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ABSTRACT
Fair division is the problem of allocating a set of items among a set

of agents in a fair and efficient way. It arises naturally in a wide

range of real-life settings. Competitive equilibrium (CE) is a central

solution concept in economics to study markets, and due to its

remarkable fairness and efficiency properties (e.g., envy-freeness,

proportionality, core stability, Pareto optimality), it is also one of

the most preferred mechanisms for fair division even though there

is no money involved.

The vast majority of work in fair division focuses on the case of

disposable goods, which all agents like or can throw away at no cost.

In this paper, we consider the case of mixed manna under linear

utilities where some items are positive goods liked by all agents,

some are bads (chores) that no one likes, and remaining some agents

like and others dislike. The recent work of Bogomolnaia et al. [13]

initiated the study of CE in mixed manna. They establish that a

CE always exists and maintains all the nice properties found in

the case of all goods. However, computing a CE of mixed manna

is genuinely harder than in the case of all goods due to the non-

convex and disconnected nature of the CE set. Our main result is a

polynomial-time algorithm for computing a CE of mixed manna

when the number of agents or items is constant.
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1 INTRODUCTION
Fair division studies the problem of allocating a set of items among

a set of agents in a fair and efficient way. This age-old problem

arises naturally in a wide range of real-life settings such as divi-

sion of: family inheritance [36], partnership dissolutions, divorce

settlements [15], spectrum allocation [26], seats in courses [9, 39],

and computing resources in peer-to-peer platforms [29]. The for-

mal study of fair division dates back to the cake cutting problem

introduced in the seminal work of Steinhaus [40]. Since then it has

been an active area of research in many disciplines.

Competitive equilibrium (CE) is one of the fundamental solution

concepts in Economics to study markets, where prices and alloca-

tion are such that demand of items meets their supply when each
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agent gets her most preferred and affordable bundle. A competitive

allocation not only achieves the standard notion of fairness called

envy-freeness, where every agent weakly prefers their allocation

over any other agents’ allocation, but it is also Pareto optimal, a

standard notion of economic efficiency. Due to these remarkable

fairness and efficiency guarantees, a CE is one of the preferred

solutions for fair division problems even though there may be no

money involved in the latter case. The most prominent example

is competitive equilibrium with equal incomes (CEEI) [42], which
creates a market by giving one virtual dollar to every agent.

The vast majority of work in both Economics and Computer Sci-

ence focuses on the case of disposable goods, i.e., items that agents

enjoy, or at least can throw away at no cost. However, many situa-

tions contain mixed manna where some items are positive goods

(e.g., cake), while others are undesirable bads (e.g., house chores

and job shifts). Potentially, agents might disagree on whether a spe-

cific item is a good or bad. Examples include: dividing tasks among

various team members, deciding teaching assignments between

faculty, managing pollution among firms, or splitting assets and

liabilities when dissolving a partnership.

Clearly, bads are nondisposable and must be allocated. At first

glance, it seems that the tools and techniques developed for the

case of all goods might apply, but the mixed manna case turns out

to be significantly more complex. The recent pioneering works of

Bogomolnaia et al. [13, 14] initiated the study of CE mixed manna.

The authors show the existence of CE and that it retains all the

desirable fairness and efficiency guarantees found in the case of all

goods. Thus, [13] argues that a CE remains the best mechanism for

fair division of a mixed manna.

However, CE of mixed manna possess some peculiar properties.

Namely, [13] establishes that generally multiple CE exist, and the set

of equilibria is non-convex and disconnected. In sharp contrast, in

the case of all goods, the unique equilibrium (in utilities) is captured

by a convex program. Designing fast algorithms for mixed manna,

is an important open question – the abstract of Bogomolnaia et

al. [13] mentions,
1

. . . the implementation of competitive fairness under linear
preferences in interactive platforms like SPLIDDIT will be more
difficult when the manna contains bads that overwhelm the
goods.

1.1 Our Contribution
We offer an algorithm to compute all CE of mixed manna under

linear utilities that runs in polynomial time when either the number

of agents or the number of items is constant. We note that most

theoretical work in fair division studies linear utility functions, and

in practice popular online platforms like SPLIDDIT employ linear

1
Spliddit [1] is a user friendly online platform for computing fair allocation in a variety

of problems, which have drawn tens of thousands of visitors in the last five years [31].

Spliddit uses linear utilities.
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utilities as it provides a simple, intuitive way for users to express

their preferences [13]. Further, most applications, at least in online

settings, involve only a few agents. For this reason, our requirement

that either the number of agents or the number of items remains

constant for polynomial time computation seems reasonable in

practice. To the best of our knowledge, our work provides the

first polynomial time algorithm to compute a CE under any set of

assumptions.

Interestingly, every fair division instance of mixed manna falls

into one of the three distinct types: positive, null, and negative (see

Section 2.1). In positive problems all agents benefit by receiving non-

negative utility, e.g., dividing assets and liabilities when the value

of assets outweighs the cost of the liabilities, while in negative

instances the value of bad items overwhelms the goods and all

agents share the burden of completing the undesirable tasks, e.g.,

splitting household chores. Null instance are knife edge cases where

each agent receives zero utility. We offer a simple linear program to

determine instance type. We note that positive and null instances

are both polynomial time solvable, while the complexity of negative

instances remains an intriguing open problem (see Section 3).

As both positive and null instances are polynomial time solvable,

we focus mostly on negative instances. Our approach uses a novel

cell decomposition technique, as in [22]. The main idea here is that

n hyperplanes separate Rd into O(nd ) non-empty regions or ‘cells’.

We choose a set of hyperplanes that ensures each cell corresponds

to a unique set of optimal items for each agent, i.e., we know which

subset of items an agent might purchase within any given cell. We

determine if this configuration of optimal items for each agent

admits an equilibrium by checking certain conditions and solving

a max flow problem on specially designed network.

1.2 Related Work
The fair division literature is too vast to survey here, we refer the

reader to the excellent books [15, 34, 37] and restrict our attention

to only the most relevant work.

