
Towards Deployment of Robust Cooperative AI Agents:
An Algorithmic Framework for Learning Adaptive Policies

Ahana Ghosh
MPI-SWS

gahana@mpi-sws.org

Sebastian Tschiatschek
University of Vienna

sebastian.tschiatschek@univie.ac.at

Hamed Mahdavi
MPI-SWS

hmahdavi@mpi-sws.org

Adish Singla
MPI-SWS

adishs@mpi-sws.org

ABSTRACT

We study the problem of designing an AI agent that can robustly
cooperate with agents of unknown type (i.e., previously unobserved
behavior) in multi-agent scenarios. Our work is inspired by real-
world applications in which an AI agent, e.g., a virtual assistant, has
to cooperate with new types of agents/users after its deployment.
We model this problem via parametric Markov Decision Processes
where the parameters correspond to a user’s type and characterize
her behavior. In the test phase, the AI agent has to interact with a
user of an unknown type. We develop an algorithmic framework
for learning adaptive policies: our approach relies on observing the
user’s actions to make inferences about the user’s type and adapting
the policy to facilitate efficient cooperation. We show that without
being adaptive, an AI agent can end up performing arbitrarily bad
in the test phase. Using our framework, we propose two concrete
algorithms for computing policies that automatically adapt to the
user in the test phase. We demonstrate the effectiveness of our
algorithms in a cooperative gathering game environment for two
agents.

KEYWORDS

Learning agent-to-agent interactions; Machine learning; Reinforce-
ment learning
ACM Reference Format:

Ahana Ghosh, Sebastian Tschiatschek, Hamed Mahdavi, and Adish Singla.
2020. Towards Deployment of Robust Cooperative AI Agents: An Algo-
rithmic Framework for Learning Adaptive Policies. In Proc. of the 19th

International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2020), Auckland, New Zealand, May 9–13, 2020, IFAAMAS, 9 pages.

1 INTRODUCTION

An increasing number of multi-agent systems are used in appli-
cations like autonomous driving [14, 31, 43], gaming [39], and en-
ergy distribution [26]. In these applications, the agents have to
cooperate and show mutual awareness to achieve optimal perfor-
mance [2, 11, 42]. Commonly such applications are approached by
jointly training policies for all deployed agents [28]. Hence from
the perspective of any particular agent, the set of other agents it
might encounter is fixed or known a priori and each agent can thus
account for the other agents’ preferences and behaviour.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May

9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

In practice, however, this is often unrealistic because in many
applications we might encounter new types of agents after deploy-
ment. In particular, our work is inspired by applications like virtual
assistants where an AI agent has to cooperate with other agents
(i.e., users) of previously unobserved behavior after deployment.
In this application setting, an AI agent that does not account for
the user’s preferences and behavior typically degrades the utility
for the human users [2, 11, 12, 38, 42]. However, accounting for
the user’s characteristics is challenging because the AI agent needs
to (a) infer information about the interacting user and (b) be able
to interact efficiently with a large number of different users, each
possibly showing different behavior. In particular, during devel-
opment of an AI agent, it is often only possible to interact with a
limited number of users and the AI agent needs to generalize to new
types of users after deployment. These challenges resemble those in
multi-agent reinforcement learning settings in which an AI agent
faces unknown agents at test time [10] (including human-agent
and agent-agent scenarios).

In this paper, we study the problem of designing AI agents that
can robustly cooperate with agents of unknown type after deploy-
ment. More specifically, we consider a setting in which the AI
agent only has access to the reward information during its devel-
opment while no (explicit) reward information is available once
the agent is deployed. This setting appears naturally when it is
difficult/expensive/disruptive to supply or compute reward infor-
mation while a multi-agent system is in use, as for instance in our
motivating application of a virtual assistant. As shown in this pa-
per, an AI agent can only achieve high utility in this setting if it
is adaptive to its user while a non-adaptive AI agent can perform
arbitrarily bad. We propose an algorithmic framework for design-
ing robust adaptive policies for our considered setting and derive
two such policies—one of the policy comes with strong theoreti-
cal robustness guarantees at test time, while the other is inspired
by recent deep-learning approaches for RL and is easier to scale
to larger problems. Both policies build upon inferring the user’s
properties by observing their actions and leverage these inferences
to act robustly.

Another way of approaching the studied problem is within a
POMDP framework in which the other agent’s behavior is char-
acterized by a latent unobserved feature of the state [8, 16]. In
contrast to these POMDP based approaches, we decouple inference
about the agent and action selection which makes the problem
more amenable for theoretical analysis and allows us to derive rig-
orous performance guarantees. Our approach is also related to ideas

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

447

of multi-task, meta-learning, and generalization in reinforcement
learning [4]. However, most of these approaches require access to
reward information at test time and rarely offer theoretical guar-
antees for robustness (a thorough discussion of related work is
presented in Section 7).

In the following, we highlight our main contributions:

• We provide a generic framework for designing robust poli-
cies for interacting with agents with unknown behavior.
Our framework is amenable for theoretical analysis allowing
us to prove rigorous robustness guarantees for algorithms
building on our framework (Section 3).
• We propose two concrete algorithms according to our frame-
work:AdaptPoolwhich pre-computes a set of best-response
policies and executes them adaptively based on inferences of
the other agent’s type; and AdaptDQN which implements
adaptive policies by a neural network in combination with
an inference module (Sections 4 and 5).
• We empirically demonstrate the effectiveness of our ap-
proach when facing unknown agents in a cooperative gath-
ering game environment (Section 6).

2 THE PROBLEM SETUP

We formalize the problem of designing an AI agent that can robustly
cooperate with another agent of unknown type in a reinforcement
learning (RL) framework. The two agents are hereafter referred
to as agent U and agent I: here, agent I represents the AI agent
whereas agent U could be another AI agent or a human user. Our
goal is to develop a learning algorithm for agent I that leads to
high utility even in cases when the behavior of agent U and its
committed policy is unknown.

2.1 The setting

We model the preferences and induced behavior of agent U via a
parametric space Θ. From agent I’s perspective, each θ ∈ Θ leads
to a parameterized MDPM(θ) := (S,A,Tθ ,Rθ ,γ ,D0) consisting of
the following:

• a set of states S , with s ∈ S denoting a generic state.
• a set of actions A, with a ∈ A denoting a generic action of
agent I.
• a transition kernel parameterized byθ asTθ (s ′ | s,a), which is
a tensor with indices defined by the current state s , the agent
I’s action a, and the next state s ′. In particular,Tθ (s ′ | s,a) =
EaU [T

U,I(s ′ | s,a,aU)], where aU ∼ πUθ (· | s) is sampled from
agent U’s policy in state s . That is, Tθ (s ′ | s,a) corresponds
to the transition dynamics derived from a two-agent MDP
with transition dynamics TU,I and agent U’s policy πUθ .
• a reward function parameterized by θ as Rθ : S × A →
[0, rmax] for rmax > 0. This captures the preferences of agent
U that agent I should account for.
• a discount factor γ ∈ [0, 1) weighing short-term rewards
against long-term rewards.
• an initial state distribution D0 over S .

