who establish the PAC learnabil-

ity of TTGs. The optimal coalition structure generation problem is

also well-studied (we refer our reader to [25] for a recent overview);

other related works include [5, 6]. Other task-based models include

[1, 6, 28].

Weighted voting games (WVGs), a subclass of threshold task games,

are an extremely well-studied class of games. This is most likely

because they carry the best of both worlds: they have a succinct rep-

resentation (requiring only n weights and a threshold to describe),

but their analysis is complex. For example, computing solution con-

cepts for WVGs is intractable [17–19]. The complexity of solution

concepts for general cooperative games is well studied in the litera-

ture, dating back to [16]; more recent works include [8, 13, 20, 21]

(see [12] and [14] for an overview).

Bachrach et al. [3] introduce and study the cost of stability, and

bound it for WVGs; however, they study a model where coalition

structures do not form, thus their results do not directly apply

to our setting. Other works that study the cost of stability, either

make assumptions on the class of cooperative games [26], or on

the underlying player interaction structure [10, 23].

Works on human coalition formation are relatively sparse. Bitan

et al. [9] studied coalition formation in human-computer teams us-

ing voting. The line of empirical work most closely resembling ours

studies coalition formation in WVG [4, 22]. These WVG platforms

are significantly different than Business Cats in that they constrain

the game to a single coalition and do not allow players to choose

different tasks, or form multiple coalitions.

2 PRELIMINARIES
In what follows, sets of players are given in uppercase letters

(S,T , . . . ), vectors are denoted by ®x, ®y, . . . , and for k ∈ Z+ [k]
denotes the set {1, . . .k}. Given a vector ®x ∈ Rn and a set S ⊆
{1, . . . ,n} we let x(S) =

∑
i ∈S xi . A cooperative game G = ⟨N ,v⟩

consists of a set of players N = {1, . . . ,n} and a function v : 2
N →

R, called the characteristic function. Given a set of players S ⊆ N
(also known as a coalition), v(S) is the value of S ; we make the stan-

dard assumption that v(∅) = 0, and that v is monotone: for every

two coalitions S ⊆ T ⊆ N , we have v(S) ≤ v(T ) (see Chalkiadakis
et al. [12] for a discussion of these assumptions).

2.1 Cooperative Solution Concepts
Given a cooperative game G = ⟨N ,v⟩, a partition of players into

coalitions is called a coalition structure. We say that a coalition

structure CS∗ is optimal if it maximizes social welfare; that is,

CS∗ ∈ argmaxCS∈Π(N )
∑
S ∈CS v(S), where Π(N ) denotes the set

of partitions of N . For brevity, we overload notation and write

v(CS) =
∑
S ∈CS v(S). We let OPT (G) be the value of an optimal

coalition structure over G. We refer to the problem of finding an

optimal coalition structure (also known as the coalition structure
generation problem) as OptCS. We say that a coalition structure

CS∗ is β-optimal forG if v(CS∗) ≥ βOPT (G). As a solution concept,

OptCS assumes that a (benevolent) central planner tries to find the

best way of partitioning players into groups, ignoring any strategic

considerations. If one assumes that players form coalitions in order

to receive part of the obtained reward, it is reasonable to assume

selfish player behavior. Given a coalition structure CS, an impu-
tation for CS is a vector ®x ∈ Rn+ satisfying

∑
i ∈S xi = v(S) for all

S ∈ CS. In other words, players in S ∈ CS generate the revenue

v(S), and may divide it amongst themselves in any way they see

fit; however, they may not transfer any of the utility generated by

S to non-members of S . The tuple ⟨CS, ®x⟩ is called an outcome of G .
Let us denote by I(G) the set of all outcomes for G.
The core is a subset of outcomes in I(G) defined by,

Core(G) = {⟨CS, ®x⟩ ∈ I(G) : x(S) ≥ v(S),∀S ⊆ N }.

The constraints describing the core are also referred to as stability
conditions, and outcomes in the core are referred to as stable. Core
stability is a natural requirement: if ⟨CS, ®x⟩ is not stable, then there

exists some coalitionT whose members can generate more revenue

than what they are assigned. In other words, T ’s members could

ensure a strictly better outcome for themselves if they choose to

work together, rather than under the coalitions they were assigned

to underCS. It is well-known that if ⟨CS, ®x⟩ ∈ Core(G), thenCSmust

be optimal [12]; in that respect, the core resolves both the OptCS

objective and coalitional strategic considerations. Unfortunately,

the core may be empty.

Example 2.1. Consider a 3 player game where v(S) = 0 if |S | ≤ 1,

and is 1 otherwise. An optimal coalition structure has a value of 1.

Consider any valid imputation (x1, x2, x3), such that

∑
3

i=1
xi = 1.