Competitive allocation of good manna is very well-understood.

The celebrated Eisenberg-Gale convex program captures equilib-

riumwhen utility functions are homothetic, concave and monotone,

which includes linear [24, 25]. The program maximizes the Nash

welfare on all feasible allocations, and implies existence, uniqueness

(in utilities), and polynomial time computation of a CE; there are

faster algorithms for some special cases [23, 35, 43, 44].

Most of the work in fair division is focused on allocating a ‘good’

manna with a few exceptions of ‘bad’ manna [8, 15, 37, 41]. Recent

pioneering papers of Bogomolnaia et al. [13, 14] are the first to

study the case of mixed manna. To the best of our knowledge, there

is no work exploring the computation of competitive allocation

of a mixed manna even under linear utilities. A recent work [16]

provides a polynomial time algorithm for computing a competitive

allocation for bad manna under linear utilities when the number of

agents (or bads) is constant. Our work generalizes the result of [16]

for mixed manna.

The fair allocation of indivisible items is also an intensely studied

problem for the case when all items are goods with a few recent

exceptions [4–7, 32, 38]. Since the standard notions of fairness such

as envy-freeness are not applicable, alternate notions have been

defined for this case; see [10, 17, 18, 30, 33] for a subset of notable

work and references therein. The Nash welfare continues to serve

as a major focal point in this case as well, for which approxima-

tion algorithms have been obtained under several classes of utility

functions including linear [2, 3, 12, 19–21, 27].

2 PRELIMINARIES
Let M be a set of m items we wish to divide among the set N
containing n agents. Wlog, we assume there is a unit amount of

each item. An allocation x = (x1, . . . ,xn ) assigns a bundle of items

xi = (xi1, . . . ,xim ) to each agent i ∈ N , where xi j ∈ [0, 1] is
the amount of item j given to agent i . A feasible allocation fully

assigns each item between the agents, i.e.,

∑
i xi j = 1, ∀j ∈ M . Let

ui : R
m → R denote agent i’s utility function. We assume all agents

have linear utility functions. That is, ui j ∈ R describes the utility

agent i receives from item j, and i’s utility for bundle xi ∈ R
m
,

is ui (xi ) =
∑
j ui jxi j . Note that, unlike the traditional setting of

all goods, some items j ∈ M may be positive goods liked by all

agents ui j > 0, ∀i ∈ N , while other items j ∈ M are universally

disliked bads (chores) ui j ≤ 0, ∀i ∈ N . Further, two agents i and i ′

might disagree on whether item j is a good or bad, i.e., ui j > 0 and

ui′j ≤ 0, or vice versa.

The tuple I = ⟨N ,M,U ⟩ defines a fair division instance, where

U = {u1, . . . ,un } gives the agents’ utility functions. We create

a competitive division instance I ′ = ⟨N ,M,U , e⟩ by introduc-

ing virtual prices p = (p1, . . . ,pm ) for the items, and budgets

e = (e1, . . . , en ) for the agents. Recall that the agents in the fair di-

vision instance I have no money. However, we require budgets and

prices in terms of virtual currency to define both the competitive

equilibrium solution concept, as well as our algorithm. We note that

both item prices and agents’ budgets may be negative, as discussed

shortly. Despite this fact, we say agent i ‘purchases’ or ‘spends’ on
item j if xi j > 0, i.e., i receives some fraction of item j, and we say

an agent i ‘spends’ her budget on bundle xi if
∑
j xi jpj = ei .

We note that, in all instances, all agents’ budgets have the same

sign, i.e., either ei ≥ 0, ∀i ∈ N , or ei < 0, i ∈ N , which depends on

the type of problem instance (see Section 2.1). Settings where agents

possess different budgets represent situations where agents have

different entitlements to the manna, e.g., splitting assets and liabili-

ties when dissolving a partnership where one partner is more senior

than another. We refer to the special case where all agents have

the same budget as a Competitive Equilibrium of Equal Incomes

(CEEI).

Definition 2.1. Given virtual budgets e , the pair (x ,p) define a
competitive equilibrium of a mixed manna if

• All agents spend their budgets:

∑
j xi jpj = ei , ∀i ∈ N .

• All items are fully allocated:

∑
i xi j = 1,∀j ∈ M .

• Agents purchase optimal bundles of items at prices p: the
bundle xi solves

max

xi ∈Rm

∑
j
ui jxi j (1)

s .t .
∑
j
xi jpj ≤ ei

xi j ≥ 0,∀i, j .
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2.1 Results of Bogomolnaia et al. [13]
Bogomolnaia et al. [13] prove the existence of competitive equilibria

under fairly general assumptions on agents utility functions. We

provide a brief summary of their results below.

Definition 2.2. Given a fair division instance ⟨N ,M,U ⟩, define
the following two types of agents:

• Agent i is attracted to the manna if ui j > 0 for some item

j ∈ M . Let N+ = {i ∈ N : ∃j ∈ M, ui j > 0} be the set of

attracted agents.

• Agent i is repulsed by the manna if ui j ≤ 0, ∀j ∈ M . Let

N− = {i ∈ N : ui j ≤ 0, ∀j ∈ M} be the set of repulsed
agents.

In words, attracted agents view some item j ∈ M as a good,

while repulsed agents view all items as undesirable chores. For any

repulsed agent i ∈ N−, any allocation where xi = 0 maximizes her

utility. The above definitions allow us to define the type of compet-

itive division instance. Let X denote the set of feasible allocations,

and letU be set of agent utilities over all feasible allocations, i.e., if

u ∈ U, then u = (u1(x1), . . . ,un (xn )) for some x ∈ X. Define the

cone Γ+ = R
N +
+ × {0}

N −
. Note that in Γ+ attracted agents benefit

without harming any repulsed agents. Also, let Γ++ = R
N +
++ ×{0}

N −

be the relative interior of Γ+.

