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ABSTRACT

Distributed Constraint Optimization Problems (DCOPs) are a power-
ful tool to model multi-agent coordination problems that are dis-

tributed by nature. The formulation is suitable for problems where

variables are discrete and constraint utilities are represented in tabu-

lar form. However, many real-world applications have variables that

are continuous and tabular forms thus cannot accurately represent

constraint utilities. To overcome this limitation, researchers have

proposed the Continuous DCOP (C-DCOP) model, which are DCOPs

with continuous variables. But existing approaches usually come

with some restrictions on the form of constraint utilities and are

without quality guarantees. Therefore, in this paper, we (i) propose
an exact algorithm to solve a specific subclass of C-DCOPs; (ii) pro-
pose an approximation method with quality guarantees to solve

general C-DCOPs; (iii) propose additional C-DCOP algorithms that

are more scalable; and (iv) empirically show that our algorithms out-

perform existing state-of-the-art C-DCOP algorithms when given

the same communication limitations.
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1 INTRODUCTION

The Distributed Constraint Optimization Problem (DCOP) [9, 28, 31]

formulation is a powerful tool to model cooperative multi-agent

problems. DCOPs are well-suited to model many problems that

are distributed by nature and where agents need to coordinate

their value assignments to maximize the aggregate constraint utili-

ties. DCOPs are widely employed to model distributed problems

such as meeting scheduling [17, 26], sensor and wireless network

coordination [8, 39], multi-robot coordination [44], smart grid opti-

mization [12, 23, 27], smart home automation [11, 32], and cloud

computing applications [20]. Recent advances improve the state of

the art [1, 2, 4, 5, 10, 18, 21, 22, 24, 29, 30, 40, 42]; solve extensions
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like Asymmetric DCOPs [6, 7, 37, 43] and Dynamic DCOPs [17, 19];

and improve key metrics like privacy [14, 15, 35, 36].

Typically, DCOPs assume that the variables are discrete and the

constraint utilities are represented in tabular form (i.e., a utility is

defined for every combination of discrete values of variables). While

these assumptions are reasonable in some applications where values

of variables correspond to a set of discrete possibilities (e.g., the set
of tasks of robots in multi-robot coordination), they make less sense

in applications where values of variables correspond to a continuous
range of possibilities (e.g., the range of sensor orientations in sensor

networks or the range of frequencies in wireless networks).

These limiting assumptions have prompted Stranders et al. [33]

to propose Continuous DCOPs (C-DCOPs), which extend DCOPs to

allow for continuous variables. As variables can now take values

from a continuous range, constraint utilities are also extended from

tabular forms to functional forms. Approaches to solve C-DCOPs

include Continuous MS (CMS) [33], Hybrid CMS (HCMS) [38], Par-
ticle Swarm Based Functional DCOP (PFD) [3], and Bayesian DPOP
(B-DPOP) [13]. Both CMS and HCMS extend the discrete Max-Sum
(MS) algorithm [8], where CMS approximate utility functions with

piecewise linear functions and HCMS combines the discrete MS

algorithm with continuous non-linear optimization methods. On

the other hand, PFD uses particle swarm optimization techniques

and B-DPOP combines the Bayesian optimization framework with

Distributed Pseudo-tree Optimization Procedure (DPOP) [31] to solve
C-DCOPs. A key limitation of the first three algorithms is that

they do not provide quality guarantees on the solutions found. B-

DPOP does guarantee that it will eventually converge to the global

optimum for Lipschitz-continuous objective functions, but do not

provide guarantees on intermediate solutions prior to convergence.

To overcome this limitation, we extend the inference-based

DPOP algorithm to three extensions – Exact Continuous DPOP
(EC-DPOP); Approximate Continuous DPOP (AC-DPOP); and Clus-
tered AC-DPOP (CAC-DPOP). We also extend the search-based

Distributed Stochastic Algorithm (DSA) [41] to Continuous DSA
(C-DSA). While EC-DPOP provides an exact approach to solve

C-DCOPs with linear or quadratic utility functions and are defined

over tree-structured graphs, AC-DPOP, CAC-DPOP, and C-DSA

solve C-DCOPs approximately with any smooth, differentiable util-

ity functions and without restriction on graph structure.
1
We also

1
As we consider both convex and non-convex functions, optimization methods such as

sub-gradient, interior-point and ellipsoid methods are not applicable. Even in the case

that we deal with binary quadratic functions, we assume they can be either concave

or convex.
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provide theoretical properties on the error bounds of AC-DPOP and

communication complexities of AC-DPOP, CAC-DPOP, and C-DSA.

Finally, we show that these algorithms outperform HCMS in ran-

domly generated instances when given the same communication

limitations.

2 BACKGROUND

We now provide background on DCOPs as well as DPOP and DSA,

which we extend later to solve Continuous DCOPs.

DCOPs: A Distributed Constraint Optimization Problem (DCOP) [9,
28, 31] is a tuple ⟨A,X,D, F,α⟩, where
• A = {ai }

p
i=1

is a set of agents.
• X = {xi }ni=1

is a set of variables.
• D = {Dx }x ∈X is a set of finite domains and each variable x ∈ X
takes values from the set Dx .

• F = { fi }mi=1
is a set of utility functions, each defined over a set

of variables: fi :

∏
x ∈xfi Dx → R ∪ {−∞}, where infeasible

configurations have −∞ utilities and xfi ⊆ X is the scope of fi .
• α : X→ A is a mapping function that associates each variable to

one agent.

In this paper, we assume that each agent controls exactly one vari-

able and thus use the terms “agent” and “variable” interchangeably.

We also assume that all utility functions are binary functions be-

tween two variables.