It must be the case that x1, x2 or x3 are strictly greater than 0; with

no loss of generality, assume that x1 > 0. In that case, x2 + x3 <

1 = v({2, 3}), and therefore (x1, x2, x3) cannot satisfy the stability

conditions. This implies the core is empty. It is easy to verify that

any imputation that pays players strictly less than
3

2
in total cannot

stabilize the game, whereas the payoff ( 1
2
, 1

2
, 1

2
) is stable. Therefore,

paying each player
1

2
is a minimal stable payoff division.

We note that this game can be described in the language of weights

and thresholds: each player has a weight of 1, and there is a single

task. If the total weight of players in a coalition S is ≥ 2, then they

can complete the task and obtain a reward of 1; otherwise they

coalition has a value of 0.

As Example 2.1 implies, stabilizing a gamemay require an additional

external subsidy. The minimal total payoff needed can be found by

solving the following linear program

min

∑
i ∈N

xi s.t. x(S) ≥ v(S) ∀S ⊆ N . (1)

Let V ∗ be the optimal value of (1); the relative cost of stability
(CoS) of a game G is the ratio between V ∗ and OPT (G)2: CoS(G) =

V ∗
OPT (G) . We note that if the optimal solution to (1) has a valueV ∗ >

OPT (G) — i.e. the core is empty — then the corresponding payoff

2
In the original work defining CoS [3], the cost of stability is defined asV ∗ −OPT (G).
Subsequent works (e.g. [10, 23]) utilize the relative definition we use here.
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division ®x∗ (the output of (1)) satisfies the stability constraints,

i.e.

∑
i ∈S x

∗
i ≥ v(S) for all S ⊆ N . However, ®x∗ must violate the

coalitional efficiency constraints: if CS∗ is an optimal coalition

structure forG , it cannot be the case that for any S ∈ CS∗,
∑
i ∈S x

∗
i =

v(S); if that were the case, then the core would not be empty. In

other words, stable payoffs that pay a total of V ∗ do not describe

viable payoff divisions.

2.2 Threshold Task Games
Threshold Task Games (TTGs) are a subclass of cooperative games.

In TTGs, each player i ∈ N has a weightwi ∈ Z+. In addition, we

are given a set of tasks T = {t1, . . . , tm }, where each task tj ∈ T
has a threshold qj ∈ Z+ and a value vj ∈ Z+. The characteristic
function v is v(S) = maxj ∈[m]{vj : w(S) ≥ qj }. In other words, the

value of a coalition S is the value of the best task it can complete,

given the resources it controls. It is useful to think of T as a set of

task types rather than actual tasks: if a coalition S completes the

task tj , other coalitions are free to complete it as well. We assume

that if two tasks tj and tk have qj ≤ qk then vj ≤ vk ; otherwise no
coalition will ever actually complete tk . Finally, we assume that all

tasks in T can be completed; that is, for every tj ∈ T , qj ≤ w(N ).
Weighted voting games (WVGs) are perhaps the best known example

of TTGs; they are simply TTGs with one task with a value of 1. We

forgo that assumption, and allow the value of winning coalitions

in WVGs to be any positive number.

3 APPROXIMATE SOLUTION CONCEPTS IN
TTGS

We now present the main theoretical results in this paper: bounds

on the cost of stability, and efficient approximation algorithms for

the OptCS problem in TTGs. Throughout this section, we assume

thatw1 ≥ · · · ≥ wn and that q1 ≥ · · · ≥ qm .

3.1 Approximately Optimal Coalition
Structures

Nguyen and Zick [24] present a
1

2
approximation algorithm for

WVGs, and a < 1

2
approximation for OptCS in general TTGs; in

what follows, we present an efficient algorithm for computing a

1

2
approximation to the OptCS problem in TTGs. The proof of

Theorem 3.3 employs a simple dynamic programming algorithm

for computing a
1

2
optimal coalition structure; however, the proof

of its correctness (in particular, Lemma 3.1) is non-trivial. We are

interested in a special type of coalition structures: we say that a

coalition structure CS is contiguous if there exist values i1 < · · · <
iℓ = n such that CS equals

{{1, . . . , i1}, {i1 + 1, . . . , i2}, . . . , {iℓ−1
+ 1, . . . , iℓ = n}} .

We begin by proving that there exists a contiguous coalition struc-

ture that has value at least
1

2
of the optimal value (Lemma 3.1).

The proof of Theorem 3.3 is completed by a dynamic programming

algorithm that finds the best contiguous coalition structure.