Our goal is to develop a learning algorithm that achieves high
utility even in cases when θ is unknown. In line with the motivating
applications discussed above, we consider the following two phases:

• Training (development) phase. During development, our
learning algorithm can interact with a limited number of
different MDPsM(θ) for θ ∈ Θtrain ⊆ Θ: here, agent I can
observe rewards as well as agent U’s actions needed for
learning purposes.
• Test (deployment) phase. After deployment, our learning
algorithm interacts with a parameterized MDP as described
above for unknown θ test ∈ Θ: here, agent I only observes
agent U’s actions but not rewards.

2.2 Utility of agent I

Let us denote the set of stationary Markov policies as Π = {π |
π : S × A → [0, 1]}. Then, for a fixed policy π ∈ Π of agent I, we
define its total expected reward in the MDPM(θ) as follows:

Jθ (π) = E

[
∞∑
τ=1

γ τ−1Rθ (sτ ,aτ) | D0,Tθ , π

]
, (1)

where the expectation is over the stochasticity of policy π and the
transition dynamics Tθ . Here sτ is the state at time τ ; for τ = 1, sτ
comes from the distribution D0.

For known θ . When the underlying parameter θ is known, the
task of finding the best response policy of agent I reduces to the
following:

π∗θ = argmax
π ∈Π

Jθ (π). (2)

For unknown θ . However, when the underlying parameter θ ∈ Θ
is unknown1, we define the best response (in a minmax sense)
policy π ∈ Π of agent I as:

π∗Θ = argmin
π ∈Π

max
θ ∈Θ

(
Jθ (π

∗
θ) − Jθ (π)

)
. (3)

Clearly, Jθ (π∗θ) − Jθ (π
∗
Θ) ≥ 0 ∀θ ∈ Θ. In general, this gap can be

arbitrarily large, as formally stated in the following proposition.

Proposition 2.1. There exists a problem instance where the per-

formance of agent I can be arbitrarily worse when agent U’s type

θ test is unknown. In other words, the gapmaxθ ∈Θ
(
Jθ (π

∗
θ) − Jθ (π

∗
Θ)

)
is arbitrarily high.

The proof is available in the longer version of the paper. The
proof of the above proposition is given via explicit construction of
an example. Proposition 2.1 shows that the performance of agent
I can be arbitrarily bad when it doesn’t know θ test and is restricted
to execute a fixed stationary Markov policy. In the next section, we
present an algorithmic framework for designing robust policies for
agent I for unknown θ test.

3 DESIGNING ROBUST POLICIES

In this section, we introduce our algorithmic framework for design-
ing robust policies for the AI agent I.

1Here, we assume that the parametric forms of Tθ and Rθ in the MDP M(θ) are
known to the agent I, but θ itself is unknown.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

448

Framework 1 Algorithmic framework for robust policies

Training phase

1: Input: parameter space Θtrain

2: adaptive policyψ ← Training(Θtrain)

Test phase

1: Input: adaptive policyψ
2: O0 ← ()
3: for t = 1, 2, . . . do
4: Observe current state st
5: Estimate U’s type as θt ← Inference(Ot−1)
6: Take action at ∼ ψ (· | st , θt)
7: Observe U’s action aUt ; Ot ← Ot−1 ⊕ (st ,aUt)
8: end for

3.1 Algorithmic framework

Our approach relies on observing the behavior (i.e., actions taken)
tomake inferences about the agentU’s type θ and adapting agent I’s
policy accordingly to facilitate efficient cooperation. This is inspired
by how people make decisions in uncertain situations (e.g., ability
to safely drive a car even if the other driver on the road is driving
aggressively). The key intuition is that at test time, the agent I can
observe agentU’s actions which are taken as aU ∼ πUθ (· | s)when in
state s to infer θ , and in turn use this additional information to make
an improved decision on which actions to take. More formally, we
define the observation history available at the beginning of timestep
t as Ot−1 = (sτ ,aUτ)τ=1, ...,t−1 and use it to infer the type of agent
U and act appropriately.

In particular, we will make use of an Inference procedure (see
Section 5). Given Ot−1, this procedure returns an estimate of the
type of agent U at time t given by θt ∈ Θ. Then, we consider
stochastic policies of the formψ : S ×A × Θ→ [0, 1]. The space of
these policies is given by Ψ = {ψ | ψ : S × A × Θ → [0, 1]}. For a
fixed policyψ ∈ Ψ of agent I, we define its total expected reward
in the MDPM(θ) as follows:

Jθ (ψ) = E

[
∞∑
τ=1

γ τ−1Rθ (sτ ,aτ) | D0,Tθ ,ψ

]
. (4)

At any time t , we haveat ∼ ψ (· | st , θt) andOt−1 = (sτ ,aUτ)τ=1, ...,t−1
is generated according to aUτ ∼ πUθ (· | sτ).

We seek to find the policy for agent I given by the following
optimization problem:

min
ψ ∈Ψ

max
θ ∈Θ

(
Jθ (π

∗
θ) − Jθ (ψ)

)
(5)

In the next two sections, we will design algorithms to optimize
the objective in Equation (5) following the framework outlined
in Framework 1. In particular, we will discuss two possible archi-
tectures for policyψ and corresponding Training procedures in
Section 4. Then, in Section 5, we describe ways to implement the
Inference procedure for inferring agent U’s type using observed
actions. Below, we provide theoretical insights into the robustness
of the proposed algorithmic framework.

3.2 Performance analysis

We begin by specifying three technical questions that are important
to gain theoretical insights into the robustness of the proposed
framework:
Q.1 Independent of the specific procedures used for Training

and Inference, the first question to tackle is the following:
When agent U’s true type is θ test and agent I uses a best
response policy for π∗

θ̂
such that | |θ test − θ̂ | | ≤ ϵ , what are the

performance guarantees on the total utility achieved by agent
I? (see Theorem 3.1).

Q.2 Regarding Training procedure: When agent U’s type is θ test

and the inference procedure outputs θ̂ such that | |θ test − θ̂ | | ≤
ϵ , what is the performance of policyψ ? (see Section 4).