A solution σ is a value assignment for a set xσ ⊆ X of variables

that is consistent with their respective domains. The utility F(σ ) =∑
f ∈F,xf ⊆xσ f (σ ) is the sum of the utilities across all the applicable

utility functions in σ . A solution σ is complete if xσ =X. The goal
is to find an optimal complete solution x∗ = argmaxx F(x).

A constraint graph visualizes a DCOP, where nodes in the graph

correspond to variables in the DCOP and edges connect pairs of

variables appearing in the same utility function. A pseudo-tree ar-
rangement has the same nodes and edges as the constraint graph

and satisfies that (i) there is a subset of edges, called tree edges,
that form a rooted tree and (ii) two variables in a utility function

appear in the same branch of that tree. The other edges are called

backedges. Tree edges connect parent-child nodes, while backedges

connect a node with its pseudo-parents and its pseudo-children.

DPOP: Distributed Pseudo-tree Optimization Procedure (DPOP) [31]
is a complete inference algorithm that is composed of three phases:

• Pseudo-tree Generation: In this phase, all agents start building a

pseudo-tree [16] (line 1).

• UTIL Propagation: Each agent, starting from the leaves of the

pseudo-tree, computes the optimal sum of utilities in its subtree

for all variables in its separator.
2
It does so by adding the utilities

of its functions with the variables in its separator and the utilities

in the UTIL messages received from its children (line 5). The

agent then projects out its variable (line 7) and sends the projected
function in a UTIL message to its parent (line 8).

• VALUE Propagation: Each agent, starting from the root of the

pseudo-tree, determines the optimal value for its variable and

then sends the optimal value to its children and pseudo-children.

2
The separator of xi contains all ancestors of xi in the pseudo-tree that are connected

to xi or to one of its descendants.

Algorithm 1: DPOP()

1 Ti ← PseudotreeGeneration()

2 Util-Propagation(Ti )
3 Value-Propagation(Ti )

Procedure UTIL-Propagation(Ti )

4 receive Utilc (fc ) from each ac ∈ Childreni

5 fagent_view ← Add
*.
,

f si
as ∈Separatori

, fc
ac ∈Childreni

+/
-

6 if isRoot() is False then

7 fpi ← Project(fagent_view, xi )
8 send Utili (fpi ) msg to Parenti

Procedure VALUE-Propagation(Ti )

9 if isRoot() then

10 vi ← argmaxxi fi (xi )
11 send Valuei (vi ) msg to ac ∈ Childreni
12 else

13 receive Valuej (vj ) msg from Parenti
14 vi ← argmaxxi fagent_view (xi , x j1 = vj1, . . . , x jn = vjn )
15 send Valuei (vi ) msg to to all ac ∈ Childreni

The root agent does so by choosing the values of its variables

from its UTIL computations, and send them as VALUE messages.

DSA: Distributed Stochastic Algorithm (DSA) [41] is an incomplete,

synchronous search algorithm. In DSA, each agent, after initially

choosing a random value, loops over a sequence of steps until the

termination condition is met. In each loop, the agent exchanges

the information about its latest values with all neighboring agents.

Then, the agent will choose the value with the largest gain in its

local utility with neighboring agents, and decide stochastically to

change its assignment to the new value or keep the current value.

The process repeats until the termination condition is met such as

timeout or the solution quality doesn’t improve.

3 CONTINUOUS DCOP MODEL

The Continuous DCOP (C-DCOP) model generalizes the regular

discrete DCOP model by modeling the variables as continuous

variables [33]. It is defined by a tuple ⟨A,X,D, F,α⟩, where A, F,
and α are exactly as defined in DCOPs. The key differences are:

• X = {xi }ni=1
is now a set of continuous variables.

• D = {Dx }x ∈X is now a set of continuous domains. Each variable

x ∈X takes values from the interval Dx = [LBx ,UBx ].

The objective of a C-DCOP is the same as that of DCOPs – to find

an optimal complete solution x∗ = argmaxx F(x).

4 C-DCOP ALGORITHMS

Wenow introduce four C-DCOP algorithms: Exact Continuous DPOP
(EC-DPOP), Approximate Continuous DPOP (AC-DPOP), and Clus-
tered AC-DPOP (CAC-DPOP), which are based on DPOP; and Con-
tinuous DSA (C-DSA), which is based on DSA. These algorithms
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Function ADD-Functions(fpw ,дpw )

16 Initialize a piecewise function hpw
17 ⟨x, d⟩ ← GetCommonVariablesAndRanges(fpw , дpw )

18 foreach domain d ∈ d do

19 foreach f ∈ fpw with domain df do

20 foreach д ∈ дpw with domain dд do

21 if d is a sub-domain of f and д then

22 h ← f + д
23 dh = d ∪ df ∪ dд
24 Add h with domain dh to hpw

25 return hpw

Function PROJECT-Function(fpw ,xi )

26 Initialize a piecewise function hpw
27 foreach f ∈ fpw do

28 Solve

∂f
∂xi

= 0 for closed-form solutions x̄i = д∗ (x)

29 Compute д̄ (x) = f (xi = x̄, x)
30 Compute

ˇд (x) = f (xi = LBx , x)
31 Compute

ˆд (x) = f (xi = U Bx , x)
32 Solve д̄, д̌, and д̂ pairwise for intersection range set r
33 foreach r ∈ r do
34 Detemine either д̄, д̌, or д̂ is the largest on range r
35 Add the function with range r to hpw

36 return hpw

extend the capability of their original algorithms such that they can

solve C-DCOPs with continuous variables and utility functions.

4.1 Exact Continuous DPOP

In this section, we propose Exact Continuous DPOP (EC-DPOP),

which is an exact algorithm. EC-DPOP solves C-DCOPs that are

defined over tree-structured graphs with linear or quadratic utility

functions. The algorithm extends the two primary operations of

DPOP in the UTIL propagation phase – Add and Project. Those

modification are modified such that they can be applied to C-DCOPs

in the context of continuous variables and real-valued functions.