Lemma 3.1. Given a TTG G = ⟨N ,v⟩, there exists a contiguous
coalition structure CS∗ such that v(CS∗) ≥ 1

2
OPT (G).

Proof. Let CS∗ = {C1, . . . ,Ck , L} be an optimal coalition structure

where L is the only coalition of value 0. We assume that CS∗ is an

optimal coalition structure that assigns minimal weight to singleton

coalitions, and that no players can be transferred to L without

decreasing the value of CS∗. We assume w.l.o.g. that C1, . . . ,Ck
work on tasks t∗

1
, . . . , t∗k such that q∗

1
≥ · · · ≥ q∗k ; in particular,

this implies that the task values are weakly decreasing as well:

v∗
1
≥ · · · ≥ v∗k . We now construct a

1

2
-optimal contiguous coalition

structure, where players complete tasks in t∗
1
, . . . , t∗k . The idea is

to show that under the contiguous coalition structure, all of the

odd-numbered tasks are completed. If this is the case,
1

2
optimality

is guaranteed. Suppose that k is even: sincev∗
1
≥ · · · ≥ v∗k , we have

1

2
k∑

j=1

2v∗
2j−1
≥

k∑
j=1

v∗j = OPT (G) ⇐⇒

1

2
k∑

j=1

v∗
2j−1
≥

1

2

OPT (G)

When k is odd the above bound holds for the indices 1, . . . ,k − 1,

with the addition of the (odd numbered) k-th task.

We begin with a simple observation: since C1, . . . ,Ck complete

tasks t∗
1
, . . . , t∗k , it must be the case that

w(N \ L) ≥
k∑
j=1

q∗j (2)

In other words, the combined weight of the coalitions C1, . . . ,Ck
must be, at the very least, as great as the combined thresholds of the

tasks that they complete. Furthermore, it is no loss of generality to

assume that if {i}, {i ′} are singleton coalitions in CS∗ working on
t∗j(i), t

∗
j(i′), respectively, then q∗j(i) ≥ q∗j(i′) implies that wi ≥ wi′ —

in other words, heavier singletons are assigned to higher-threshold

tasks (otherwise, we can simply switch singleton players’ assigned

tasks and both tasks can still be completed). We utilize the following

proposition.

Proposition 3.2. Suppose that CS∗ is an optimal coalition structure
assigning minimal weight to singleton coalitions, where heavier sin-
gleton players work on heavier tasks; let t∗r be the task completed by
a singleton sr . Let

w̄i =

{
wi if i < {s1, . . . , sq }

q∗r if i = sr

Then for every i, i ′ ∈ N ,wi ≥ wi′ ⇐⇒ w̄i ≥ w̄i′ .

Proof. Since heavier singletons work on heavier tasks, reducing

singletons’ weight to be their task thresholds preserves their relative

weight. Let Q(sr ) = {i < {s1, . . . , sq } : wi ≤ wsr }. Suppose that

q∗r < wi for some i ∈ Q(sr ); since i can complete t∗r , and sr has a

greater weight than i , we can assign i to t∗r , and assign sr to the

coalition that i was in (sincewsr ≥ wi , that coalition has a weakly

higher value). This results in an optimal coalition structure that

puts a strictly lower weight on singletons, a contradiction. □

We assume w.l.o.g. that weights are already reduced to w̄i as per

Proposition 3.2; this reduction still respects the weight order, as

argued in Proposition 3.2. Under this weight configuration, all tasks

in CS∗ can still be completed by the same players; furthermore,

for all j ∈ [k] and all i ∈ Cj , wi ≤ q∗j ; in particular, if we let

A(j) = {i ∈ N : wi ≤ q∗j }, then Cj ⊆ A(j) for all Cj ∈ CS∗.
Consider Algorithm 1; its input is the thresholds q∗

1
≥ · · · ≥ q∗k of

the tasks completed in an optimal coalition structure, and player
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weights w1 ≥ · · · ≥ wn ; its output is a
1

2
optimal contiguous

coalition structure. Algorithm 1 first splits players’ weight amongst

tasks, forming a fractional coalition structure (lines 7–22). Player
i allocates a weight of c(j, i) to task t∗j ; c(j, i) equals either the

remaining weight that player i can allocate — this occurs ifwi >

q∗j+1
, or if the task t∗j requires more resources than what player i

has — or just enough to complete t∗j . Due to this condition, we are

guaranteed that player i never assigns positive weight to tasks such
thatwi > q∗j , and in particular, players may not split their weight

between more than two tasks. Since we assume that Cj ⊆ A(j), the
following invariant must hold:∑

i ∈N
ri ≥

∑
j ∈[k]

max{q∗j − yj , 0}

Note that Rj = max{q∗j − yj , 0} is the weight required to complete

task t∗j ; simply put, the invariant states that players always maintain

enough weight to complete all tasks. The coalition structure formed

during this process is guaranteed to complete all optimal tasks, and

is contiguous; however, it is not a valid partition of the players, as

some players might commit fractions of their weight to multiple

tasks.