Q.3 Regarding Inference procedure: When agentU’s type is θ test,
can we infer θ̂ such that either | |θ test − θ̂ | | is small, or agent
U’s policies πU

θ̂
and πUθ test are approximately equivalent? (see

Section 5).

3.2.1 Smoothness properties. For addressing Q.1, we introduce
a number of properties characterizing our problem setting. These
properties are essentially smoothness conditions on MDPs that
enable us to make statements about the following intermediate
issue: For two types θ , θ ′, how “similar" are the corresponding
MDPsM(θ),M(θ ′) from agent I’s point of view?

The first property characterizes the smoothness of rewards for
agent I w.r.t. parameter θ . Formally, the parametric MDPM(θ) is
α-smooth with respect to the rewards if for any θ and θ ′ we have

max
s ∈S ,a∈A

|Rθ (s,a) − Rθ ′(s,a)| ≤ α · rmax · | |θ − θ
′ | |2 (6)

The second property characterizes the smoothness of policies
for agent U w.r.t. parameter θ ; this in turn implies that the MDP’s
transition dynamics as perceived by agent I are smooth. Formally,
the parametric MDPM(θ) is β-smooth in the behavior of agent U
if for any θ and θ ′ we have

max
s ∈S

KL
(
πUθ (. | s);π

U
θ ′(. | s)

)
≤ β · | |θ − θ ′ | |2. (7)

For instance, one setting where this property holds naturally is
when πUθ is a soft Bellman policy computed w.r.t. a reward function
for agent U which is smooth in θ [17, 46].

The third property is a notion of influence as introduced by
Dimitrakakis et al. [5]: This notion captures how much one agent
can affect the probability distribution of the next state with her
actions as perceived by the second agent. Formally, we capture the
influence of agent U on agent I as follows:

IU :=max
s ∈S

(
max
a,b ,b′

TU,I(. | s,a,b) −TU,I(. | s,a,b ′)
1

)
, (8)

wherea represents the action of agent I ,b,b ′ represents two distinct
actions of agent U, and TU,I is the transition dynamics of the two-
agent MDP (see Section 2.1). Note that IU ∈ [0, 1] and this allows us
to do fine-grained performance analysis: for instance, when IU = 0,
then agent U doesn’t affect the transition dynamics as perceived by
agent I and we can expect to have better performance for agent I.

3.2.2 Guarantees. Putting this together, we can provide the
following guarantees as an answer for Q.1:

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

449

INFERENCE

𝑂"#$

𝜃"

𝜃&" = argmin.	∈	123456 	 𝜃 − 𝜃"
𝑎"~𝜋.;<

∗ (? |𝑠")
𝜋.;<
∗

𝑠"

𝑎"

Nearest-neighbor selection from POOL

(a) Test phase in Framework 1 with policy ψ trained using

AdaptPool procedure.

INFERENCE

𝑂"#$

𝜃" 𝑠"

𝑎"

(b) Test phase in Framework 1 with policy ψ trained using

AdaptDQN procedure.

Figure 1: Two different instantiations of Framework 1 with the adaptive policy ψ trained using procedures AdaptPool and

AdaptDQN. (a) AdaptPool trains a set of best response policies {π∗θ | θ ∈ Θtrain}. In the test phase at time step t with θt as

the output of Inference, the action at is sampled from a distribution π∗
θ̂t
(· | st) where θ̂t is the nearest match for θt in the set

Θtrain. (b) AdaptDQN trains one deep Q-Network (DQN) with an augmented state space given by (s, θ). At time t , with θt as the
output of Inference, the DQN network is given as input a tuple (st , θt) and the network outputs an action at .

Theorem 3.1. Let θ test ∈ Θ be the type of agentU at test time and

agent I uses a policy π∗
θ̂
such that | |θ test − θ̂ | |2 ≤ ϵ . The parameters

(α, β,IU) characterize the smoothness as defined above. Then, the

total reward achieved by agent I satisfies the following guarantee:

Jθ test (π
∗

θ̂
) ≥ Jθ test (π

∗
θ test) −

ϵ · α · rmax
1 − γ

−
IU ·

√
2 · β · ϵ · rmax

(1 − γ)2

The proof of the theorem is provided in the longer version of the
paper. The proof builds up on the theory of approximate equivalence
of MDPs by Even-Dar and Mansour [6]. In the next two sections,
we provide specific instantiations of Training and Inference
procedures.

4 TRAINING PROCEDURES

In this section, we present two procedures to train adaptive policies
ψ (see Training in Framework 1).

4.1 Training procedure AdaptPool

The basic idea of AdaptPool is to maintain a pool Pool of best
response policies for I and, in the test phase, switch between these
policies based on inference of the type θ test.

4.1.1 Policy architecture ofAdaptPool. The adaptive pool based
policyψ consists of a pool (Pool) of best response policies corre-
sponding to different possible agent U’s types θ , and a nearest-
neighbor policy selection mechanism. In particular, when invok-
ing AdaptPool for state st and inferred agent U’s type θt , the
policy first identifies the most similar agent U in Pool, i.e., θ̂t =
argminθ ∈Θtrain ∥θ−θt ∥, and then executes an action at ∼ π∗θ̂t

(· | st)

using the best response policy π∗
θ̂t
.

4.1.2 Training process. During training we compute a pool of
best response policies Pool for a set of possible agent U’s types
Θtrain, see Algorithm 1.

4.1.3 Guarantees. It turns out that if the set of possible agentU’s
typesΘtrain is chosen appropriately, Framework 1 instantiated with

AdaptPool enjoys strong performance guarantees. In particular,
choosing Θtrain as a sufficiently fine ϵ ′-cover of the parameter
space Θ, ensures that for any θ test ∈ Θ, that we might encounter
at test time, we have considered a sufficiently similar agent U
during training and hence can execute a best response policy which
achieves good performance.

Corollary 4.1. Let Θtrain
be an ϵ ′-cover for Θ, i.e., for all θ ∈

Θ, ∃θ ′ ∈ Θtrain s.t. | |θ −θ ′ | |2 ≤ ϵ ′. Let θ test ∈ Θ be the type of agent

U and the Inference procedure outputs θt such that | |θt − θ
test | |2 ≤

ϵ ′′. Let ϵ := ϵ ′ + ϵ ′′. Then, at time t , the policy π∗
θ̂t

used by agent

I has the following guarantees:

Jθ test (π
∗

θ̂t
) ≥ Jθ test (π

∗
θ test) −

ϵ · α · rmax
1 − γ

−
IU ·

√
2 · β · ϵ · rmax

(1 − γ)2

Corollary 4.1 follows from the result of Theorem 3.1 given that
the pool of policies trained by AdaptPool is sufficiently rich. Note
that the accuracy ϵ ′′ of Inference would typically improve over
time and hence the performance of the algorithm is expected to
improve over time in practice, see Section 6.3. Building on the idea
of AdaptPool, next we provide a more practical implementation
of the training procedure which does not require to maintain an
explicit pool of best response policies and therefore is easier to scale
to larger problems.