In the UTIL propagation phase of DPOP, each agent adds the
utilities in UTIL messages received from its children together with

the utilities of constraints that the agent shares with the agents in

its separator. Then, it projects out its own variable and sends the

projected utilities as a UTIL message to its parent. Both of these

processes are straightforward as utility functions are represented in

tabular form, thereby allowing the agents to enumerate through all

possible value combinations, aggregate their corresponding utilities,

and optimize over them. However, this process is more complicated

in C-DCOPs, where utility functions are represented in functional

form. We now describe Add-Functions and Project-Function,

which are two EC-DPOP operations extended from the Add and

Project operations of DPOP respectively.

ADD-Functions: In EC-DPOP, each UTIL message contains a

piecewise function that is derived from the Project-Function op-

eration (described below). The addition of two piecewise functions

is done by adding their sub-functions, which may have different

domains. We will use the following two functions for illustration:

f12 (x1, x2) =




f a
12

if x1 ∈ [0, 4], x2 ∈ [0, 6]

f b
12

if x1 ∈ [0, 4], x2 ∈ [6, 10]

f c
12

if x1 ∈ [4, 10], x2 ∈ [0, 6]

f d
12

if x1 ∈ [4, 10], x2 ∈ [6, 10]

f23 (x2, x3) =




f a
23

if x2 ∈ [0, 3], x3 ∈ [0, 7]

f b
23

if x2 ∈ [0, 3], x3 ∈ [7, 10]

f c
23

if x2 ∈ [3, 10], x3 ∈ [0, 7]

f d
23

if x2 ∈ [3, 10], x3 ∈ [7, 10]

When adding two piecewise functions, we first identify the com-

mon variables between the two functions and create a new set of

atomic ranges for the variables (line 17). For example, when adding

the functions f12 and f23 above, the only common variable is x2, and

the atomic ranges for x2 are [0, 3], [3, 6], and [6, 10]. The ranges of

the other variables remain unchanged from their original functions.

We then take the Cartesian product of the range sets of all common

variables and associate the appropriate function to that range. For

example, adding f12 and f23 will result in f123 (line 18-24):

f123 (x1, x2, x3) =




f a
12
+ f a

23
if x1 ∈ [0, 4], x2 ∈ [0, 3], x3 ∈ [0, 7]

f a
12
+ f b

23
if x1 ∈ [0, 4], x2 ∈ [0, 3], x3 ∈ [7, 10]

f c
12
+ f a

23
if x1 ∈ [4, 10], x2 ∈ [0, 3], x3 ∈ [0, 7]

f c
12
+ f b

23
if x1 ∈ [4, 10], x2 ∈ [0, 3], x3 ∈ [7, 10]

. . .

PROJECT-Function: Projecting out a variable xi from a piece-

wise function means projecting out xi from every sub-function

f (xi ,xi1 , . . . ,xik ):

д (xi1, . . . , xik ) = max

xi
f (xi , xi1, . . . , xik ) (1)

First, we solve the following for closed-form solutions (line 28):

∂f (xi , xi1, . . . , xik )

∂xi
= 0 (2)

Let x̄i = д
∗ (xi1 , . . . ,xik ) be the solution to the above equation, one

candidate function for д is (line 29):

д̄ (xi1, . . . , xik ) = f (xi = x̄i , xi1, . . . , xik ) (3)

We then compute other two candidate functions (line 30-31):

д̌ = f (xi = LBxi , xi1, . . . , xik ) (4)

д̂ = f (xi = U Bxi , xi1, . . . , xik ) (5)

Next, we need to find the intervals where each of the functions

д̄, д̌ and д̂ is the largest (line 32-35). Those intervals are the inter-

sections between the three functions and, thus, we solve each of

the equations below to find them:

д̌ (xi1, . . . , xik ) = д̂ (xi1, . . . , xik ) (6)

д̌ (xi1, . . . , xik ) = д̄ (xi1, . . . , xik ) (7)

д̂ (xi1, . . . , xik ) = д̄ (xi1, . . . , xik ) (8)

The result of this process is the set of intervals where either д̄, д̌, or
д̂ is the largest. The projected function д is the piecewise function

that consists of д̄, д̌, and д̂with the intervals that they are the largest
in.

Unfortunately, it is not always possible to find closed-form so-

lutions to the partial derivative in Equation (2). We discuss below

two types of functions – binary linear and quadratic functions –
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where it is possible to find closed-form solutions. We assume that

all coefficients are non-zero.

• Binary linear functions of the form f (xi ,xi1 ) = axi + bxi1 + c .
By following the monotonicity property of linear functions, we

can find д(xi1 ) = maxxi f (xi ,xi1 ) at the two extremes:

д (xi1 ) =



f (xi = LBxi , xi1 ) if a > 0

f (xi = U Bxi , xi1 ) otherwise

(9)

• Binary quadratic functions of the form f (xi ,xi1 ) = ax2

i + bxi +

cx2

i1 + dxi1 + exixi1 + f . We first take the partial derivative and

setting it to 0 to find the critical point:

∂f (xi , xi1)
∂xi

= 0 (10)

x̄i =
−b − exi1

2a
(11)

As x̄i has to belong to the interval [LBxi ,UBxi ], we solve the
inequalities below to find the range xi1 as the domain of д̄(xi1 ):

LBxi ≤
−b − exi1

2a
≤ U Bxi (12)

