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ABSTRACT

We propose a deep reinforcement learning algorithm for semi-
cooperative multi-agent tasks, where agents are equipped with
their separate reward functions, yet with some willingness to coop-
erate. It is intuitive that defining and directly maximizing a global
reward function leads to cooperation because there is no concept of
selfishness among agents. However, it may not be the best way of
inducing such cooperation due to problems that arise from training
multiple agents with a single reward (e.g., credit assignment). In ad-
dition, agents may intentionally be given separate reward functions
to induce task prioritization whereas a global reward function may
be difficult to define without diluting the effect of different tasks
and causing their reward factors to be disregarded. Our algorithm,
called Peer Evaluation-based Dual DQN (PED-DQN), proposes to
give peer evaluation signals to observed agents, which quantify
how they strategically value a certain transition. This exchange of
peer evaluation among agents over time turns out to render agents
to gradually reshape their reward functions so that their action
choices from the myopic best response tend to result in a more
cooperative joint action.
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1 INTRODUCTION

Cooperation is a core challenge in many multi-agent scenarios.
Many reinforcement learning methods have been proposed to solve
sequential decision making for single agents, but they do not di-
rectly translate to multi-agent settings due to the simultaneously
evolving policies. These simultaneous policy updates make the en-
vironment’s transition probabilities non-stationary, which in turn
makes learning difficult for the agents because a slight change
in one’s policy may cause another agent’s policy to perform sub-
optimally.

There exist many studies examining fully cooperative cases, cor-
responding to when agents agree to cooperate unconditionally, e.g.,
being controlled by a single authority. In these cases, a set of agents
usually learn to maximize a global! reward and thus the reward
function itself can naturally induce a certain level of cooperation.
Recent related work for fully cooperative tasks includes COMA
[5], VDN [25], OMIX [20], CommNet [24], DIAL [2], PS-TRPO [7],
Mordatch and Abbeel [16], Havrylov and Titov [8], LDQN [18], just
to name a few.

However, other types of of tasks exist where agents have their
own interests but may benefit from cooperation. An example is
sequential social dilemmas [12]. It may also be the case that agents
are intentionally given separate rewards to prioritize different tasks.
In this paper, we consider such “semi-cooperative” tasks where
agents may each have its own separate reward function (the joint
reward scenario is a special case), but is willing to cooperate if an in-
centive for cooperation is appropriately provided.? In other words,
semi-cooperative tasks are those with separate per-agent reward
functions but whose agents may nonetheless benefit from coopera-
tion. As such, zero-sum games are by nature not semi-cooperative.
This may occur when agents are controlled by different admin-
istrative domains, in which some administrators may choose to
prioritize some reward factors over others. The key challenge in
semi-cooperative tasks is mainly due to the selfishness represented
by separate reward functions, which often results in agents’ choice

!Global reward means that each agent receive the same (scalar) reward value for each
step. We use this interchangeably with "joint reward."

%In cooperative game theory, Nash bargaining solution [17] and Shapley value [21]
are the axiomatic rules for a fair distribution of such cooperation incentive. The way
of allocating the final cooperation gain to each agent is beyond the scope of this paper.
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of non-cooperative actions (e.g., in prisoner’s dilemma, social opti-
mum differs from Nash equilibrium). The goal is for the agents to
find cooperative policies (which may not be an equilibrium e.g., as
in Prisoner’s dilemma) that will maximize the social welfare (SW),
which, for the purpose of this study, we define as the sum of the
rewards of each agent across the entire episode. Since the goal is to
maximize SW, one could artificially transform the semi-cooperative
task into a fully cooperative one by defining the summation of in-
dividual rewards as the joint reward function, thereby summing up
to the SW when accumulated across the entire episode. However,
it is known that this vanilla conversion suffers from the signal-
to-noise problem [30], which makes it difficult for the agents to
associate their actions to the reward. In addition, Singh et al. [22]
have shown that individual rewards lead to faster convergence.
We argue that a simplistic summing of the rewards is impractical
since (1) it disregards the reward assignment and (2) it essentially
overlooks the misalignments in rewards, which potentially could
have characterized the difference between agents’ priorities.