4.2 Training procedure AdaptDQN

AdaptDQN builds on the ideas of AdaptPool: Here, instead of
explicitly maintaining a pool of best response policies for agent
I, we have a policy network trained on an augmented state space
S × Θ. This policy network resembles a Deep Q-Network (DQN)
architecture [20], but operates on an augmented state space and
takes as input a tuple (s, θ). A similar architecture was used by
Hessel et al. [13], where one policy network was trained to play
57 Atari games, and the state space was augmented with the index
of the game. In the test phase, agent I selects actions given by this
policy network.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

450

Algorithm 1 AdaptPool: Training

1: Input: Parameter space Θtrain

2: Pool← {}
3: for each θ iter ∈ Θtrain

do

4: π∗
θ iter
← best response policy for MDPM(θ iter)

5: Pool← Pool ∪ {(θ iter, π∗
θ iter
)}

6: end for

7: return Pool

4.2.1 Policy architecture of AdaptDQN. The adaptive policyψ
consists of a neural network trained on an augmented state space
S × Θ. In particular, when invoking AdaptDQN for state st and
inferred agentU’s type θt , we use the augmented state space (st , θt)
as input to the neural network. The output layer of the network
computes the Q-values of all possible actions corresponding to the
augmented input state. Agent I selects the action with themaximum
Q-value.

4.2.2 Training process. Here, we provide a description of how
we train the policy network using the augmented state space, see
Algorithm 2. During one iteration of training the policy network,
we first sample a parameter θ iter ∼ Θtrain. We then obtain the
optimal best response policy π∗

θ iter
of agent I for the MDPM(θ iter).

We compute the vector of all Q-values corresponding to this policy,
i.e., Q(s,a) ∀s ∈ S,a ∈ A (represented by Q

π ∗
θ iter in Algorithm 2),

using the standard Bellman equations [36]. In our setting, we use
these pre-computed Q-values to serve as the target values for the
associated parameter θ iter for training the policy network. The loss
function used for training is the standard squared error loss between
the target Q-values computed using the procedure described above
and those given by the network under training. The gradient of this
loss function is used for back-propagation through the network.
Multiple such iterations are carried out during training, until a
convergence criteria is met. For more details on Deep Q-Networks,
we refer the reader to [20].

5 INFERENCE PROCEDURE

In the test phase, the inference of agent U’s type θ test from an
observation history Ot−1 is a key component of our framework,
and crucial for facilitating efficient collaboration. Concretely, Theo-
rem 3.1 implies that a best response policy π∗

θ̂
also achieves good

performance for agent U with true parameter θ test if | |θ̂ − θ test | | is
small and MDPM(θ) is smooth w.r.t. parameter θ as described in
Section 3.2.

There are several different approaches that one can consider for
inference, depending on the application setting. For instance, we
can use probabilistic approaches as proposed in the work of Everett
and Roberts [7] where a pool of agent U’s policies πUθ ∀ θ ∈ Θ is
maintained and inference is done at run time via simple probabilistic
methods. Based on the work by Grover et al. [10], we can also
maintain a more compact representation of agent U’s policies and
then apply probabilistic methods on this representation. Yet another
approach is to consider meta-learning based approaches to build
models of the encountered agents [24].

Algorithm 2 AdaptDQN: Training

1: Input: Parameter space Θtrain

2: ψ ← Init. policy network on augmented state space
3: while convergence criteria is not met do

4: sample θ iter ∼ Uniform(Θtrain)
5: π∗

θ iter
← best response policy for MDPM(θ iter)

6: Q
π ∗
θ iter ← Q-values for policy π∗

θ iter
in MDPM(θ iter)

7: Trainψ for one episode:
(i) by augmenting the state space with θ iter

(ii) by using target Q-values Qπ
∗

θ iter

8: end while

9: returnψ

We can also do inference based on ideas of inverse reinforcement
learning (IRL) where the observation history Ot−1 serves the pur-
pose of demonstrations [1, 46]. This is particularly suitable when
the parameter θ exactly corresponds to the rewards used by agent
U when computing its policy πUθ . In fact, this is the approach that
we follow for our inference module in the experiments, and in par-
ticular, we employ the popular IRL algorithm, namely Maximum
Causal Entropy (MCE) IRL algorithm [46]. We refer the reader to
Section 6.2 for more details.

6 EXPERIMENTS

Below, we provide details of the environment, the experimental
setup, and then discuss results.

6.1 Environment details

We evaluate the performance on a gathering game environment,
a variant of the environments considered by Leibo et al. [18] and
Raileanu et al. [27], see Figure 2. There are two agents and the
objective is to maximize the total reward by collecting fruits while
avoiding collisions. Agent U is assisted by agent I in achieving this
objective. The environment has a 5x5 grid space resulting in 25 grid
cells and the state space is determined by the joint location of agent
U and agent I (i.e., |S | = 25× 25). Actions are given byA ={‘step up’,
‘step left’, ‘step down’, ‘step right’, ‘stay’}. Each action is executed
successfully with 0.8 probability; with random move probability of
0.2, the agent is randomly placed in one of the four neighboring
cells located in vertical or horizontal positions. Two types of fruit
objects are placed in two fixed grid cells (shown by ‘shaded blue’
and ‘blue’ cells). The rewards associated with these two fruit types
are given by the parameter vector θ ∈ Θ where Θ := [−1,+1]2. In
our environment, the location of these two fruit types is fixed and
fruits do not disappear (i.e., there is an unlimited supply of each
fruit type in their respective locations). The discount factor γ is
set to 0.99, and the initial state distribution D0 corresponds to the
agents starting in two corners.