Definition 2.3. (Instance Type) Any given fair division instance

⟨N ,M,U ⟩ falls into one of the following three types of competitive

division instance:

• IfU ∩ Γ++ , ∅, then instance is positive.

• IfU ∩ Γ+ = {0}, then instance is null.

• IfU ∩ Γ+ = ∅, then instance is negative.

In words, in a positive instance we can ensure all attracted agents

receive strictly positive utility without harming any repulsed agents

(who dislike all items). In a negative instance, no feasible allocation

gives all attracted agents non-negative utility. In null instances,

the only feasible allocations which give all agents non-negative

utility satisfy ui (xi ) = 0, ∀i ∈ N . The type of instance determines

the form of the competitive equilibrium. Let X∗ denote the set of

Pareto optimal allocations, and define RN−− as the cone where all
agents receive strictly negative utilities.

Theorem 2.4 ([13]). If agents’ utility functions are linear, then a
competitive equilibrium exists for all instance types. Specifically
• In a positive instance, there exists a unique (in utilities) CE
(x∗,p∗) by setting ei = 1, ∀i ∈ N+, and ei = 0, ∀i ∈ N−.
The allocation x∗ maximizes the Nash social welfare over all
agents i ∈ N+

max

x ∈X

∏
i ∈N +

ui (xi ).

• In a null instance, the exists a unique (in utilities) CE (x∗,p∗)
by setting ei = 0, i ∈ N , all prices pj = 0. In the allocation x∗

all agents receive bundle such that ui (x∗i ) = 0.
• In a negative instance, there exists at least one CE (x∗,p∗) by
setting ei = −1, ∀i ∈ N . Further, a CE allocation x∗ is a critical
point of the function∏

i ∈N
|ui (xi )|, s.t. x ∈ U ∩ RN−−. (2)

Recalling the definitions of the various problem types offers an

intuitive interpretation of Theorem 2.4. In positive instances, we can

ensure all attracted agents receive strictly positive utility without

harming any repulsed agents. Therefore, a CE allows attracted

agents to compete to over the items, while repulsed agents take

a bundle they value at zero (which maximizes their utility). In a

negative instance, no feasible allocation assigns all attracted agents

non-negative utility. A CE asks that all agents share the burden

of completing the undesirable tasks in an efficient way. In null

instances, the best we can do without harming any agent is give

each agent zero utility, which is exactly the CE solution.

2.2 Fairness Notions
In this section, we present a number of standard fairness and effi-

ciency notions applicable to divisible items.

Definition 2.5. Envy-freeness: An allocation x is envy-free (EF)

if every agent i weakly prefers her bundle xi

∀i ∈ N , ui (xi ) ≥ ui (x j ),∀j ∈ N . (3)

EF defines the gold standard of fairness metrics. In the case of

additive valuations, EF also implies another notion of fairness.

Definition 2.6. Proportionality: An allocation x is proportional

(PROP) if every agent i ∈ N receives a 1/n share of the items, where

n = |N | is the number of agents

∀i ∈ N , ui (xi ) ≥ 1

n
ui (M). (4)

One can verify EF implies PROP by summing (3) over all i ∈ N ,

and using the definition of linear utilities, i.e., ui (M) =
∑
j ui j .

Finally, we define the standard notion of economic efficiency,

Pareto Optimality (PO). Informally, allocation x is PO if no other

allocation x ′i helps one agent ui (x
′
i ) > ui (xi ), without harming

another agent k , uk (x
′
k ) < uk (xk ).

Definition 2.7. Pareto Optimal The allocation x Pareto dom-

inates the allocation x ′ if ui (xi ) > ui (x
′
i ) for some agent i ∈ N ,

while uk (xk ) ≥ uk (x
′
k ),∀k . The allocation x is Pareto optimal if no

allocation x ′ Pareto dominates it.

EF and PROP represent standard notions of fairness in the set-

ting of divisible goods, while PO defines the standard notion of

economic efficiency, i.e., non-wastefulness of resources. [13] shows

that a competitive equilibrium of mixed manna provides all of these

guarantees simultaneously.

Theorem 2.8. Every competitive equilibrium allocation is EF,
PROP, and PO.

Theorem 2.8 presents a compelling case for a competitive equi-

librium as the ‘most fair’ outcome in a fair division instance, since

it also satisfies multiple other fairness guarantees and they are non-

wasteful (PO). For these reasons we seek to find CE as the solution

to fair division of mixed manna.

2.3 Identifying Goods and Bads
Observe that examining the sign of ui j ∈ R, for all agents i ∈ N
determines the price of each item. If for some item j ∈ M there

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

422



exists an agent i ∈ N such that ui j > 0, then j is a good with

pj > 0, since agent i has infinite demand for item j at any negative

price. Similarly, if maxi ui j ≤ 0, then item j ∈ M is a bad with

pj ≤ 0, since there is no demand at any positive price. Further, if

maxi ui j = 0 for any bad j , then all competitive equilibria setpj = 0,

and we may allocate j to any agent i ∈ N such that ui j = 0. In view

of the above discussion, we refer to items with pj > 0 as goods, and

items with pj < 0 as bads. Obviously, this assumes a preprocessing

step to remove items j with maxi ui j = 0, which have price pj = 0.

LetM+ be the set of goods, andM− be the set of bads.
The signs of prices for goods and bads leads to the following

natural economic interpretation. Suppose agent i accepts responsi-
bility to complete a fraction xi j > 0 of a universally disliked bad

(chore) j ∈ M−. As the price of j is negative, she ‘spends’ a negative
amount of virtual currency, thereby reducing her total spending.

Equivalently, she receives a payment in virtual currency to perform

part of task no one wants to complete in order to ‘earn’ more money

to spend on goods she likes.

2.4 Finding Optimal Bundles
Given a vector of virtual prices p ∈ Rm , define agent i’s bang per
buck for good j as

bpbi j =
ui j
pj

.