In other words, when we terminate in line 22, we complete all tasks

t∗
1
, . . . , t∗k using contiguous blocks of players; however, some tasks

may have fractional player weights assigned to them. However, note

that our weight allocation procedure never assigns fractions of a

player’s weight to more than two contiguous blocks. In the DeFrac

procedure, we ensure that every odd fractional coalition is assigned

all players that assigned any weight to it. Since no player splits

her weight to more than two coalitions, we are guaranteed that

the procedure in lines 25–32 results in a valid coalition structure,

where all odd-numbered tasks are completed. Since the value of the

odd-numbered tasks is at least
1

2
the value of the optimal coalition

structure (as argued above), we are done. □

Lemma 3.1 efficiently constructs a
1

2
-optimal contiguous coalition

structure using Algorithm 1; however, in order to do so, it requires a

given non-contiguous optimal coalition structure, which is NP-hard

to compute, even when there is a single task [17]. To overcome this

issue, we show that it is possible to compute an optimal contiguous
coalition structure in polynomial time.

Theorem 3.3. There exists an efficient algorithm computing a 1

2

optimal coalition structure for any TTG G.

Proof. We show that an optimal contiguous coalition structure

CS∗ can be found in polynomial time; the value of CS∗ is at least the
value of the contiguous coalition structure output by Algorithm 1,

and thus by Lemma 3.1 has a value ≥ 1

2
OPT (G). Let X (i, j) be the

revenue extracted by an optimal contiguous coalition structure

using only players in {i, . . . ,n} and tasks in {tj , . . . , tm }. Let ℓ be
the first index such that {i, . . . , ℓ− 1} can complete tj , and generate
a value of vj ; in this case the optimal revenue is vj + X (ℓ, j). If
tj is not completed by a coalition of the form {i, . . . , ℓ − 1}, then

the contiguity constraints require that no other coalition complete

tj ; in this case, the optimal value is X (i, j + 1). Therefore, X (i, j) =
max{vj+X (ℓ, j),X (i, j+1)}where ℓ = min{s : wi+· · ·+ws−1 ≥ qj }.
It is easy to keep track of the actual coalitions formed from the

Algorithm 1 Construct a
1

2
optimal Contiguous CS

Input: thresholds q∗
1
≥ · · · ≥ q∗k ; weightsw1 ≥ · · · ≥ wn

1: for i ∈ N do
2: ri ← wi ▷ ri maintains the remaining weight player i can allocate to tasks

3: end for
4: for j ∈ [k] do
5: yj ← 0 ▷ yj maintains weight allocated to task t∗j

6: end for
7: j ← 1; i ← 1

8: while i < n and j < k do
9: if ri < q∗j − yj orwi > q∗j+1

then
10: c(j, i) ← ri ▷ allocate all of i ’s remaining resources to task j

11: else
12: c(j, i) ← q∗j − yj
13: end if
14: ri ← ri − c(j, i)
15: yj ← yj + c(j, i)
16: if ri = 0 then
17: i ← i + 1 ▷ player i has nothing more to allocate; proceed.

18: end if
19: if yj ≥ q∗j then
20: j ← j + 1 ▷ task t∗j complete; proceed to the next task

21: end if
22: end while
23: return DeFrac((c(j, i))i ∈N , j=1, ...,k )

24: function DeFrac((c(j, i))i ∈N , j=1, ...,k ))

25: for ℓ = 1, . . . ,k do
26: if ℓ is odd then
27: Sℓ ← {i ∈ N : c(ℓ, i) > 0; }

28: else
29: Sℓ ← {i ∈ N : c(ℓ, i) = wi }

30: end if
31: end for
32: L← N \

⋃k
ℓ=1

Sℓ
33: return CS = {Sℓ : Sℓ , ∅} ∪ {L}
34: end function

X (i, j) values; since X (1, 1) is the value of the optimal contiguous

coalition structure, we are done. □

3.2 The Cost of Stability in TTGs
In what follows, we analyze the cost of stability for TTGs. Nguyen

and Zick [24] show that CoS(G) ≤ 2 for TTGs where players are not

allowed to form singleton coalitions. We now show how one can

forgo this assumption. Given a task tj = ⟨qj ,vj ⟩, and a coalition

S ⊆ N , let OPT (S, tj ) be the optimal revenue of the WVG restricted

to S , where players may only complete the task tj . We begin with

the following lemma.

Lemma 3.4. Suppose we are givenk disjoint subsets of playersT1, . . . ,Tk
and k tasks t1, . . . , tk such that for every i ∈ Ts , wi ≤ qs and
q1 < · · · < qk . Assume that for every s ∈ [2..k] and every player
i ∈ Ts ,wi ≥ qs−1. If i ∈ Ts , let xi = αswi with αs ≤

vs
qs . Then∑

s
OPT (Ts , ts ) ≥

1

2

∑
s

x(Ts ) −
vk
2

.
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Proof. For s ∈ [2..k], let the players in Ts with weight wi ≤

qs play a WVG with task ts . Each winning coalition weighs less

than 2qs and there is at most one losing coalition. If there is no

losing coalition, we have w(Ts ) ≤ 2qs
OPT (Ts ,ts )

vs or, OPT (Ts , ts ) ≥
vs
2qsw(Ts ) ≥

x (Ts )
2

.