Example 1: Consider that agent a1 projects out its variable x1 from

the sub-function f (x1,x2):

f (x1, x2) = −2x 2

1
+ 4x1 + 2x 2

2
+ x2 + 7x1x2 − 10

where x1 ∈ [−5, 5] and x2 ∈ [−10, 10]. The agent needs to find the

piecewise function д(x2) = maxx1
f (x1,x2). The two functions at

the bounds of x1’s range are:

д̌ (x2) = f (x1 = −5, x2) = 2x 2

2
− 34x2 − 80 x2 ∈ [−10, 10]

д̂ (x2) = f (x1 = 5, x2) = 2x 2

2
+ 36x2 − 40 x2 ∈ [−10, 10]

First, we find the critical point of f by taking the partial derivative:

∂f (x1, x2)

∂x1

= 0

−4x1 + 4 + 7x2 = 0

x1 =
7x2 + 4

4

Since x1 ∈ [−5, 5], we need to find the appropriate range of x2:

−5 ≤ x1 ≤ 5

−5 ≤
7x2 + 4

4

≤ 5

−24

7

≤ x2 ≤
16

7

Now, we get the function д̄(x2) at the critical point x1 =
7x2+4

4
:

д̄ (x2) = f (x1 =
7x2 + 4

4

, x2)

=
65

8

x 2

2
+ 8x2 − 8

where x2 ∈ [
−24

7
, 16

7
].

Next, we will find all intersection points of д̌, д̂ and д̄ by solving

them pairwise. By solving д̌ = д̂, we have:

д̌ (x2) = д̂ (x2)

2x 2

2
− 34x2 − 80 = 2x 2

2
+ 36x2 − 40

x2 = −
4

7

Solving д̌ = д̄:

д̌ (x2) = д̄ (x2)

2x 2

2
− 34x2 − 80 =

65

8

x 2

2
+ 8x2 − 8

x2 = −
24

7

Solving д̂ = д̄:

д̂ (x2) = д̄ (x2)

2x 2

2
+ 36x2 − 40 =

65

8

x 2

2
+ 8x2 − 8

x2 =
16

7

After finding all intersection points of the three functions, we

combine them with the bounds of x2’s range. This will result in

a set of ranges: [−10,− 24

7
], [− 24

7
,− 4

7
], [− 4

7
, 16

7
], [ 16

7
, 10]. In each

range, by choosing an arbitrary point and evaluating the functions

д̌, д̄ and д̂, we can determine which one is the largest on that range.

Finally, the projection of the utility function f (x1,x2) is:

д (x2) = max

x1

f (x1, x2)

= max

x1

(
−2x 2

1
+ 4x1 + 2x 2

2
+ x2 + 7x1x2 − 10

)

=




2x 2

2
− 34x2 − 80, x2 ∈ [−10, − 24

7
]

65

8
x 2

2
+ 8x2 − 8, x2 ∈ [− 24

7
, − 4

7
]

65

8
x 2

2
+ 8x2 − 8, x2 ∈ [− 4

7
, 16

7
]

2x 2

2
+ 36x2 − 40, x2 ∈ [

16

7
, 10]

4.2 Approximate Continuous DPOP

In general C-DCOPs, it is not always possible to find a closed-form

solution to Eq. (2) (e.g., it is a multivariate equation). Therefore, an

approximation approach is desired for C-DCOPs.

In this section, we introduce Approximate Continuous DPOP (AC-

DPOP), which is an approximation algorithm that can solve C-

DCOPs without any restriction on the functional form of the con-

straint utilities. AC-DPOP is similar to DPOP in that the algorithm

has the same three phases: pseudo-tree generation, UTIL propaga-

tion, and VALUE propagation. The pseudo-tree generation phase is

identical to that of DPOP, and the UTIL and VALUE propagation

phases share some similarities.

We now describe how these two propagation phases work at a

high level. In the UTIL propagation phase, like DPOP, agents in

AC-DPOP first discretizes the domains of variables and sends up

UTIL tables that contain utilities for each value combination of

values of separator agents. However, unlike DPOP, agents in AC-

DPOP perform local optimization of these values by “moving” them

along the gradients of relevant utility functions in order to improve

the overall solution quality. As such, the addition and projection

operators have to be updated as well. In the VALUE propagation

phase, like DPOP, agents in AC-DPOP sends down their best value

down to their children in the pseudo-tree. However, unlike DPOP,

agents in AC-DPOP may receive values of ancestors that do not

map to computed utilities. As such, the agents must perform local

interpolation of the utilities value in this phase.

We now describe the algorithm in more detail, where we focus

on the UTIL and VALUE propagation phases of the algorithm.
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Procedure AC-UTIL(Ti )
37 if isLeaf() then

38 V ← DiscretizePPDomain()

39 V ′ ← LeafMoveValues(V )

40 Tpi ← CreateUtilTable(V ′)

41 else

42 receive Utilc (Tc ) from each ac ∈ Childreni
43 Add additional tuples and interpolate utilities for all Tc

44 UT ILi ← Add
*.
,

f si
as ∈Separatori

, Tc
ac ∈Childreni

+/
-

45 V ′ ← NonLeafMovePPValues(UT ILi )
46 Tpi ← Interpolate(V ′, UT ILi )

47 send Utili (Tpi ) to Parenti

UTIL Propagation: In this phase, each leaf agent first discretizes

the domains of agents in its separator (i.e., its parent and pseudo-

parents) and then stores the Cartesian product of these discrete

values in set V (line 38). Therefore, each element v ∈ V is a tuple

⟨vi1 , . . . ,vik ⟩, where vi j is the value of separator agent ai j .
Then, for each tuple v ∈ V , the agent “moves” each value vi j

in the tuple along the gradient of each function that is relevant to

agent ai j (line 39). Specifically, the agent updates value vi j for each
separator agent xi j of the leaf agent xi :

vij = vij + α
∂fij (xi , xij )

∂xij

������

vij

argmaxxi fij (xi ,xij =vij )

(13)

where fi j (xi ,xi j ) is the utility function between the leaf agent

xi and the separator agent xi j and α is the learning rate of the

algorithm. The agent “moves” the values until they have either con-

verged or a maximum number of iterations is reached. Then, the up-

dated values inV ′ and their corresponding utilities define the UTIL
table that is sent to the parent agent in a UTIL message (line 40).