Similarly, for any agent i and any bad j ∈ M define the i’s pain per

buck for bad j as

ppbi j =
ui j
pk

> 0,

assuming we have removed all items where maxi ui j = 0. Observe

that bpbi j (ppbi j ) give agent i’s utility (disutility) per unit spending

on item j. Intuitively, the optimal bundles for agent i at the given
prices p satisfy: i purchases only maximum bpb goods which give

the highest utility per unit spending, and i purchases only minimum

ppb items which give the lowest disutility per unit spending. These

facts are easily verified by applying KKT conditions to (1).

For a given set of prices p, define the maximum bang per buck

mbbi goods for agent i asmbbi = {j ∈ M
+
: ui j/pj = maxk uik/pk }.

Similarly, define the minimum pain per buck mpbi bads for i as
mpbi = {j ∈ M

−
: ui j/pj = mink ∈M− uik/pk }. In view of the above

discussion, agent i only purchasesmpbi goods (if any), andmpbi
bads (if any). We summarize the cases where i purchases goods and
bads in the special case of a negative instance below.

Proposition 2.9. Let (x ,p) be an allocation and price pair in a
negative competitive division instance I with linear utilities.
• Ifmbbi =mpbi , then agent i potentially purchases both goods
and bads.
• If mbbi < mpbi , then agent i purchases only bads and no
goods.
• Ifmbbi > mpbi , then (x ,p) is not a competitive equilibrium.

Proof. In a negative instance, agents have negative budgets

ei = −1, ∀i ∈ N . Therefore, all agents must purchase some bads, and

each unit of spending on goods must be offset by an equal amount of

spending on bads. Ifmbbi < mpbi , then all goods give lower utility

per unit spending the disutility incurred per unit spending on any

bad. Therefore, i purchases no goods since agents try to maximize

their utility. Ifmbbi > mpbi , then i gains utility by spending equal

amounts onmbbi goods andmpbi bads. Thus, i has infinite demand

for bothmbbi goods andmpbi bads. □

For our algorithm and analysis later, we only need to specifically

identify which bads and goods an agent purchases in a negative

instance. One can derive similar results for positive problems, where

budgets ei = 1, ∀i ∈ N , by swapping the roles ofmbbi andmpbi in
Proposition 2.9. We note that the conditions of Proposition 2.9 are

necessary but not sufficient for an equilibrium.

2.5 Utility per Buck Graph
We only require the following construction for negative instances,

as defined in Section 2.1. As such, assume all agents only purchase

items according to Proposition 2.9. Given prices p, we define the
following bipartite graph G(p) = (V ,E) that we refer to as the

utility per buck graph (UPB). We drop the price argument when the

meaning is clear. We create a vertex for each agent i ∈ N on one

side and a vertex each item j ∈ M on the other side. Next, we create

the following edges: (i, j), ∀j ∈mpbi , ∀i ∈ N , and (i, j) for j ∈mbbi ,
∀i ∈ N such thatmpbi =mbbi . Observe that we never create edges
(i, j) between goods j ∈ mbbi whenmbbi < mpbi as required by

Proposition 2.9. Therefore, in a negative instance, edges of the UPB

connect any agent i to the only bads and goods (if any) that she

might purchase in order to satisfy the optimal bundles condition.

For given prices p, we refer to the connected components of

UPB(p) as a component of the market. Notice that within a com-

ponent of the market, say Ck , all the agents only purchase the

items of Ck , by Proposition 2.9, and the items of Ck are only pur-

chased by the agents ofCk . Therefore, in a CE the sum of prices in a

component equals the sum of the agents budgets in the component.

3 ALGORITHM
In this section, we present our algorithm to compute a competitive

equilibrium of a mixed manna when agents have linear utility

functions. First, we preform a few preprocessing steps:

• Identify the set of badsM− and the set of goodsM+.
• Identify the attracted and repulsed agents, N+ and N− re-

spectively.

• If there exists an agent i ∈ N such that ui j = 0 for some bad

j ∈ M−, assign j to i and set pj = 0.

Observe the our preprocessing step means that pj < 0, ∀j ∈ M−,
and that ui j < 0, ∀j ∈ M−, ∀i ∈ N . By Definition 2.2, this means

that in all positive and null instances, see Definition 2.3, all repulsed

agents receive no allocation.

Recall, from Theorem 2.4, a CE depends on problem type: pos-

itive, null, or negative. We can determine the problem type by

solving the following linear program (LP):

max t (5)

s .t .
∑
j
ui jxi j ≥ t , ∀i ∈ N+∑

i ∈N +
xi j = 1, ∀j ∈ M

xi j ≥ 0, ∀i ∈ N+, j ∈ M
xi j = 0, ∀i ∈ N−, j ∈ M .
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Note that the solution t gives a lower bound on any attracted

agent’s utilities by the first set of constraints. The second set of

constraints simply requires that all items are fully allocated, and the

fourth set of constraints ensures all agents i ∈ N− receive utility
ui (xi ) = 0 in both positive and null instance types. Note that this

assumes that we preformed a preprocessing step to remove all items

j such that maxi ui j = 0, as discussed in Section 2.3. It follows that

repulsed agents must receive no items in positive or null instances,

see Section 2.1.

Proposition 3.1. Let (t∗,x∗) be a solution to (5). The sign of t∗

in the solution to (5) determines the competitive division type.

• If t∗ > 0, then the instance is positive.
• If t∗ = 0, then the instance is null.
• if t∗ < 0, then the problem is negative.

Proof. Note that x∗ is feasible due to the second set of con-

straints, and ui (x
∗
i ) = 0, ∀i ∈ N−, by the fourth set of constraints.

Therefore, we only need to check whether some feasible allocation

gives all agents in N+ positive utility or not. We consider each

case, based on sign of t∗, separately. First, suppose t∗ > 0. Then

u(x∗) ∈ Γ++ = R
N +
++ × {0}

N −
, i.e., the problem is positive.