For any fixed θ , agent U’s policy πUθ is computed first by ig-
noring the presence of agent I—this is in line with our motivating
applications where agent U could be a human agent with a pol-
icy agnostic to agent I. In order to compute agent U’s policy πUθ ,
we consider agent U operating in a single-agent MDP denoted as
MU(θ) = (SU,A,RUθ ,T

U,γ ,DU0) where (i) s ∈ SU corresponds to
the location of agent U in the grid-space, (ii) the action space is the

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

451

ℍ

𝕀

+1

+0.5

(a) θ = [+1, +0.5]

ℍ

𝕀

-1

+0.8

(b) θ = [−1, +0.8]

ℍ

𝕀

+1

-1

(c) θ = [+1, −1]

ℍ

𝕀

-0.5

-0.5

(d) θ = [−0.5, −0.5]

Figure 2: We evaluate the performance on a gathering game environment, see Section 6.1 for details. The above four illustra-

tions correspond to four different θ parameters, highlighting agent U’s policy πUθ and the best response policy π∗θ for agent I.

same as described above, (iii) the reward function RUθ corresponds
to rewards associated with two fruit types given by θ , (iv)TU corre-
sponds to transition dynamics of agent U alone in the environment,
(v) discount factor γ = 0.99, and (vi) DU0 corresponds to agent
U starting in the upper-left corner. GivenMU(θ), we compute πUθ
as a soft Bellman policy which is suitable to capture near-optimal
and stochastic agent behaviour in applications [46].

From agent I’s point of view, each θ gives rise to a parametric
MDPM(θ) in which agent I is operating in the game along with
the corresponding agent U. Transition dynamics Tθ inM(θ) are
obtained by marginalizing out the effect of agent U’s policy πUθ .
Reward function Rθ inM(θ) corresponds to the reward associated
with fruits which depends on θ ; in addition to collecting fruits,
agent I should avoid collision or close proximity to agent U—this is
inspired by the multi-agent path finding (MAPF) problem setting,
see [32, 33]. This is modelled by a collision cost of −5 when agent
I is in the same cell as agent U, and a proximity cost of −2 when
agent I is in one of the four neighboring cells located in vertical or
horizontal positions.

For our experiments, we consider an episodic setting where two
agents play the game repeatedly for multiple episodes enumerated
as e = 1, 2, Each episode of the game lasts for 500 steps. Now, to
translate the episode count to time steps t as used in Framework 1
(line 3), we have t = 500 × e at the end of the eth episode.

6.2 Experimental setup

6.2.1 Baselines and implementation details. We use three base-
lines to compare the performance of our algorithms: (i) Rand cor-
responds to picking a random θ ∈ Θ and using best response
policy π∗θ , (ii) FixedMM corresponds to the fixed best response (in
a minmax sense) policy in Eq. 3, and (iii) FixedBest is a variant of
FixedMM and corresponds to the fixed best response (in a average
sense) policy.

We implemented two variants of AdaptPool which store poli-
cies corresponding to ϵ ′ = 1 and ϵ ′ = 0.25 covers of Θ (see Corol-
lary 4.1), denoted as AdaptPool1 and AdaptPool0.25 in Figure 3.
Next, we give specifications of the trained policy network used in
AdaptDQN. We used Θtrain to be a 0.25 level discretization of Θ.
The trained networkψ has 3 hidden layers with leaky RELU-units
(with α = 0.1) having 64, 32, and 16 hidden units respectively, and a
linear output layer with 5 units (corresponding to the size of action
set |A|) (see [20] for more details on training Deep Q-Network).

The input to the neural network is a concatenation of the loca-
tion of the 2 agents, and the parameter vector θt , where |θt | = 2
(this corresponds to the augmented state space described in Sec-
tion 4.2). The location of each agent is represented as a one-hot
encoding of a vector of length 25 corresponding to the number of
grid cells Hence the length of the input vector to the neural net-
work is 25 × 2 + 2 (= 52). During training, the agent I implemented
epsilon-greedy exploratory policies (with exploration rate decaying
linearly over training iterations from 1.0 to 0.01). Training lasted
for about 50 million iterations.

Our inference module is based on the MCE-IRL approach [46] to
infer θ test by observing actions taken by agentU’s policy. Note that,
we are using MCE-IRL to infer the reward function parameters θ test
used by agentU for computing its policy in theMDPMU(θ test) (see
Section 6.1). At the beginning, the inference module is initialized
with θ0 = [0, 0], and its output at time t given by θt is based on
history Ot−1. In particular, we implemented a sequential variant of
MCE-IRL algorithm which updates the estimate θt only at the end
of every episode e using stochastic gradient descent with learning
rate η = 0.001. We refer the reader to [46] for details on the original
MCE-IRL algorithm and to [17] for the sequential variant.

6.3 Results

We evaluate the performance of our algorithms on 441 different
θ test obtained by a 0.1 level discretization of the 2-D parametric
space Θ := [−1,+1]2. For a given θ test, the results were averaged
over 10 runs.

6.3.1 Worst-case and average-case performance of algorithms.

Results are shown in Figure 3. As can be seen in Figure 3a, the
worst-case performance of both AdaptDQN and AdaptPool is sig-
nificantly better than that of the three baselines (FixedBest, Rand
and FixedMM), indicating robustness of our algorithmic framework.
In our experiments, the FixedMM and FixedBest baselines corre-
spond to best response policies π∗θ forθ = [0.1,−1] andθ = [0,−0.1]
respectively. Under both these policies, agent I’s behavior is qualita-
tively similar to the one shown in Figure 2c. As can be seen, under
these policies, agent I avoids both fruits and avoids any collision;
however, this does not allow agent I to assist agent U in collecting
fruits even in scenarios where fruits have positive rewards.

6.3.2 Convergence of the inference module. In Figure 3c, we
show the convergence behavior of the inference module. Here,

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

452

0 200 400 600 800 1000

Episode e (time t = 500× e)

0

10

20

30

40

50

60

70

80

J
θt

es
t(
π
∗ θt

es
t)
−
J
θt

es
t(

A
l
g

)

Rand

FixedBest

FixedMM

AdaptPool1

AdaptPool0.25

AdaptDQN

(a) Total reward: Worst-case

0 200 400 600 800 1000

Episode e (time t = 500× e)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

J
θt

es
t(
π
∗ θt

es
t)
−
J
θt

es
t(

A
l
g

)

Rand

FixedBest

FixedMM

AdaptPool1

AdaptPool0.25

AdaptDQN

(b) Total reward: Average-case

0 200 400 600 800 1000

Episode e (time t = 500× e)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

||θ
t
−
θt

es
t ||

2

Worst Avg

(c) Inference module

Figure 3: (a) Worst-case performance of both AdaptDQN and AdaptPool is significantly better than that of the baselines,

indicating robustness of our algorithmic framework. (a, b) Two variants of AdaptPool are shown corresponding to 1-cover
and 0.25-cover. As expected, the algorithm AdaptPool0.25 with larger pool size has better performance compared to the algo-

rithm AdaptPool1. (c) Plot shows the convergence behavior of the inference module as more observational data is gathered:

Avg shows the average performance (averaged

θt − θ test w.r.t. different θ test) and Worst shows the worst case performance

(maximum

θt − θ test w.r.t. different θ test).