As in DPOP, each non-leaf agent will first wait for the UTIL

messages from each of its children. When all the UTIL messages are

received, the agent processes the UTIL tables in the UTIL message

from each child. Note that in regular DPOP, the Cartesian product

of the values of agents are consistent across the UTIL tables of all

children (i.e., if the values of an agent a exists in the Cartesian prod-

ucts of two children, then those values are identical). The reason

is because all agents agree on the discretization of the domain of

agent a and do not update the value of that agent (such as through

Eq. (13)). Therefore, each agent can easily add up the utilities in

the UTIL tables received together with the utilities of constraints

between the agent and its separator.

In contrast, since the values of agents are updated according to

Eq. (13) in AC-DPOP, these values may no longer be consistent

across different UTIL tables received. To remedy this issue, each

agent first adds additional tuples to each UTIL table received such

that the Cartesian product of the values of agents are consistent

across all the UTIL tables. Then, it approximates the utilities of the

newly added tuples by interpolating between the utilities of the

existing tuples. Finally, since the UTIL tables are now all consis-

tent, the agent adds up the utilities in the UTIL tables of children

together with the utilities of constraints between the agent and its

separator in the same way as DPOP. However, if some variables in

the separator are missing, the agent will discretize and add their

domains to the UTIL table (line 43-44).

After the utilities are added up, similar to leaf agents, the agent

xi will proceed to repeatedly update the values vi j of the separator
ai j in the updated Cartesian product V using:

vij = vij + α
∂fij (xi , xij )

∂xij

������

vij

argmaxxi UT ILi (xi ,vi1 , . . .,vik )

(14)

where UTILi is the utility table that is constructed from the sum-

mation of the children’s utilities and the utilities of constraints

between the agent xi with its separator set (line 45). The key dif-

ference between this Eq. (14) and the Eq. (13) used by leaf agents

is that the substitution of fi j (xi j = vi j ) with UTILi (vi1 , . . . ,vik ).
The reason for this substitution is that the utilities in the UTIL

tables of leaf agents are only a function of constraints with their

separator agents and the functional form of those constraints are

known. Therefore, leaf agents can optimize exactly those functions

to get accurate gradients. In contrast, utilities in the UTIL tables of

non-leaf agents are also a function of the constraints between its

descendant agents and its separator agent, and the functional form

of those constraints are not known. They are only represented by

samples within the UTIL tables received and are now integrated

into the UTIL table of the non-leaf agent. Therefore, in Eq. (14), the

agent approximates its maximum value xi by choosing the best

value of under the assumption that the values of the other separa-

tor agents are exactly the same as in the tuple ⟨vi1 , . . . ,vik ⟩ that is
being updated.

After these values are all updated, the agent approximates their

corresponding utilities by interpolating between known utilities

and sends these utilities up to its parent in a UTIL message (line 46).

These UTIL messages propagate up to the root agent, which then

starts the VALUE phase.

VALUE Propagation: The root agent starts this phase after pro-

cessing all the UTIL messages received from its children in the UTIL

phase. It chooses its best value based on its computed UTIL table

and sends this value down to its children. Like in DPOP, each agent

will repeat the same process after receiving the values of its parent

and pseudo-parents. However, unlike DPOP, an agent may receive

the information that its parent or pseudo-parent is taking on a value

that doesn’t correspond to an existing value in the agent’s UTIL

table due to the values being moved during the UTIL propagation

phase. As a result, the agent will need to approximate the utility

for this new value received and it does so by interpolating between

known utilities in its UTIL table.

Once all the leaf agents receive VALUE messages from their

parents and choose their best values, the algorithm terminates.

Example 2:Given the following constraint functions of the pseudo-

tree where x1 is the parent of the only child x4, both x2 and x3 are

leaves, are the children of x4 and are the pseudo-children of x1:

f13 (x1, x3) = 16x 2

1
+ 13x1 + 12x 2

3
+ 18x3 + 9x1x3 − 13

f34 (x3, x4) = −3x 2

3
+ 18x3 − 8x 2

4
+ 8x4 + 2x3x4 + 12

Agent x3 discretizes its domain [−100, 100] into the

set of values V = {−100,−50, 0, 50, 100}, and computes

the Cartesian product of x1 and x4’s values V × V =
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{⟨−100,−100⟩, ⟨−100,−50⟩, . . . ⟨0, 0⟩, . . . }. To move values of

x1 and x4 in the tuple ⟨0, 0⟩, the agent follows the Eq. (13):

vx1
= vx1

+ α
∂f (x1, x3)

∂x1

�����

vx
1

argmaxx
3

f13 (x1=vx1
,x3 )

= 0 + 0.001 (32x1 + 9x3 + 13) |
x1=0

x3=100

= 0.913

Similarly, x3 moves value of its parent x4:

vx4
= vx4

+ α
∂f (x3, x4)

∂x4

�����

vx
4

argmaxx
3

f34 (x3,x4=vx4
)

= 0 + 0.001 (−16x4 + 2x3 + 8) |
x4=0

x3=3

= 0.014

Example 3: With the same pseudo-tree from Example 2, consider

f14 (x1,x4) = x2

1
+ 19x1 + 3x2

4
− 4x4 + 16x1x4 − 8 and x4 receives

the following UTIL messages from x3 and x2:

(a) UTIL
x4

x3
(b) UTIL

x4

x2

x1 x4 Utility x1 x4 Utility

-1.3 -1.4 22.79 -2.3 2.7 19.57

2.1 1.8 23.49 -1.4 -0.3 26.38

2.2 0.4 19.09 1.5 0.5 27.20

As one UTIL message doesn’t have some or all value tuples

from the other UTIL message (e.g., UTIL
x4

x3
doesn’t have the tuple

⟨−2.3, 2.7⟩ from UTIL
x4

x2
), agent x4 needs to add these missing tuples

and approximate their utilities using local interpolation. Then, x4

adds up the two UTIL messages, which now have identical value

tuples, with the constraint function f14 (x1,x4). This process results
in the table UTILx4

:

(a) UTIL
x4

x3
(b) UTIL

x4

x2
(c) UTILx4

x1 x4 Utility x1 x4 Utility x1 x4 Utility

-1.3 -1.4 22.79 -2.3 2.7 19.57 -2.3 2.7 -93.22

2.1 1.8 23.49 -1.4 -0.3 26.38 -1.3 -1.4 57.80

2.2 0.4 19.09 1.5 0.5 27.20 -1.4 -0.3 24.13

-2.3 2.7 21.91 -1.3 -1.4 25.42 1.5 0.5 81.52

-1.4 -0.3 22.20 2.1 1.8 25.57 2.1 1.8 148.37

1.5 0.5 20.82 2.2 0.4 26.28 2.2 0.4 96.97

Now, the agent x4 moves its parent x1’s values:

vx1
= vx1

+ α
∂f (x1, x4)

∂x1

�����

vx
1

argmaxx
4

UT ILx
4
(x1=vx1

,x4 )

= 2.2 + 0.001 (2x1 + 16x4 + 19) |
x1=2.2
x4=1.75

= 2.25

To find the argmax value, the agent x4 first creates the value set

{−99.75,−99.5, . . . , 99.75} by discretizing its domain [−100, 100].

The agent then combines every value with x1 = 2.2 to create the set

of tuples {⟨2.2,−99.75⟩, ⟨2.2,−99.5⟩ . . . , ⟨2.2, 99.75⟩}. By approxi-

mating the utilities with local interpolation fromUTILx4
, x4 chooses

the tuple ⟨2.2, 1.75⟩with the largest utility and thus pick the argmax

value as 1.75. This example also illustrates the argmax operation

used in VALUE phase.

4.3 Clustered Approximate Continuous DPOP

A possible limitation of AC-DPOP is that the number of tuples in

the Cartesian product that is propagated in the UTIL messages can

be quite large, especially if additional tuples are added to maintain

consistency between the UTIL tables of children. In communication-

constrained applications, it is preferred that the number and size of

messages transmitted between agents to be as small as possible.

With this motivation in mind, we extend AC-DPOP to Clustered
AC-DPOP (CAC-DPOP), which bounds the number of tuples sent in

UTIL messages to limit the message size. CAC-DPOP is identical to

AC-DPOP in every way except that agents choose k representative

tuples and their corresponding utilities to be sent up to their parents

in UTIL messages. To choose these k representative tuples, we use

the k-means clustering algorithm [25] to cluster the tuples and then

approximate the utilities of those tuples through interpolation. This

approach assumes that tuples that are close to each other will have

similar values.

Note that while only k tuples are sent between agents in UTIL

messages, each agent still maintains the original unclustered set

of tuples in their memory. Thus, when they perform interpolation

during the VALUE propagation phase, they will use the utilities of

the unclustered set of tuples since they are more accurate than the

utilities of the clustered set of tuples.

4.4 Continuous DSA

Continuous DSA (C-DSA) is an approximation C-DCOP algorithm

that is based on DSA. Similar to DSA, each agent in C-DSA initially

chooses a random value and loops over a sequence of steps that

improves the solution quality. Agents also stochastically decide

to keep their current values or change them to new values. The

difference between C-DSA and DSA lies in the way agents choose

their values. Instead of choosing from a discrete domain, each C-

DSA agent now chooses from a continuous range by computing

the maximum of the aggregate utility functions given the current

values of neighboring agents. Specifically, after receiving messages

containing the current values of neighbors, each agent evaluates the

corresponding multivariate utility functions, resulting in a unary

function for each constraint. Then, by adding all the unary functions

together and computing its maximum, agents choose the value that

has the largest gain.

5 THEORETICAL PROPERTIES

For each reward function f (xi ,xi1 , . . . ,xik ) of an agent xi and
its separator agents xi1 , . . . ,xik , assume that agent xi discretizes
the domains of the reward function into hypercubes of size m
(i.e., the distance between two neighboring discrete points for the

same agent xi j ism). Let ∇f (v ) denote the gradient of the function
f (xi ,xi1 , . . . ,xik ) at v = (vi ,vi1 , . . . ,vik ):

∇f (v ) = (
∂f
∂xi

(vi ),
∂f
∂xi1

(vi1 ), . . . ,
∂f
∂xik

(vik ))

Furthermore, let |∇f (v ) | denote the sum of magnitude:

|∇f (v ) | = |
∂f
∂xi

(vi ) | + |
∂f
∂xi1

(vi1 ) | + . . . + |
∂f
∂xik

(vik ) |

Assume that |∇f (v ) | ≤ δ holds for all utility functions in the

DCOP and for all v .

Theorem 5.1. The error bound of discrete DPOP is |F|mδ .