Next, consider the case of t∗ = 0. We aim to showU ∩ Γ+ = {0}.
For the sake of contradiction, suppose t∗ = 0 and ∃x ∈ X such

that ui (xi ) ≥ 0, ∀i ∈ N+ and uk (xk ) > 0 for some k ∈ N+ while

uk ′(xk ′) = 0 for some k ′ ∈ N+. We now go through a sequence

of steps to improve the allocation x for at least some agent that

ultimately gives all attracted agents positive utility, contradicting

that t∗ = 0 is the greatest lower bound on attracted agents utility

over all feasible allocations.

Step 1: Recall, by the definition of a good j ∈ M+, ∃i ∈ N+ such

that ui j > 0. If good j ∈ M+ is partially assigned to agent k , i.e.,
xk j > 0, and uk j ≤ 0, then allocate k’s fraction of j to agent i , i.e.,
xi j ← xi j + xk j and xk j ← 0. Clearly, this improves i’s utility,
without deducing k’s utility.
Step 2: Consider any agent i ∈ N+ with no zero allocation, xi , 0,
but ui (xi ) = 0. Since ui j < 0, ∀j ∈ M−, and Step 1 ensures i holds
no j ∈ M+ that she values at ui j = 0, then i holds some fraction of

a good j ∈ M+ she likes and some fraction of a bad j ′ ∈ M− she

dislikes. By assumption, uk (xk ) = c > 0 for some k ∈ N+. Consider
giving some fraction of j ′ to agent k

xk j′ ← xk j′+min

(
c

2|uk j′ |
,xi j′

)
, and xi j′ ← xi j′−min

(
c

2|uk j′ |
,xi j′

)
.

After this transfer uk (xk ) > c/2 > 0, and ui (xi ) > 0.

Step 3: After Steps 1 and 2, either ui (xi ) > 0, or xi = 0, ∀i ∈ N+. If
ui (xi ) > 0, ∀i ∈ N+, then this contradicts that t∗ is the solution to

(5). Otherwise, ∃i ∈ N+ with xi = 0. Since i ∈ N+, ∃j ∈ M+, such
that ui j = c > 0. Observe that j is fractionally assigned to some

k ∈ N+, by Step 1. Consider reallocating some of j to agent i

xk j ← xk j −min

(
c

2uk j
,xk j

)
, and xi j ← min

(
c

2uk j
,xk j

)
.

After this transfer, both ui (xi ),uk (xk ) > 0. Repeating this over all

agents with xi = 0 ensures ui (xi ) > 0, ∀i ∈ N+, contradicting
t∗ = 0 solves (5).

Figure 1: Agents utilities and all CE of Example 1.

Finally, the case of t∗ < 0, the need to show no feasible alloca-

tions yield ui (xi ) ≥ 0, ∀i ∈ N . One can adapt the arguments for

the t∗ = 0 case for this purpose. □

Proposition 3.1 implies that both positive and null problems are

polynomial time solvable. Indeed, if the problem is positive, i.e., the

solution gives t∗ > 0 in (5), then Theorem 2.4 shows that maximiz-

ing Nash welfare over all attracted agents N+ gives a competitive

equilibrium. Since log is a monotone increasing function, we may

equivalently maximize the objective

∑
i ∈N + log(xi ) over the same

constraints as (5). Therefore, any off the shelf convex optimization

solver yields a competitive equilibrium from the solution x∗ and
prices p∗ which correspond to dual variables of the first set of con-

straints. Similarly, if the problem is null, then x∗ from the solution

to (5) gives a feasible allocation such that all agents receive zero

utility. Thus, setting all budgets ei and prices pj equal to zero yields
the unique (in utilities) competitive equilibrium.

Theorem 3.2. Let I be a fair division instance. If the problem is
positive or null, then one can compute the unique (in utilities) CE in
polynomial time. If the problem is negative, then one can compute all
CE in polynomial time if either the number of agents or the number
of items is constant.

3.1 Handling Negative Problems
Negative problems present a more interesting challenge for com-

puting an equilibrium. Theorem 2.4 establishes that equilibria are

critical points of (2) onU∗ ∩ RN−−, i.e., Pareto optimal allocations

where all agents receives strictly negative utility. A simple example

illustrates the difficulty.

Example 1: (Negative Problem) Consider a fair division instance

with two agents A and B, and two items 1 and 2. The agents utility

functions are: uA(xA) = −xA1 − 2xA2, and uB (xB ) = −3xB1 −
xB2. Observe both items are bads, so clearly no feasible allocation

gives both agents non-negative utility. Therefore, the problem is a

negative instance. Figure 1 plots the agents’ utilities over all feasible

allocations, shown as the green shaded region. The black curve

shows the Pareto frontier X∗, and the three equilibria are shown

in as blue dots. Clearly, the set of equilibria are non-convex and

disconnected.
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This highlights the two major problems in computing a competi-

tive equilibrium in negative instances. First, one needs to determine

the Pareto frontierX∗. [13, 14] offer a method to findX∗ when there

are either only two agents or only two items. However, no general

method is known outside of these two very restrictive special cases.

Second, unlike positive and null cases which have a unique (in

utilities) equilibrium, a general negative case admits multiple equi-

libria. Moreover, different equilibria provide different utilities for

the agents, introducing a new problem of equilibrium selection. One

can argue that finding all equilibria might be necessary to ensure

the fairest outcome. Consider Example 1, the three CE in Figure 1:

right, middle, and left; give the agents utilities (uA(xA),uB (xB )) of:
(−3/2,−3/4), (−1,−1), and (−2/3,−2); respectively. Thus, the left

(right) CE is most preferred by agent B (A). Each CE is envy-free,

proportional, and PO, but one could argue that the middle CE is

the most fair.