If there is one losing coalition, any player i in this losing coali-

tion has wi ≥ qs−1 and thus v({i}) ≥ vs−1. Therefore w(Ts ) ≤

2qs
OPT (Ts ,ts )−vs−1

vs + qs or, OPT (Ts , ts ) ≥
vs
2qsw(Ts ) −

vs
2
+vs−1 ≥

x (Ts )
2
−

vs
2
+

vs−1

2
.

Sincevs > vs−1, we have in any case for s ∈ [2, . . . ,k],OPT (Ts , ts ) ≥
x (Ts )

2
−

vs
2
+

vs−1

2
. Similarly, if s = 1, we have OPT (T1, t1) ≥

x (T1)
2
−

v1

2
. Summing up the inequalities, we have∑

s
OPT (Ts , ts ) ≥

1

2

∑
s

x(Ts ) −
vk
2

.

□

We are now ready to prove our main result for this section.

Theorem 3.5. For any TTG G, CoS(G) ≤ 2.

Proof. We can assume with no loss of generality that maxi wi ≤

maxj qj . Given a payoff division ®x ∈ Rn , we call a task t = (q,v)
critical if there exists S ⊂ N such that such that w(S) ≥ q and

x(S) = v . A coalition S whose value is derived by completing a

critical task will also be referred to as critical.

Let α1 be the minimum value such that the payoff x1(i) = α1wi is

stable. There must exist a critical task for ®x1. Let t1 = (q1,v1) be

the critical task with the highest threshold, and let S1 be a critical

task for t1 under ®x1. Since x1(S1) = α1w(S1), we have α1 =
x1(S1)

w (S1)
=

v1

w (S1)
≤

v1

q1

. Let T1 = {i ∈ N : wi ≤ q1}. Because we assume that

t1 is the highest-threshold critical task, every critical set must be a

subset of T1.

Given j pairs (T1,α1), . . . , (Tj ,α j ), if∪
j
s=1

Ts , N , we form (Tj+1,α j+1)

as follows: Letα j+1 be theminimumnumber such that the following

payoff division is stable:

x j+1(i) =

{
αswi if i ∈ Ts for some s ≤ j,

α j+1wi otherwise.
(3)

Let tj+1 = (qj+1,vj+1) be the critical task with the highest threshold

under ®x j+1. Let Tj+1 = {i ∈ N \ ∪
j
s=1

Ts : wi ≤ qj+1}.

We note that q1 < · · · < qj < qj+1 and α1 > · · · > α j > α j+1. Let

Sj+1 be a critical set for tj+1; then x j+1(Sj+1) = vj+1 ≥ α j+1w(S) ≥

α j+1qj+1. Hence we have α j+1 ≤
vj+1

qj+1

.

Suppose that in the end we have k pairs (T1,α1), . . . , (Tk ,αk ). Con-
sider the payoff x(i) = αswi if i ∈ Ts ; this payoff division is stable

by our construction: we always maintain the stability constraints

in the reduction process, as per (3). Under ®x , the critical task with

highest threshold is tk corresponding to Tk . Let Sk be a critical

set corresponding to tk . In particular we have x(Sk ) = vk . Let
T ′s = Ts \ Sk . We can verify that T ′

1
, . . . ,T ′k satisfy the conditions

in Lemma 3.4 Therefore we have∑
s

OPT (T ′s , ts ) ≥
1

2

∑
s

x(Ts ) −
vk
2

.

Figure 1: Snapshot of the Business Cats GUI (3 players and 2
tasks)

Hence

OPT (G) ≥ v(Sk ) +
∑
s

OPT (T ′s , ts )

≥ vk +
1

2

∑
s

x(Ts ) −
vk
2

=
1

2

(x(Sk ) +vk ) +
1

2

∑
s

x(Ts ) −
vk
2

=
1

2

x(N ).

and x(N ) ≤ 2OPT (G). □

Nguyen and Zick [24] additionally show that for any ε > 0 there

exists some WVG G for which CoS(G) ≥ 2 − ε , thus the bound in

Theorem 3.5 is tight. Bachrach et al. [3] analyze the cost of stability

when players are not allowed to form coalition structures; their

analysis assumes that all players form a single coalition (N , also

called the grand coalition) and generate a revenue of v(N ). Under
this assumption, the cost of stability can be rather high.