-1 0 1

θtest[0]

-1

0

1

θt
es

t [
1]

0 15 30 45

(a) π ∗
θ test

-1 0 1

θtest[0]

-1

0

1

θt
es

t [
1]

0 15 30 45

(b) FixedBest

-1 0 1

θtest[0]

-1

0

1

θt
es

t [
1]

0 15 30 45

(c) AdaptPool0.25

-1 0 1

θtest[0]

-1

0

1

θt
es

t [
1]

0 15 30 45

(d) AdaptDQN

-1 0 1

θtest[0]

-1

0

1

θt
es

t [
1]

0.2 0.4 0.6 0.8

(e) Inference Module

Figure 4: (a, b, c, d) Heat map of the total rewards obtained by different algorithms when measured in the episode e = 1000.
(e) Heat map of the norm

θt − θ test, i.e., the gap between the estimated and true parameter θ test at the end of episode e = 1000.
The performance of the inference procedure is poor in cases when different parameter values of θ test results in agentU having

equivalent policies. However, in these cases as well, the performance of our algorithms (AdaptPool0.25 and AdaptDQN) is

significantly better than the baselines (FixedBest).

Worst shows the worst case performance: As can be seen in the
Worst line, there are cases where the performance of the inference
procedure is bad, i.e.,

θt − θ test is large. This usually happens
when different parameter values of θ results in agent U having
equivalent policies. In these cases, estimating the exact θ test with-
out any additional information is difficult. In our experiments, we
noted that even if

θt − θ test is large, it is often the case that agent
U’s policies πUθt and π

U
θ test are approximately equivalent which is

important for getting a good approximation of the transition dy-
namicsTθ test . Despite the poor performance of the inference module
in such cases, the performance of our algorithms is significantly
better than that of the baselines (as is evident in Figure 3a).

6.3.3 Additional results for each individual θ test. Next, we pro-
vide additional experimental results corresponding to the algo-
rithms’ performance for each individual θ test to gain further in-
sights. These results are presented in Figure 4 in the form of heat

maps for each individual θ test: Heat maps either represent perfor-
mance of policies (in terms of the total reward Jθ test (Alg)) or the per-
formance of inference procedure (in terms of the norm

θt − θ test).
These results are plotted in the episode e = 1000 (cf., Figure 3 where
the performance was plotted over time with increasing e).

7 RELATEDWORK

Modeling and inferring about other agents. The inference problem
has been considered in the literature in various forms. For instance,
Grover et al. [10] consider the problem of learning policy represen-
tations that can be used for interacting with unseen agents when
using representation-conditional policies. They also consider the
case of inferring another agent’s representation (parameters) during
test time. Macindoe et al. [19] consider planners for collaborative
domains that can take actions to learn about the intent of another
agent or hedge against its uncertainty. Nikolaidis et al. [22] cluster

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

453

human users into types and aim to infer the type of new users
online, with the goal of executing the policy for that type. They
test their approach in robot-human interaction but do not provide
any theoretical analysis for their approach. Beyond reinforcement
learning, the problem of modeling and inferring about other agents
has been studied in other applications such as personalization of
web search ranking results by inferring user’s preferences based
on their online activity [35, 40, 41].

Multi-task and meta-learning. Our problem setting can be inter-
preted as a multi-task RL problem in which each possible type of
agent U corresponds to a different task, or as a meta-learning RL
problem in which the goal is to learn a policy that can quickly adapt
to new partners. Hessel et al. [13] study the problem of multi-task
learning in the RL setting in which a single agent has to solve multi-
ple tasks, e.g., solve all Atari games. However, they do not consider
a separate test set to measure generalization of trained agents but
rather train and evaluate on the same tasks. Sæmundsson et al. [30]
consider the problem ofmeta learning for RL in the context of chang-
ing dynamics of the environment and approach it using a Gaussian
processes and a hierarchical latent variable model approach.

Robust RL.. The idea of robust RL is to learn policies that are
robust to certain types of errors or mismatches. In the context of
our paper, mismatch occurs in the sense of encountering agents of
unknown types that have not been encountered at training time
and the learned policies should be robust in this situation. Pinto
et al. [23] consider training of policies in the context of a desta-

bilizing adversary with the goal of coping with model mismatch
and data scarcity. Roy et al. [29] study the problem of RL under
model mismatch such that the learning agent cannot interact with
the actual test environment but only a reasonably close approxima-
tion. The authors develop robust model-free learning algorithms for
this setting. Similarly, approaches for domain randomization aim at
learning robust policies by creating a variety of simulated environ-
ments and training agents that work well on all of them [15, 37].
In this way, these approaches can be used for closing the reality
gap, i.e., the gap between simulation and real-world, which is for
instance often encountered in robotics due to a mismatch between
simulators and the physical reality.

POMDP based approaches. The setting which we consider in this
paper can also be treated within a POMDP framework in which
the parameters θ represent a part of the latent state space. In such
a framework, a policy can be learned which maps beliefs about the
state of the systems to actions and inferences about θ correspond
to computing posterior probabilities. In this spirit, Fern et al. [8]
developed a decision-theoretic framework whose objective is to ob-
serve a goal-directed agent and to select assistive actions. Similarly,
Javdani et al. [16] consider the problem of providing assistance
to minimize the expected cost-to-go for an agent with unknown
goal, and proposed methods for approximately solving the involved
POMDPs which are typically intractable to solve optimally.

More complex interactions, teaching, and steering. In our paper,
the type of interaction between two agents is limited as agent I
does not affect agent U’s behaviour, allowing us to gain a deeper
theoretical understanding of this setting. There is also a related

literature on “steering” the behavior of the other agent. For ex-
ample, (i) the environment design framework of Zhang et al. [44],
where one agent tries to steer the behavior of another agent by
modifying its reward function, (ii) the cooperative inverse reinforce-
ment learning of Hadfield-Menell et al. [11], where the human uses
demonstrations to reveal a proper reward function to the AI agent,
and (iii) the advice-based interaction model [3], where the goal is to
communicate advice to a sub-optimal agent on how to act.