1.1 Contribution

In this paper, we propose a value-based deep MARL method for
semi-cooperative tasks, called PED-DQN (Peer-Evaluation based
Dual-DQN). PED-DQN gradually reshapes the rewards in a dis-
tributed manner such that the agents’ perception of the equilibrium
gears towards the outcome that optimizes the SW to avoid the
impracticalities that would arise in using the SW itself as the re-
ward. Our method remains free from constraints on the number of
reshaping since agents are reshaping rewards distributedly, with
only peer evaluation signals and local observations as guide. The
key idea is to address the problem from the mechanism design
perspective in game theory. In semi-cooperative sequential tasks,
agents will naturally choose the action that is the local best re-
sponse to its current observation and local reward experience. In
our approach, we gradually change the game that the agents play
so that their local-view actions from best responses become closer
to more cooperative joint actions. To this end, each agent receives
simple peer evaluations in the form of feedback messages from
other agents. These peer evaluations quantify how an agent “feels”
about a certain transition, rendering each agent reshape its reward
function, so as for agents’ local best responses to result in global
cooperation. We instantiate our idea by developing a learning mech-
anism consisting of two DQNs (Mission DQN and Action DQN)
per agent, where Mission DQN calculates peer evaluations with
respect to the agent’s own reward, and Action DQN selects actions
with consideration of the previously received peer evaluations. In
execution, each agent is equipped with its own action DQN and
executes in a fully distributed manner.

This approach is expected to efficiently address many semi-
cooperative tasks without explicitly forcing full cooperation, as
in the methods of using the sum of individual rewards as a global,
shared reward, thus allowing an easier per-agent action-to-reward
association for sample-efficient training. Our method does not nec-
essarily require a centralized module as in many recent works based
on CTDE (Centralized Training with Distributed Execution), e.g.,
COMA [5], VDN [25], QMIX [20], DIAL [2], and Multiagent Soft
Q-Learning [29]. This allows easier distributed implementation for

521

AAMAS 2020, May 9-13, Auckland, New Zealand

large-scale training and entails smaller exploration complexity un-
like centralized modules in many CTDE methods that are affected
by the permutation dependence of multi-agent actions and states.
Finally, our approach is flexible since it does not require the knowl-
edge of the number of agents beyond the agent’s observation. The
source code of our algorithm is downloadable in this link>.

1.2 Related Work

One of the earliest approaches in decentralized deep MARL used
independent DQN [26] to study the cooperation and competition
among agents, depending on their reward functions. We concern
ourselves with the cooperative end of the spectrum, where coop-
erative strategies can benefit the agents. Many studies considered
fully cooperative multi-agent systems, where agents are expected
to learn policies that directly maximize a global reward. Recent
popular works that address joint rewards and some key challenges
(e.g., non-stationarity), utilize a centralized optimization module.
COMA [5] proposed a counterfactual advantage function for bet-
ter credit assignment and thus more efficient training. VDN [25],
QMIX [20], and QTRAN [23] proposed value function decompo-
sition among agents to induce cooperation. MADDPG [15] is an
exception to the line of research handling a joint reward with a
centralized module. However, MADDPG [15] still relies on a sort
of pseudo-centralization, where each agent maintains its own cen-
tralized critic. Foerster et al. [4] adopts multi-agent importance
sampling to modify the workings of the experience replay in a
cooperative setting. Foerster et al. [6] approximates the joint belief
of the hidden environment state as a product of individual beliefs,
also in a fully cooperative setting. We note that this paper aligns
with VDN [25], QMIX [20], and QTRAN [23] in that the four are
all value-based methods, but the key distinction is that we consider
the semi-cooperative tasks.