Example 3.6. Consider an n-player WVG where wi = 1 for all

i ∈ N , and q = 1. In this case, any (non-empty) coalition is winning,

and in particular, v(N ) = 1. If we restrict players to form the grand

coalition, then the cost of stability is n. However, if we allow players

to form coalition structures then the cost of stability is 1: players

form singleton coalitions and get paid 1 each, a core-stable outcome.

To conclude, when one allows players to form coalition structures

(rather than sticking to forming the grand coalition as in [3]), the

cost of stability in threshold task games decreases dramatically. In

addition, there exist efficient algorithms for computing
1

2
-optimal

coalition structures. These results indicate that while exact solutions

for TTGs may not exist (in the case of the core), or are computa-

tionally intractable to compute (in the case of the optimal coali-

tion structure), arriving at good approximate solutions is possible.

However, theoretical guarantees say very little about how humans

actually play TTGs. We explore this issue in Section 4.

4 THE BUSINESS CATS PLATFORM
To investigate human play in TTG, we design and implement a

web-based negotiation game called Business Cats
3
. Our objective

was to create a game environment that (1) closely emulates TTGs

(2) is intuitive and fun to play and (3) allows players to strategically

reason about their bargaining power. As seen in Figure 1, players

3
Available at http://business-cats.comp.nus.edu.sg/. In order to play you will need

at least three participants. Alternatively, one can open the website on different

browsers/devices to simulate multiple players.
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play the roles of cats; each cat owns a ladder (corresponding to the

weight of the player) that can be used to climb ledges of different

heights (corresponding to task thresholds). There are fish of dif-

ferent values on top of the ledges (corresponding to task rewards).

Players negotiate to form coalitions, combining their ladders to

reach the fish and share the rewards.

Our design closely emulates the TTG formulation as described

in Section 2.2; moreover, it allows for intuitive and simple game-

play: this is evidenced from extensive feedback and design sessions

with our experimental subjects, both in lab settings and on Ama-

zon Mechanical Turk. Our interface models an iterative bargaining

process, allowing players to easily reason about their bargaining

power. Indeed, prior work on collaborative interactions among hu-

man players uses repeated interaction in order to facilitate strategic

gameplay [4, 22]. This is not unreasonable: as Aumann andMaschler

[2] describe, stable payoff divisions can be arrived at via a natu-

ral process of coalitions offering proposals and counter-proposals.

In particular, such a sequence of proposals and counter-proposals

converges to an outcome in the bargaining set [15]; this cooper-
ative solution concept contains the core; thus, if the core is not

empty, payoff divisions in the core can be arrived at via a simple

bargaining process. The bargaining process described by Aumann

and Maschler [2] is very similar to the one we implement in the

Business Cats platform, with the exception that individual players
(rather than coalitions) propose and counter-propose. To conclude,

the Business Cats platform satisfies all of our stated desiderata.

The game consists of proposal and response phases. Unlike the

turn-based process used by Mash et al., we allow players to initiate

a proposal at any time they wish, as long as no other proposal is
active; in other words, there is only one ‘live’ proposal at any given

point in time. A proposal specifies a prospective task to work on,

the coalition members that will work on it, and the proposed share

of rewards. In order for a proposal to be submitted, the invited mem-

bers must be able to complete the proposed task; the total payoff

must equal the task value, and the proposer must receive a positive

payoff. Upon submitting a proposal, all players see the proposal

(and cannot submit additional proposals); players who were offered

a positive share of the payoffs must respond to the proposal with

an accept/reject
4
. Responders cannot see each other’s response

until all players respond; if some responder does not accept/reject

within 30 seconds, the proposal is automatically rejected. If all

responders accept the proposal, the coalition is formed, involved

players receive the share they accepted, and are removed from the

game. If the remaining players can still complete some task, the

remaining players can still submit proposals; otherwise the game

terminates, and uninvolved players receive a payoff of 0. If some
responder rejects the proposal, a cool-down period (30 seconds for

proposer, 15 seconds for the rest) is initiated, after which new pro-

posals can be submitted. The cool-down period ensures that players

have time to consider the game state, and prevents players from

spamming proposals. The proposal history (including responses),

and the current pending proposal are visible to every player. The

game automatically terminates after 5 minutes; however, the vast

majority of instances ended well before the 5-minute mark, taking

less than 1 minute on average.

4
The proposing player is naturally assumed to accept their own proposal.

Example 4.1. Figure 2 shows an example run of the Business Cats

gameplay of the instance shown in Figure 1. This instance has

three players: the blue cat has a weight of 5, the red and green

cats have a weight of 20. There are two tasks: t1 has a threshold

q1 = 40 and value v1 = 8, t2 has a threshold q2 = 45 and value

v2 = 10. The green cat made the first proposal, offering to have all

players complete t1 with the payoff division (2, 2, 4); however, the

red cat rejected this offer. The green cat subsequently proposed all

players completing t2 with the payoff division (2, 2, 6); the red cat

rejected this offer as well. Finally, the red cat proposed all players

completing t2, with the payoff division (2, 4, 4); all players accepted

this proposal, and the game ended.