Dealing with non-stationary agents. The work of [7] is closely
related to ours: they design a Switching Agent Model (SAM) that
combines deep reinforcement learning with opponent modelling
to robustly switch between multiple policies. Zheng et al. [45]
also consider a similar setting of detecting non-stationarity and
reusing policies on the fly, and introduce distilled policy network

that serves as the policy library. Our algorithmic framework is
similar in spirit to these two papers, however, in our setting, the
focus is on acting optimally against an unknown agent whose
behavior is stationary and we provide theoretical guarantees on the
performance of our algorithms. Singla et al. [34] have considered
the problem of learning with experts advice where experts are not
stationary and are learning agents themselves. However, their work
is focused on designing a meta-algorithm on how to coordinate
with these experts and is technically very different from ours. A
few other recent papers have also considered repeated human-
AI interaction where the human agent is non-stationary and is
evolving its behavior in response to AI agent (see [21, 25]). Prior
work also considers a learner that is aware of the presence of other
actors [9, 27].

8 CONCLUSIONS

Inspired by real-world applications like virtual personal assistants,
we studied the problem of designing AI agents that can robustly
cooperate with unknown agents in multi-agent scenarios. We fo-
cused on the important practical aspect that there is often a clear
distinction between the training and test phase: the explicit reward
information is only available during training but adaptation is also
needed during testing. We provided a framework for designing
adaptive policies and gave theoretical insights into its robustness.
In experiments, we demonstrated that these policies can achieve
good performance when interacting with previously unseen agents.

While we focused on collaborative tasks, we would like to point
out that our algorithms are also applicable to competitive tasks, and
most of our theoretical guarantees still hold. Another interesting
setting is when the AI agent I is dealing with a human user U with
non-stationary behavior. Our theoretical guarantees do not directly
apply in this case, however, we expect a certain degree of robustness
because our algorithms perform online inference of the type of U,
thereby allowing us to track changing behavior.

ACKNOWLEDGMENTS

This work was supported by Microsoft Research through its PhD
Scholarship Programme. Sebastian Tschiatschek did a part of this
work while being with Microsoft Research.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

454

REFERENCES

[1] Pieter Abbeel and Andrew Y Ng. 2004. Apprenticeship learning via inverse
reinforcement learning. In International Conference on Machine Learning (ICML).

[2] Saleema Amershi, Dan Weld, Mihaela Vorvoreanu, Adam Fourney, Besmira
Nushi, Penny Collisson, Jina Suh, Shamsi Iqbal, Paul N. Bennett, Kori Inkpen,
Jaime Teevan, Ruth Kikin-Gil, and Eric Horvitz. 2019. Guidelines for human-AI
interaction. In CHI. ACM, Article 3, 13 pages.

[3] Ofra Amir, Ece Kamar, Andrey Kolobov, and Barbara Grosz. 2016. Interactive
teaching strategies for agent training. In International Joint Conferences on Artifi-

cial Intelligence (IJCAI).
[4] Felipe Leno da Silva and Anna Helena Reali Costa. 2019. A Survey on Transfer

Learning for Multiagent Reinforcement Learning Systems. Journal of Artificial
Intelligence Research 64 (2019), 645–703.

[5] Christos Dimitrakakis, David C Parkes, Goran Radanovic, and Paul Tylkin. 2017.
Multi-view Decision Processes: The helper-AI problem. In Advances in Neural

Information Processing Systems (NeurIPS).
[6] Eyal Even-Dar and Yishay Mansour. 2003. Approximate Equivalence of Markov

Decision Processes. In Learning Theory and Kernel Machines, Bernhard Schölkopf
and Manfred K. Warmuth (Eds.). Springer, Berlin, Heidelberg, 581–594.

[7] Richard Everett and Stephen J. Roberts. 2018. Learning Against Non-Stationary
Agents with Opponent Modelling and Deep Reinforcement Learning. In AAAI

Spring Symposia 2018.
[8] Alan Fern, Sriraam Natarajan, Kshitij Judah, and Prasad Tadepalli. 2014. A

Decision-Theoretic Model of Assistance. Journal of Artificial Intelligence Research
50 (2014), 71–104.

[9] Jakob N. Foerster, Richard Y. Chen, Maruan Al-Shedivat, Shimon Whiteson,
Pieter Abbeel, and Igor Mordatch. 2018. Learning with Opponent-Learning
Awareness. In International Conference on Autonomous Agents and Multiagent

Systems (AAMAS). 122–130.
[10] Aditya Grover, Maruan Al-Shedivat, Jayesh K. Gupta, Yuri Burda, and Harrison

Edwards. 2018. Learning Policy Representations in Multiagent Systems. In
International Conference on Machine Learning (ICML). 1797–1806.

[11] Dylan Hadfield-Menell, Stuart J. Russell, Pieter Abbeel, and Anca D. Dragan. 2016.
Cooperative Inverse Reinforcement Learning. In Advances in Neural Information

Processing Systems (NeurIPS).
[12] Luis Haug, Sebastian Tschiatschek, and Adish Singla. 2018. Teaching inverse

reinforcement learners via features and demonstrations. In Advances in Neural

Information Processing Systems (NeurIPS). 8464–8473.
[13] Matteo Hessel, Hubert Soyer, Lasse Espeholt, Wojciech Czarnecki, Simon Schmitt,

and Hado van Hasselt. 2019. Multi-Task Deep Reinforcement Learning with
PopArt. In AAAI. 3796–3803.

[14] Yeping Hu, Alireza Nakhaei, Masayoshi Tomizuka, and Kikuo Fujimura. 2019.
Interaction-aware Decision Making with Adaptive Strategies under Merging
Scenarios. arXiv preprint arXiv:1904.06025 (2019).

[15] Stephen James, Paul Wohlhart, Mrinal Kalakrishnan, Dmitry Kalashnikov, Alex
Irpan, Julian Ibarz, Sergey Levine, Raia Hadsell, and Konstantinos Bousmalis. 2019.
Sim-to-real via sim-to-sim: Data-efficient robotic grasping via randomized-to-
canonical adaptation networks. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition. 12627–12637.
[16] Shervin Javdani, Henny Admoni, Stefania Pellegrinelli, Siddhartha S. Srinivasa,

and J. Andrew Bagnell. 2018. Shared autonomy via hindsight optimization for
teleoperation and teaming. The International Journal of Robotics Research 37, 7
(2018), 717–742.

[17] Parameswaran Kamalaruban, Rati Devidze, Volkan Cevher, and Adish Singla.
2019. Interactive Teaching Algorithms for Inverse Reinforcement Learning. In
International Joint Conference on Artificial Intelligence (IJCAI).