Proof. First, we prove that the magnitude of the projection of

function f is also bounded from above by δ . Let xi = vi be the
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point where:

д (xi1, . . . , xik ) = f (xi = vi , xi1, . . . , xik )

= max

xi
f (xi , xi1, . . . , xik )

Then, assume that |∇д(v ) | > δ for all v . Let v ′ =
(vi ,vi1 , . . . ,vik ) and v

′
−i = (vi1 , . . . ,vik ), then:

|∇f (v ′) | = |
∂f
∂xi

(vi ) | + |
∂f
∂xi1

(vi1 ) | + . . . + |
∂f
∂xik

(vik ) |

≥ |
∂f
∂xi1

(vi1 ) | + . . . + |
∂f
∂xik

(vik ) |

= |∇д (v ′−i ) |

> δ

This contradicts our assumption that |∇f (v ) | ≤ δ for all v .
The error bound of each function is thenmδ because each hy-

percube is of sizem and the magnitude of the gradient within each

hypercube is at most δ . As the error may be accumulated each

time an agent sums up utility functions, the total error bound for a

problem is thus |F|mδ , where |F| is the number of utility functions

in the problem. □

Theorem 5.2. The error bound of AC-DPOP is |F|(m + |A|kαδ )δ ,
where k is the number of times each agent “moves” values of its
separator by calling Eqs. (13) or (14).

Proof. After each “move” by either Eqs. (13) or (14), the maximum

size of the hypercubes increases by αδ , where α is the learning

rate. Since each agent performs this update only k times, the largest

increase in the size of the hypercube is kαδ . Finally, since the value
of an agent can be updated by any of its children or pseudo-children,

the total increase in the size of the hypercube is thus |A|kαδ , where
|A| is the number of agents in the problem. Therefore, this combined

with the proof of the bound for discrete DPOP, the error bound is

thus |F|(m + |A|kαδ )δ . □

Theorem 5.3. In a binary constraint graph G = (X,E), the num-
ber of messages of HCMS and C-DSA with k iterations is 4k |E |
and 2k |E |, respectively. The number of messages of discrete DPOP,
AC-DPOP, and CAC-DPOP is 2|X|.

Proof. HCMS has the same number of messages as that of the Max-

Sum algorithm [8]. Every edge of the constraint graph has two

variable nodes and one function node and, thus, it takes 4 messages

per edge in one iteration. The total number of messages in HCMS

is thus 4k |E |. On the other hand, C-DSA requires 2 messages per

edge in one iteration and, thus, requiring 2k |E | messages in total.

The number of messages required by AC-DPOP and CAC-DPOP

is identical to that of DPOP – each agent sends one UTIL message

to its parent and one VALUE message to each of its children in the

pseudo-tree. Since pseudo-trees are spanning trees, the number of

messages is thus 2|X|. □

Theorem 5.4. The message size complexity of discrete DPOP,
AC-DPOP and CAC-DPOP is O (dw ), O ((d |X|)w ), and max{|A|,k },
respectively, where d is the number of points used by each agent to
discretize the domain of its separator agents,w is the induced width of
the pseudo-tree, and k is the number of clusters used by CAC-DPOP.

Proof. For DPOP, the message size complexity is O (dw ) [31]. For
AC-DPOP, as the values of an agent are “moved” by their children

and pseudo-children, in the worst case, all the values are unique

and the maximum number of such values is O (d |X|). The message

sizes are then similar to discrete DPOP with O (d |X|) values per
agent. Therefore, its message size complexity is O ((d |X|)w ). For
CAC-DPOP, the message size complexity of UTIL messages isO (k )
since only the utilities of the centroids of k clusters are sent. And

the message size complexity of VALUE messages is O ( |A|), such
as in a fully-connected graph where an agent sends the values of

every agent from the root of the pseudo-tree down to itself in a

VALUE message to its child. Therefore, the message complexity of

the algorithm is the O (max{|A,k }). □

6 EXPERIMENT RESULTS

We empirically evaluate EC-DPOP, AC-DPOP, CAC-DPOP, and C-
DSA3

against (discrete) DPOP and HCMS on both random trees

and random graphs. We adapt the (discrete) DPOP algorithm to

solve C-DCOPs by discretizing the continuous domain into discrete

representative points.

We measure the quality of solutions, simulated runtimes [34] as

well as the number of messages taken by the algorithm. Since HCMS

and C-DSA are iterative algorithms that may take a long time and

a large number of messages before converging, in order for fair

comparisons, we initially planned to terminate the two algorithms

after it sends as many messages as the DPOP-variants. However, in

a single iteration, HCMS requires more messages than the DPOP-

variants, and C-DSA requires the exact number of messages as the

DPOP-variants. We thus let HCMS and C-DSA terminate after one

iteration. We did not report the actual number of messages since

they could be trivially computed via Theorem 5.3.

Tables 1 and 2 show the reported solution qualities in a unit of

1,000 and simulated runtimes in milliseconds and seconds (ending

with s) on random trees and graphs, respectively, where we vary the

number of agents |A| and every algorithm discretizes the domains

of variables into three points. We also vary the number of times AC-

DPOP and CAC-DPOP agents “move” a point (by calling Eqs. (13)

or (14)) from 5 to 20. Tables 3(a) and 3(b) show the results on random

trees and graphs, respectively, where we set the number of agents

|A| to 20 and vary the number of discrete points from 1 to 9. In all

our experiments, we set the domain of each agent to be in the range

[−100, 100]. We generate utility functions that are binary quadratic

functions, where the signs and coefficients are randomly chosen.

Our experiments were performed on a 2.10GHz machine with 8GB

of RAM. Results are averaged over 20 runs, each with a timeout of

30 minutes.

Random Trees: We omit the results of CAC-DPOP from Table 1

since it finds identical solutions to AC-DPOP on trees – there is

no need to perform any clustering on trees since an agent does

not receive utilities for value combinations of its parent from its

children since there are no backedges in the pseudo-tree.