Player:

Weight: 5 20 20
Proposer Task Result

Initial Cool-off period – 15 sec.

1st

(40, 8)
Proposal 2 2 4

Response   

Cool-off period – 15/30 sec.

2nd

(45, 10)
Proposal 2 2 6

Response   

Cool-off period – 15/30 sec.

3rd

(45, 10)
Proposal 2 4 4

Response   

No more tasks can be completed – game ends.

Figure 2: An example run of the Business Cats gameplay.

5 EXPERIMENTS
We generate TTGs instances, varying the number of players (3–5);

weights (positive multiples of 5, no greater than 25); number of

tasks (1–4); task thresholds (positive multiples of 5, no greater than

100), task values (from the number of players to 10) and whether

singleton coalitions were available.We constrain our randomization

so that greater task thresholds imply greater task values. During

the experiments, games instances were randomly drawn from this

pre-generated pool of games.

5.1 Design
We recruit 104 participants (undergraduate students from the Na-

tional University of Singapore and Ben-Gurion University of the

Negev, Israel). IRB approval was obtained from the institutions run-

ning the study. Participants were given a detailed tutorial, and were

required to pass a comprehension quiz in order to play. Participants

play a random series of games with different configurations, and

are randomly matched to other players. Each participant receives

a show-up fee equivalent to $6.5 US as well as a bonus (between

0 and $6.5) dependent on their total revenue in all the games they

play. In total, we collected data from 857 game configurations.

We wish to study how people play the game in terms of how they

form and respond to proposals. Specifically, we form the following

hypotheses: first, that people would generally form “good” coalition

structures in terms of total revenue, and coalitional stability, as

defined in Sections 3.1 and 3.2; second, that people respond to
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offers in a way that respects the power relationship in the game, as

defined by their relative weight.

5.2 Analysis
We analyze the games played in terms of the number of optimal

and stable coalitions formed, and how people accepted and made

offers with respect to the power relationships in the game. We

present aggregate results across the two countries as there was no

significant difference in player behavior.

Successful Coalitions and Optimality: Tables 1a and 1b show the

games collectedwith respect to number of players and tasks, and the

percentage of games for which players reach the optimal coalition

structure. These tables show that as the number of players and

tasks grow, player performance decreases (as measured by overall

welfare). Figure 3 shows a histogram of the welfare achieved by

# players 3 4 5 Total

# games 392 277 188 857

Optimal (%) 54.6 49.5 48.9 51.7

(a) # of players.

# tasks 1 2 3 4 Total

# games 88 273 283 213 857

Optimal (%) 92.0 56.4 43.5 39.9 51.7

(b) # of tasks.

Table 1: # of games collected and percentage optimal coali-
tion structures by game type

players during gameplay, normalized by OPT (G). Here, the x axis

is the ratio between the actual social welfare achieved in the game

and the optimal social welfare. Figure 3 shows that in more than

75% of instances, players were able to extract at least 75% of the

optimal revenue. In 51.7% of the game instances, players were able

to reach the optimal coalition value. On average, players were able

to extract 87% of the optimal value.

Not shown in Figure 3 is the fact that in 86% of the cases, participants

formed a non-trivial coalition structure — i.e. one containing more

than one coalition. When the grand coalition N was formed, it

was the optimal choice 86% of the time. Together these results

support the first part of hypothesis 1, showing that players were able

to create approximately optimal coalition structures for different

number of players and tasks.

Stability Analysis: In this section we constrain the analysis to the

games inwhich therewas a non empty core (537 games). Tomeasure

the distance from a payoff division ®x to a stable payoff, we solve

the following optimization problem (using a linear programming

formulation):

min

∑
i ∈N
|αi | (4)

s.t. ∀S ⊆ N :

∑
i ∈S

xi + αi ≥ v(S),∑
i ∈N

xi + αi = OPT (G)

Figure 3:Welfare achieved during gameplay, as a percentage
of the optimal welfare.

Figure 4: Cumulative acceptance rate of the most and the
least powerful players in a game

where OPT (G) is the value of an optimal coalition structure. Given

a solution to (4) ®α∗, we let
∑
i∈N |α ∗i |
OPT (G) be the distance of ®x from a

stable payoff division.

In general, 32.5% of the coalitions achieved stable outcomes, and

more than 50% were at a distance of < 20% from a stable payoff.

This result supports the second half of the first hypothesis, show-

ing that our bargaining process was able, on average, to arrive at

approximately stable outcomes.

Power Analysis: To study the second hypothesis, we first consider

the acceptance ratio for players of different weights in the game.