[18] Joel Z. Leibo, Vinícius Flores Zambaldi, Marc Lanctot, Janusz Marecki, and Thore
Graepel. 2017. Multi-agent Reinforcement Learning in Sequential Social Dilem-
mas. In International Conference on Autonomous Agents and Multiagent Systems

(AAMAS). 464–473.
[19] Owen Macindoe, Leslie Pack Kaelbling, and Tomás Lozano-Pérez. 2012. Pomcop:

Belief space planning for sidekicks in cooperative games. In AIIDE.
[20] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540
(2015), 529–533.

[21] Stefanos Nikolaidis, Swaprava Nath, Ariel D Procaccia, and Siddhartha Srinivasa.
2017. Game-theoretic modeling of human adaptation in human-robot collabora-
tion. In International Conference on Human-Robot Interaction (HRI). 323–331.

[22] Stefanos Nikolaidis, Ramya Ramakrishnan, Keren Gu, and Julie A. Shah. 2015.
Efficient Model Learning from Joint-Action Demonstrations for Human-Robot
Collaborative Tasks. In International Conference on Human-Robot Interaction (HRI).
189–196.

[23] Lerrel Pinto, James Davidson, Rahul Sukthankar, and Abhinav Gupta. 2017. Ro-
bust Adversarial Reinforcement Learning. In International Conference on Machine

Learning (ICML). 2817–2826.
[24] Neil C. Rabinowitz, Frank Perbet, H. Francis Song, Chiyuan Zhang, S. M. Ali

Eslami, and Matthew Botvinick. 2018. Machine Theory of Mind. In International

Conference on Machine Learning (ICML). 4215–4224.
[25] Goran Radanovic, Rati Devidze, David Parkes, and Adish Singla. 2019. Learning

to Collaborate in Markov Decision Processes. In International Conference on

Machine Learning (ICML). 5261–5270.
[26] Md Shihanur Rahman and AMT Oo. 2017. Distributed multi-agent based coordi-

nated power management and control strategy for microgrids with distributed
energy resources. Energy conversion and management 139 (2017), 20–32.

[27] Roberta Raileanu, Emily Denton, Arthur Szlam, and Rob Fergus. 2018. Modeling
Others using Oneself in Multi-Agent Reinforcement Learning. In International

Conference on Machine Learning (ICML). 4254–4263.
[28] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder Witt, Gregory Farquhar,

Jakob Foerster, and Shimon Whiteson. 2018. QMIX: Monotonic Value Function
Factorisation for Deep Multi-Agent Reinforcement Learning. In International

Conference on Machine Learning. 4292–4301.
[29] Aurko Roy, Huan Xu, and Sebastian Pokutta. 2017. Reinforcement Learning

under Model Mismatch. In Advances in Neural Information Processing Systems

(NeurIPS). 3043–3052.
[30] Steindór Sæmundsson, Katja Hofmann, and Marc Peter Deisenroth. 2018. Meta

Reinforcement Learning with Latent Variable Gaussian Processes. In UAI.
[31] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. 2016. Safe,

multi-agent, reinforcement learning for autonomous driving. arXiv preprint

arXiv:1610.03295 (2016).
[32] Guni Sharon, Roni Stern, Ariel Felner, and Nathan R Sturtevant. 2015. Conflict-

based search for optimal multi-agent pathfinding. Artificial Intelligence 219 (2015),
40–66.

[33] David Silver. 2005. Cooperative Pathfinding. AIIDE 1 (2005), 117–122.
[34] Adish Singla, Seyed Hamed Hassani, and Andreas Krause. 2018. Learning to

Interact With Learning Agents. In AAAI. 4083–4090.
[35] Adish Singla, Ryen W White, Ahmed Hassan, and Eric Horvitz. 2014. Enhancing

personalization via search activity attribution. In SIGIR. 1063–1066.
[36] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-

duction. MIT press.
[37] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter

Abbeel. 2017. Domain randomization for transferring deep neural networks from
simulation to the real world. In International Conference on Intelligent Robots and

Systems (IROS). 23–30.
[38] Sebastian Tschiatschek, Ahana Ghosh, Luis Haug, Rati Devidze, and Adish Singla.

2019. Learner-aware Teaching: Inverse Reinforcement Learning with Preferences
and Constraints. In Advances in Neural Information Processing Systems (NeurIPS).

[39] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, An-
drew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds,
Petko Georgiev, et al. 2019. Grandmaster level in StarCraft II using multi-agent
reinforcement learning. Nature (2019), 1–5.

[40] Ryen W White, Wei Chu, Ahmed Hassan, Xiaodong He, Yang Song, and Hongn-
ing Wang. 2013. Enhancing personalized search by mining and modeling task
behavior. In International Conference on World Wide Web (WWW). 1411–1420.

[41] RyenWWhite, AhmedHassan, Adish Singla, and Eric Horvitz. 2014. From devices
to people: Attribution of search activity in multi-user settings. In International

Conference on World Wide Web (WWW). 431–442.
[42] H James Wilson and Paul R Daugherty. 2018. Collaborative intelligence: Humans

and AI are joining forces. Harvard Business Review 96, 4 (2018), 114–123.
[43] Jiachen Yang, Alireza Nakhaei, David Isele, Hongyuan Zha, and Kikuo Fujimura.

2018. CM3: Cooperative Multi-goal Multi-stage Multi-agent Reinforcement
Learning. arXiv preprint arXiv:1809.05188 (2018).

[44] Haoqi Zhang, David C Parkes, and Yiling Chen. 2009. Policy teaching through
reward function learning. In Conference on Electronic Commerce (EC). 295–304.

[45] Yan Zheng, Zhaopeng Meng, Jianye Hao, Zongzhang Zhang, Tianpei Yang, and
Changjie Fan. 2018. A Deep Bayesian Policy Reuse Approach Against Non-
Stationary Agents. InAdvances in Neural Information Processing Systems (NeurIPS).
962–972.

[46] Brian D. Ziebart. 2010. Modeling Purposeful Adaptive Behavior with the Principle

of Maximum Causal Entropy. Ph.D. Dissertation. Advisor(s) Bagnell, J. Andrew.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

455

	Abstract
	1 Introduction
	2 The Problem Setup
	2.1 The setting
	2.2 Utility of agent I

	3 Designing Robust Policies
	3.1 Algorithmic framework
	3.2 Performance analysis

	4 Training Procedures
	4.1 Training procedure AdaptPool
	4.2 Training procedure AdaptDQN

	5 Inference Procedure
	6 Experiments
	6.1 Environment details
	6.2 Experimental setup
	6.3 Results

	7 Related Work
	8 Conclusions
	Acknowledgments
	References