3.2 Algorithm for Negative Instances
We now present our algorithm to compute all competitive equilibria

of a negative instance. Our approach relies on enumeration, and

thus, has exponential runtime in the worst case. However, we show

that if either the number of agents or the number of items remains

constant, then our algorithm runs in polynomial time. We note that

our algorithm relies on the characterization of optimal bundles in

Section 2.4, rather than attempting to find critical points of (2) on

U∗ ∩ RN−−.
We use the ‘cell decomposition’ technique, as in [22]. The central

concept is the fact that k hyperplanes in Rd form at most O(kd )
non-empty regions, or cells. Suppose the number of items is fixed

m = |M |.We consider the spaceRm with coordinates corresponding

to prices p1, . . . ,pm . We create polynomially many hyperplanes

to partition Rm into polynomially many cells, since m is fixed.

Our choice of hyperplanes ensures that each cell corresponds to a

unique configuration ofmbbi goods andmpbi bads for each agent

i ∈ N . Since optimal bundles, Section 2.4, require agents purchase

onlymbbi andmpbi items, we know what items any agent might

purchase in a given cell. Then, it remains to check the other two

conditions required for an equilibrium to hold: all agents spend

their budgets, and total spending on any item equals its price. We

show that solving a max flow problem on a certain network suffices.

By checking all (polynomially many) cells, we find all competitive

equilibria.

Before giving our cell decomposition to determine the set of

mbbi goods andmpbi bads for each agent i ∈ N , we show how to

use this information to compute an equilibrium (if one exists).

3.3 Finding Prices in a Cell
Our approach to computing an equilibrium in a given cell computes

a max flow on a certain network. Before specifying the network,

we start with a crucial lemma.

Lemma 3.3. Given the set ofmbbi goods andmpbi bads in a given
cell, one can determine all prices.

Proof. We use the utility per buck graph (UPB), defined in Sec-

tion 2.5. Recall that, within a componentCk , all agents ofCk spend

Data: Negative competitive division instance ⟨N ,M,U , e⟩
Result: All CE
Determine cells using Section 3.5 if constantly many items, or

Section 3.6 if constantly many items;

CE = ∅;

for each cell c do
Determine prices p in c as in Section 3.3;

if prices are consistent then
Form economic network in Section 3.4;

Solve max flow f in the network;

if f =
∑
j ∈M− |pj | then

Set xi j = fi j/pj , ∀j ∈ M+;
Set xi j = fji/|pj |, ∀j ∈ M−;
CE = CE ∪ (x ,p);

end
end

end
Algorithm 1: Compute all CE of negative instance.

Figure 2: The UPB graph on the left, and its tree representa-
tion on the right.

their budgets only on items of Ck , and all items of Ck are only pur-

chased by the agents ofCk . Note that in a negative instance ei = −1,
∀i ∈ N , and therefore each component contains at least one bad

j ∈ M− withpj < 0. Letnk = |N∩Ck | be the number of agents inCk .
Any CE of a negative instance satisfies−nk =

∑
i ∈Ck ei =

∑
j ∈Ck pj .

We want to rewrite the price of all items in terms of some repre-

sentative bad j0 ∈ Ck ∩M−, then using −nk =
∑
j ∈Ck pj , we can

determine the price of all items in the component. Refer to Figure

2 in the following discussion.

In each component Ck , pick a representative bad j0 ∈ Ck ∩M
−
.

Since Ck is a connected component, there exists a path connecting

bad j0 and all other items jℓ ∈ Ck in the UPB graph. This path alter-

nates between items ja and agents ia : (j0, i0),(i0, j1), . . . , (iℓ−1, jℓ).
Each edge on this path is eithermbba ormpba for the agent ia , i.e.,
uaja /pja = uaja+1/pja+1 , because we use the UPB graph.

For each component Ck , form a tree t with root j0 ∈ Ck ∩M
−

by following the shortest alternating path between items j0 and
jℓ ∈ Ck in the UPB, including the agent ia that connects items ja
and ja+1 alongmpbi ormbbi edges. See Figure 2 for an illustration.

Observe that the leaves of the tree t correspond to items. For

any leaf ℓ ∈ t , we may write the price of jℓ in terms of the
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representative good j0 by following the tree up to the root, i.e.,

pℓ = pj0
∏ℓ

k=1 uik jk /uik−1 jk−1 = pj0cℓ . Therefore, we have that∑
j ∈Ck pj = pj0

∑
j ∈Ck c j . Finally, since in a CE we have −nk =∑

j ∈Ck pj , it follows that we can determine pj0 , and therefore all

pj ∈ Ck .
Notice that the above procedure does not explicitly guarantee

that prices are consistent with a cell configuration. That is, we

need to check the definitions ofmbbi andmpbi hold, e.g., ui j/pj =
uik/pk , ∀j,k ∈ mbbi , ∀i ∈ N , and ui j/pj > uik/pk , j ∈ mbbi ,
∀k < mbbi . We checkmpbi for these prices similarly. Note that a

cell also specifies whethermbbi < mpbi , ormbbi =mpbi (the final
casembbi > mbpi does not admit an equilibrium by Proposition

2.9). We check the appropriate condition similar to the above. We

discard all cells with invalid prices. Obviously, this step runs in

strongly polynomial time. □

Observe that this approach works with minimal changes when

agents have different budgets, simply use

∑
i ∈Ck ei instead of -nk .

3.4 Max Flow to Check for CE
With valid prices in hand, we check if there exists an allocation

where all agents spend their budgets and all items are fully sold by

solving a max flow problem on a specially designed network. We

create one vertex for each agent i ∈ N , and one vertex for each item

j ∈ M . We refer to a vertex by the agent or item it represents. The

vertices are arranged left to right as: source s, then all bads, then all

agents, then all goods (if any), and finally the sink t , refer to Figure

3. In the max flow, we use spending qi j = xi jpj , ∀i, j, instead of

working the allocation x . Note that ‘spending’ on bads is negative

qi j ≤ 0, ∀j ∈ M−, ∀i ∈ M+. Let (a,b) denote a directed edge from

a to b and create the following edges:

• (s, j) with capacity −pj > 0, ∀j ∈ M−. The flow on this edge

fs j will represent the total spending on bad j by the agents,

i.e., fs j =
∑
i |qi j | = |pj |

∑
i xi j .