Figure 4 shows the CDF of acceptance rates for the players with the

highest and lowest weight in a game. For example, players with the

highest weight in a game instance accepted a 40% share of the prof-

its in approximately 20% of instances, whereas the lowest-weight

players did so for approximately 70% of instances. In both cases,

acceptance rates rise with share percentage, with a “jump” to more

than 50% acceptance rate for shares above 30% for lowest-weight

players, and approximately 50% for highest-weight players. This

confirms that players with higher weights do, in general, under-

stand their relative power in the game.
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We also analyze how players respond to offers in the game. We

apply the definition of Mash et al. [22] and say an offer (xi , x j )made

to responders i and j with weights (wi ,w j ), is power preserving
if xi ≤ x j whenever wi ≤ w j . Overall, 213 out of 1824 (11.7%)

were non power preserving, which is considerably lower than the

40% ratio reported for WVGs [22]. In addition, 63.8% of non power

preserving offers were rejected, whereas the rejection rate for power

preserving offers was just 32.6%. Put together, these results confirm

the second hypothesis: people generally make offers that align with

responders’ weight, and responders were more likely to accept such

offers. We mention that similar results hold when other measures

of player power (such as the Shapley or Banzhaf values) are used.

Active Participation: While player negotiation tactics are diverse,

we do note that by actively proposing, players can significantly

improve their prospects. That is, when players initiate proposals,

they are more likely to receive better payoffs. Within the 857 games

played, there were 1655 instances of (passive) players ending the

game without making a proposal, and 1569 instances of (active)

players making at least one offer. Active participation directly af-

fects one’s prospective payoff; one simple measure of this property

is one’s likelihood to benefit from cooperation. If player i does
form coalitions with others, the highest payoff that they can secure

is v({i}). If player i secures a payoff strictly greater than v({i})
then they strictly benefit from cooperation. Passive players, who

make no proposals, strictly benefit from cooperation in only 61%

of instances; on the other hand, active players (those who made at

least one proposal) strictly benefit from cooperation in 75% of the

instances.

The results of our empirical study indicate that human players reach

efficient, approximately stable outcomes in TTGs, and that actual
bargaining processes, mirroring theoretical bargaining processes

[2], yield approximately stable outcomes.

5.3 Case studies
As we show in Section 5.2, Business Cats players were able to

achieve overall good performance. However, as one might expect,

human play exhibits a high level of complexity. We observe in-

stances where players (a) propose suboptimal coalitions (as was the

case in the first proposal in Example 4.1); (b) accept unreasonable

proposals, especially later during game progression; or (c) reject

reasonable proposals. We provide two examples from our collected

data that illustrate some good/bad behaviors.

Example 5.1. The game consists of four players with weightsw1 =

w2 = w3 = 15,w4 = 20, and two tasks t1 = ⟨35, 4⟩; t2 = ⟨45, 7⟩.

Player 4 has a strictly higher weight, and greater influence on

the game (as measured, by the Shapley value [27]) than the other

players. However, player 4 consistently refused to form coalitions

where their share was equal to that of others. Eventually, players

1,2 and 3 agreed to complete t2, excluding player 4, and receiving a

reward of 2, 3, 2, respectively.

In Example 5.1, player 4 had a potentially decisive role, but received

zero payoff. Indeed, player weights are not the sole determinant of

payoffs. In section 5.2 we show that payoffs are affected by other

factors such as player propensity to actively initiate proposals.

Example 5.2. The game consists of three players (w1 = 25,w2 =

10,w3 = 15), and two tasks (t1 = ⟨25, 3⟩; t2 = ⟨45, 8⟩). In this

example, Player 2 offered to form a coalition with players 1 and 3

to complete t2, offering both players a payoff of 2. Player 1 rejected

this offer. Player 2 subsequently offered to form the same coalition

offering player 1 a value of 4 and player 3 a value of 2. This coalition

was successful.

In Example 5.2, player 1 could form a singleton coalition and com-

plete t1 with a revenue of 3. However, player 1 accepted an offer

to form a coalition with players 2 and 3, once they were offered a

better payoff. Indeed, the resulting outcome is core stable (and, in

particular, optimal).

6 CONCLUSIONS AND FUTUREWORK
In this work, we conduct a thorough theoretical and empirical

analysis of threshold task games. We provide an efficient algorithm

computing a
1

2
-optimal coalition structure, and provide tight bounds

on the cost of stability. The Business Cats platform is the first

publicly available interactive simulation of a TTG environment;

the code and data are currently anonymized (to maintain a proper

review process); however, we intend to release them to the research

community upon publication. Our analysis indicates that people

tend to form coalitions that are nearly stable and optimal, and that

players who actively make proposals tend to obtain higher rewards.

It is our hope that more platforms like ours will be designed and

used to test cooperative game-theoretical models and hypotheses in

the wild. This is an important direction to pursue if one is interested

in seeing the translation of theoretical notions from cooperative

game theory into practical applications.
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