Although maximizing a joint reward is the goal, it is not always
the case that a joint reward is given. Leibo et al. [12] studied the
environment where each agent has a separate reward function. In
particular, agents face a social dilemma where mutual cooperation
may give them higher rewards, but they have no a priori guaran-
tee of any other agent’s cooperation. Jaques et al. [10] modified
the agent’s reward by incentivizing agents that have influential
behavior. They claim that an agent’s behavior itself is a form of
communication, and that having influence on other agents’ deci-
sion process allows agents to find coordinated policies. SOS [13]
and LOLA [3] used opponent shaping, where each agent takes into
consideration that other agents are also learning by anticipating
the other agents’ policy updates. These works focus on how an
agent can modify its policy such that other agents who are re-
actively updating their policies can be shaped according to the
agent’s selfish reward. This can be seen as a “passive-aggressive”
way of influencing others’ policies whereas our approach can be
seen as a direct confrontation since agents directly receive a form
of incentive/penalty from their peers.

Hughes et al. [9] and Eccles et al. [1] attempt to solve these
dilemmas by modifying the agents’ reward to include factors that
depend on other agents’ rewards. These studies primarily target fair-
ness; agents are penalized for having significantly different rewards

Shttps://github.com/ddhostallero/PED-DQN
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compared to others’. Hughes et al. [9] incorporate a penalty term
for unfair reward distribution among the agents. Eccles et al. [1]
suggested a stochastic game extension of the tit-for-tat approach,
where a niceness network is designed, calculating the expected
change in the discounted rewards of the agents. The niceness net-
work is highly relevant to our peer evaluation mechanism, but
differs from our work in that we induce cooperation by maximizing
the sum of rewards, rather than making the agents get a fair share
of rewards.

Studies that share the common goal with ours, i.e., maximizing
the social welfare, include Peysakhovich and Lerer [19] and Wang
et al. [27]. Peysakhovich and Lerer [19] considered a stag-hunt
game and proved that modifying the reward by a weighted sum of
one’s and its opponent’s rewards helps in choosing the cooperative
actions. Wang et al. [27] introduced the genetic algorithm of evolv-
ing the reward network given to the agents, and the reward network
is trained to maximize the overall sum of rewards. Our approach
also takes into account the social welfare of the agents as in [19],
but it is applicable to more general games. The difference with our
approach is that ours uses local information in a distributed setting
instead of a centralized arena of agents. Moreover, our method
uses a more direct signal of peer evaluation, rather than using a
genetically evolving reward network as in [27], thereby leading to
better sample efficiency.

2 MODEL AND GOAL

Stochastic game. We consider a multi-agent task with each agent
having its own individual reward by modeling it with a stochastic
game [14]. We consider n agents, indexed by a € A = {1,2,....n}
and denote —a as the set of other agents A\ a. Each agent a has a set
of actions Uy. At each time step, each agent has a partial observation
04 according to observation function O(s, a) where s € S is the
true state. It conditions its policy 7,4 (ug|04) on its observation to
decide its action ug € Uy. Let 7w = [4]4¢ #1- The set of observations
from all agents at a time is denoted by O. The joint action of all
the agents is denoted by u € U, where U :=U; ® - - - ® Uy, is the
set of all joint actions. Once each agent takes its action, forming a
joint action, say u, a transition to the next state occurs, following
a transition function P(s’|s, u). Each agent then receives a reward
rq (s, u) that may differ across agents and y is the discount factor.
Semi-cooperative tasks. We define semi-cooperative tasks as the
set of tasks where each agent may have a separate reward function
but may benefit from cooperative strategies such as the prisoner’s
dilemma and the staghunt game.