• (j, i) with capacity ∞, ∀j ∈ mpbi , ∀i ∈ N . The flow fji will
represent the amount i spends on bad j, i.e., fji = |qi j | =
xi j |pj |.
• (i, j) with capacity ∞, ∀j ∈ mbbi , ∀i ∈ N such thatmbbi =
mpbi . The flow fi j will represent the amount i spends on
good j, i.e., fi j = qi j = xi jpj .
• (j, t) with capacity pj , ∀j ∈ M+. The flow fjt will represent
the total spending on good j, i.e., fi j =

∑
i qi j .

• (i, t) with capacity 1, ∀i ∈ N . The flow fit represents the
total spending of agent i , i.e., fit = |

∑
j qi j |.

We refer to the above construction as the economic network for the

cell. See Figure 3 for an illustration in an example with only one

good with pj = 2 and one bad with pj = −4. The edge’s capacity
is shown above the edge, and the amount of flow on the edge is

shown in below.

Lemma 3.4. A CE exists in a cell if and only if the max flow on the
economic network equals sumj ∈M− |pj |. Further, if a CE exists in this
cell, then the max flow f gives the CE allocation.

Proof. Recall from Section 2.4 that the utility per buck graph

(UPB) consists of ℓ connected components {Ck }
ℓ
k=1. Within each

componentCk , the agents ofCk only purchase the items ofCk , and

Figure 3: The network and max flow for Example 1.

the items of Ck are only purchased by the agents of Ck . Further,
purchases are onlymade onmpbi andmbbi edges (assumingmbbi =
mpbi by Proposition 2.9) for each agent i ∈ N . Since we only add

edges to the economic network under the same conditions, then the

economic network consists of the same connected components as

the UPB. Further, it suffices to check CE conditions hold within each

component separately, i.e., agents inCk spend their budgets and the

items ofCk are fully sold. To avoid introducing additional notation,

we assume there is only component, although the argument easily

generalizes to the case of multiple components.

Recall in a negative instance, all agents budgets ei = −1. As-
suming the economic network is connected, then in a CE the

sum of the agents budgets equals the sum of the item prices, i.e.,

−n =
∑
i ei =

∑
j pj , or

∑
j ∈M− |pj | = n +

∑
j ∈M+ . Observe from

Figure 3 that max flow f is bounded above by

∑
j ∈M− |pj | where it

saturates all edges leading out of the source (s, j), ∀j ∈ M−. Simi-

larly, f is bounded above by

∑
i ∈N |ei |+

∑
j ∈M+ pj = n+

∑
j ∈M+ pj

where it saturates all edges leading into the sink (i, t), ∀i ∈ N , and

(j, t), ∀j ∈ M+, ∀i ∈ N such that mbbi = mpbi . Notice that our

prices satisfy

∑
j ∈M− |pj | = n +

∑
j ∈M+ pj . Further, the only edges

out of j ∈ M− lead to agents i ∈ N such that j ∈ mpbi . Similarly,

the only edges into j ∈ M+ come from i ∈ N such that i ∈ mbbi
andmbbi =mpbi . By interpreting the flow fji from bad j to agent

i as i’s spending on j, i.e., −fji = qi j = xi jpj , and fi j as agent i’s
spending on good j, i.e., fi j = qi j = xi jpj , we obtain the follow-

ing. By flow conservation, if the max flow f =
∑
j ∈M− |pj |, then

all items are fully purchased onmpbi andmbbi edges. Also, total
flow into agent i comes from bads j ∈ mpbi , and the total flow

out goes to the sink t and goods j ∈ mbbi . Therefore, if the max

flow equals

∑
j ∈M− |pj | = n +

∑
j ∈M+ pj , then fit = 1, ∀i ∈ N .

Then, flow conservation requires that for each agent i we have:∑
j ∈M− |qi j | =

∑
j ∈M− fi j = fit +

∑
j ∈M+ = 1 +

∑
j ∈M+ qi j , or

ei = −1 =
∑
j qi j =

∑
j xi jpj . □

Note that our approach easily generalizes to situations where

agents have different budgets by simply changing the capacity on

each edge (i, t) to be ei . In view of Lemmas 3.3 and 3.4, we only

need to determine all configurations ofmbbi goods andmpbi bads
in order to determine all equilibria of a negative instance.
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3.5 Constant Number of Items
We seek a set of hyperplanes that uniquely determine the set of

mbbi andmpbi items for each agent. Recall that our preprocessing

step identifies the set of goods j ∈ M+ with pj > 0, and the set of

bads j ∈ M− with pj < 0. We begin by creating the hyperplanes

pj = 0, ∀j ∈ M . Each hyperplane divides Rm into half-spaces with

signs >, =, and <, which correspond to pj > 0, pj = 0, and pj < 0

respectively. Given all such hyperplanes, we refer to all non-empty

regions as cells. Since pj > 0, ∀j ∈ M+, and pj < 0, ∀j ∈ M−, we
say a cell is valid if the prices of goods (bads) are positive (negative).

In the following, we only consider valid cells.

Next, we look for set ofmbbi goods andmpbi bads within each

valid cell. For this, we introduce hyperplanes ui jpj′ − ui j′pj = 0,

for all pairs of items j, j ′ ∈ M , and all i ∈ N . If both items are

goods j, j ′ ∈ M+, then in the > region of a hyperplane we have

ui j/pj > ui j′/pj′ , i.e., good j gives higher bang per buck than good

j ′ for agent i . Similarly, in the = region both goods give the same

bang per buck, while in the < region j ′ has better bang per buck

than j. Proposition 3.5 summarizes similar results for cases when

j, j ′ ∈ M−, and when j ∈ M+, and j ′ ∈ M−.