Not surprisingly, EC-DPOP finds the best solution since it is

an exact algorithm. However, it could only solve the smallest of

instances – due to memory limitations, the agents could not store

the necessary number of piecewise functions to accurately repre-

sent the utility functions after adding functions and projecting out

3
We use DSA-B and set p = 0.6.
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Table 1: Varying the Number of Agents on Random Trees with Three Initial Discrete Points

|A | HCMS (time) C-DSA (time) DPOP (time)

AC-DPOP (time)

EC-DPOP (time)

5 10 15 20

10 129 (129) 177 (34) 220 (170) 330 (710) 356 (735) 374 (753) 404 (774) 518 (406)

20 306 (190) 468 (49) 541 (270) 795 (1.3s) 870 (1.4s) 947 (1.4s) 1008 (1.4s) —

30 436 (290) 678 (74) 766 (404) 1128 (1.9s) 1230 (2.0s) 1331 (2.0s) 1414 (2.1s) —

40 636 (358) 1137 (191) 1104 (620) 1587 (3.0s) 1728 (3.0s) 1876 (3.0s) 1980 (3.1s) —

50 832 (393) 1294 (420) 1456 (741) 2109 (3.8s) 2316 (3.6s) 2533 (3.6s) 2687 (3.8s) —

Table 2: Varying the Number of Agents on Random Graphs with p1 = 0.2 and Three Initial Discrete Points

|A | HCMS (time) C-DSA (time) DPOP (time)

AC-DPOP (time) CAC-DPOP (time)

5 10 15 20 5 10 15 20

15 265 (206) 523 (38) 522 (321) 710 (822) 763 (925) 824 (949) 891 (1.0s) 639 (1.2s) 697 (1.3s) 715 (1.3s) 787 (1.5s)

20 345 (308) 842 (43) 865 (6.3s) 1171 (14.7s) 1285 (17.6s) 1334 (32.7s) 1407 (41.7s) 1006 (2.4s) 1017 (2.5s) 975 (2.7s) 973 (2.9s)

25 439 (500) 1108 (64) — — — — — 1040 (8.2s) 1101 (10.6s ) 1024 (11.9s) 1027 (13.8s)

30 506 (605) 1400 (164) — — — — — 1513 (47.6s) 1682 (99.5s) 1597 (96.3s) 1656 (178.0s)

Table 3: Varying the Number of Discretized Points

(a) Random Trees with |A | = 20 (b) Random Graphs with |A | = 20 and p1 = 0.2

Points HCMS (time) DPOP (time) AC-DPOP (time) HCMS (time) DPOP (time) AC-DPOP (time) CAC-DPOP (time)

1 0 (174) 0 (238) 254 (572) 0 (263) 15 (220) 428 (613) 431 (1.5s)

3 306 (190) 541 (270) 870 (1.4s) 345 (308) 865 (6.3s) 1285 (17.6s) 1017 (2.5s)

9 554 (291) 990 (369) 1133 (1.1s) 706 (552) — — 1272 (1185.9s)

variables. In general, AC-DPOP finds better solutions than DPOP, C-

DSA and HCMS but at the cost of higher runtimes. AC-DPOP finds

better solutions than DPOP because AC-DPOP spends more time

on updating the value of representative points before propagating

up the pseudo-tree. In contrast, the values chosen by DPOP is fixed

from the start. HCMS performs poorly because a single iteration

is insufficient for it to converge to a good solution. Interestingly,

a single iteration is sufficient for C-DSA to find solutions that are

comparable in quality to those found by DPOP. Additionally, as ex-

pected, the quality of solutions found by AC-DPOP improves with

increasing number of times points are “moved” by the algorithm.

We omit the results of EC-DPOP from Table 3(a) as it failed

to solve these instances and we omit the results of CAC-DPOP

because it finds identical solutions to AC-DPOP on trees. We do

not include C-DSA in the experiment because it does not discretize

the domains. Not surprisingly, the quality of solutions found by all

the three algorithms and their runtimes increase with increasing

number of points. The reason is that the agents can more accurately

represent the utility function with more points.

Random Networks: The trends in Table 2 are similar to those in

random trees, except that CAC-DPOP finds solutions with qualities

between that of AC-DPOP andDPOP. The reason is that CAC-DPOP

clusters the points into k clusters and only propagate a representa-

tive point from each cluster. Therefore, the k points represent the

utility functions less accurately than the full number of unclustered

points that AC-DPOP uses. However, this reduced number of points

propagated also improves the scalability of CAC-DPOP, where it is

able to solve problems larger problems than AC-DPOP and DPOP.

The trends in Table 3(b) are again similar to that in random trees,

except that both AC-DPOP and DPOP ran out of memory with 9

points. Interestingly, CAC-DPOP also finds better solutions than

AC-DPOP when they use only 1 point.

7 CONCLUSIONS

Motivated by applications where agents choose their values from

continuous ranges, researchers have proposed C-DCOPs to model

continuous variables. However, existing methods suffer from the

limitation that they do not provide quality guarantees. We remedy

this limitation by introducing (i) EC-DPOP, which finds exact solu-

tions for C-DCOPs with linear or quadratic utility functions and are

defined over tree-structure graphs; (ii) AC-DPOP, which finds error-
bounded solutions for general C-DCOPs; (iii) CAC-DPOP, which
limits the message size of AC-DPOP to a user-defined parameter k ;
and (iv) C-DSA, which is a scalable local search C-DCOP algorithm.

Experiment results show that our algorithms find better solutions

than HCMS, an existing state-of-the-art algorithm, when given

the same communication limitations. Moreover, these algorithms

combined extend the applicability of DCOPs to more applications

that require quality guarantees on the solutions found as well as

those that require limited communication capabilities.
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