Proposition 3.5. Within any valid cell, the signs of hyperplanes
ui jpj′ − ui j′pj = 0 determine the following relations for each agent
i ∈ N :

• If j, j ′ ∈ M+ where pj ,pj′ > 0, then the sign >, =, < of the
hyperplane means bpbi j > bpbi j′ , bpbi j = bpbi j′ , bpbi j <
bpbi j′ respectively.
• If j, j ′ ∈ M− where pj ,pj′ ,ui j ,ui j′ < 0, then sign >, =, < of
the hyperplane means ppbi j > ppbi j′ , ppbi j = ppbi j′ , ppbi j <
ppbi j′ respectively.
• If j ∈ M+, and j ′ ∈ M−, then sign >, =, < of the hyperplane
means bpbi j < ppbi j′ , bpbi j = ppbi j′ , bpbi j > ppbi j′ respec-
tively.

It follows from Proposition 3.5 that the signs of the hyperplanes

in each cell create a partial ordering on goods j ∈ M+ in terms

of bpbi j and a partial ordering on the bads j ∈ M− in terms of

ppbi for each agent i . Thus we definembbi goods as the set with
highest bpbi j , and the mpbi bads as the set with lowest ppbi in
each cell. Further, the hyperplanes which compare j ∈ M+ and

j ′ ∈ M− allow us to determine whether mbbi < mpbi , mbbi =
mpbi , ormbbi > mpbi . Thus, by Proposition 2.9, we can determine

which set of bads and goods (if any) an agent purchases in a cell.

Notice that each cell gives a unique configuration ofmbbi goods,
mpbi bads, and the sign ofmbbi ≤ mpbi , or vice versa. Therefore,
using the max flow approach of Section 3.4 we can compute the

equilibrium in any given cell (if one exists). Observe that we created(m
2

)
hyperplanes for each agent, and therefore O(nm2) in total.

These hyperplanes divide Rm into at most O((nm2)m ) non-empty

cells which is polynomially since the number of items is constant.

3.6 Constant Number of Agents
We use the same basic reasoning as before, this time exploiting

the constant number of agents n = |N |. Recall that we need to

create a set of hyperplanes that uniquely identify the set ofmbbi
goods andmpbi bads for each agent. For a given set of prices p, the
mbbi condition states that i purchases good j ∈ M+ if and only if

ui j/pj = αi = maxk uik/pk , and thempbi condition states that i
purchases bad j ∈ M− if and only ifui j/pj = αi = mink uik/pk . For
each agent i ∈ N , we create a variable λi to serve as the reciprocal

of i’smbbi ormpbi , i.e., 1/λi = αi . Note that αi > 0, and so λi > 0.

Observe that ui j/pj = 1/λi for any good j ∈mbbi , and ui j/pj <
1/λi otherwise. Equivalently, ui jλi = pj , ∀j ∈mbbi , and ui jλi < pj
otherwise. Similarly, we have ui jλi = pj for all bads j ∈ mpbi , and
ui jλi < pj otherwise since ui j ,pj < 0.

We consider the space Rn with coordinates λ1, . . . , λn . First we
add the hyperplanes λi = 0, so that we only need to consider

situations where λi > 0. We say a cell is valid if λi > 0, ∀i ∈ N .

Next, we create the hyperplanes ui jλi −ui′jλi′ = 0 for each pair of

agents i, i ′ ∈ N , ∀j ∈ M . Within a cell, this gives a partial ordering

on the terms ui jλi for each good j ∈ M+. For each good j ∈ M+,
let bpb∗j = {i ∈ N : ui jλi = maxk uk jλk } be the equivalence class

of agents with the highest ui jλi values. Observe that, if j ∈ M+,
then in the > region we have ui jλi > ui′jλi′ , or since ui jλi ≤ pj ,
1/λi′ > ui′j/pj , i.e., i

′
does not purchase good j. Since all items

are fully assigned in a feasible allocation, we must have j ∈ mbbi ,
∀i ∈ bpb∗j , andmbbi > bpbi j for all other i ∈ N .

Similarly, for each bad j ∈ M−, the hyperplanes give a par-

tial ordering on the terms ui jλi . Let ppb
∗
j = {i ∈ N : ui jλi =

maxk uk jλk } (since ui j < 0 and λi > 0) be the equivalence class of

agents with the highest ui jλi values for each bad j ∈ M−. In the >

region of any hyperplane, ui jλi > ui′jλi′ , or since ui jλi ≤ pj and
pj < 0, we see that ui′j/pj > 1/λi′ , i.e., i

′
does not purchase bad j.

Thus, j ∈mpbi , ∀i ∈ ppb∗j , andmpbi < ppb∗j for all other i ∈ N .

From the above discussion, the signs of the hyperplanes ui jλi −
ui′jλi′ within a cell give a unique configuration ofmpbi bads, and
mbbi goods for each agent i ∈ N . Therefore, we can determine if

the cell admits a CE by computing the max flow on the network of

Section 3.4. Observe that we created

(n
2

)
hyperplanes for each item,

and thereforeO(mn2) in total. These hyperplanes divide Rn into at

most O((mn2)n ) non-empty cells which is polynomially since the

number of agents n is constant.

4 DISCUSSION
We presented an algorithm to compute all CE of mixed manna

under linear utilities that runs in polynomial time so long as either

the number of agents or the number of items is constant. To the best

of our knowledge, this first polynomial time algorithm under any

set of assumptions. Our work also gives a simple LP to determine

problem type, a method to determine the prices in each market

component, and a new, specially designed network whose max flow

proves that a CE exists for a given configuration ofmbbi andmpbi
items for each agent.

We see two interesting avenues for future work. First, our ap-

proach might generalize to more general classes of utility func-

tions. Specifically, separable piecewise linear concave (SPLC) utility

functions seems a natural candidate, see [22, 28] and references

therein for more details. SPLC utilities are ‘sufficiently close’ to lin-

ear so that most of the basic structure of the algorithm and analysis

should carry over. Second, despite the fact that both positive and

null instances admit polynomial time algorithms, the complexity of

computing a CE in a negative problem remains a major unresolved

issue.
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