Goal: Maximizing the social welfare. In semi-cooperative tasks,
we aim to achieve maximum cooperation, which we quantify by
obtaining the following socially optimal policy:

m* = (1 (u1lo1), 75 (uz]02), . . ., 7 (tnon))

across agents, i.e, maximizing social welfare defined by the sum of
the (discounted) rewards of all agents over the entire episode:

" = arg max Z Esepm u~n[ra(s, u)]
7 acA
where Es. =[] denotes the expected reward with respect to dis-
counted state distribution p” by initial state distribution and state
transition dynamics distribution.
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3 METHODS
3.1 Change of Games via Reward Reshaping

In the execution environment, where each agent only has access
to its partial observation, it is natural that each agent chooses its
action based on its local best response. In the semi-cooperative task
with individual rewards, local best responses often lead to social
dilemma. Our idea is to change the game by reshaping agents’
reward functions over time, so that the agents’ actions from the
local best responses become socially optimal ones that maximize the
cooperation effect. We call such reshaped rewards well-coordinated
rewards.

Denote by G* and #' = (f} : a € A) the game and its reward
function at time step t = 0, 1, - - - . We initialize t = 0 and then run
the following loop in the training:

(i) Compute the optimal policy 7 from G*
(ii) Evaluate how well-coordinated G? is by evaluating z*
(iii) Update from G’ to G**! by updating from #* to #/*1
the ‘evaluation feedback’ from (ii)
(iv) Increment ¢ and go to (i).

, using

Through these updates, we hope that G? gradually changes into
a better coordinated one. We later elaborate on the details on the
evaluation feedback and the implementation based on multiple
DON:s.

Running policy computation from a given game G’ in (i) and
reward update in (iii) is expected to require significantly long con-
vergence time, because in large-scale tasks with many agents, just
computing the optimal policy in (i) alone would be challenging in
training. Motivated by this, we take an approach of running the
following two updates in parallel.

ﬂt+1 — F(”t”ﬁt)

= H(#, nt),

Policy Update: (1)

()

where we conceptually denote by F and H the mappings in policy
and reward updates. Note that we may take different learning rates
(thus different operation time-scale) in F and H for a more stable
training, as done in many algorithms with multiple parallel updates,
e.g., actor and critic algorithms [11]. In the policy update F, each
agent’s policy 7 is updated to maximize the reshaped reward ' at
that time that can be done by a reinforcement learning algorithm,
e.g., DON. In the reward update H, agents estimate the value of
current policies and update the reshaped reward appropriately.

Reward Update: #/*1

3.2 Reward Update with Peer Evaluation

Peer evaluation signal. Given the current policy ¢ and sampled

trajectory (ot Joltl yt iyt ), each agent k generates a counterfactual

,u
evaluation signal (CES) zltC for the observed transition Oltc +l

¢
=
ri.(s?, u?), the peer evaluation signal generated from agent k is
defined as:

—>Ok .

For a given observed transition, action u;, and base reward rltC =

tot t+l b N . ot Loot+l to 1+l Lot ot
z (0 0 up, 1) = r+yQF (Ok R ACH )—Ql’; (0> Uy.)-

®)
The peer evaluation signal in (3) can be interpreted as a quantifica-
tion of the effect of the joint actions on agent k’s expected reward,
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QM (oh, Ua) QY (o™, UL) Q' (05, Uy)

EEEN

& 2
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Y o ) OZ+1 a ( a > a)
1 Peer Eval
u
T —lZZ UZH a TZ+1 Z(tl+1
Environment }—‘ Environment ]
'3 t t t+1 _t
22 (O(u Ugs Ty Oa+ ) Z—a,) Exp Replay

(a) Example: Evaluation feedback exchange

(b) The architecture of PED-DQN

Figure 1: Evaluation Feedback and Architecture of PED-DQN. (a) Agent 2 broadcasts its evaluation of the transition z; and then
calculates the aggregate peer evaluation Z; using the received feedback z; and z3 from its peers, agents 1 and 3. (b) A-DON is
used for e-greedy action selection, while M-DQN is used for the calcualtion of peer evaluation.

given a current joint policy z‘. Positive z,tC implies that the cur-
rent joint action u? results in a more favorable reward on average,
whereas the opposite applies for negative values. Note that this
has similar formulation as the temporal difference but it is used
differently since these signals are intended to affect the peers in-
stead of the agent itself. The peer evaluation signal zltc is broadcast
to its “peers” K, which is a set of agents who impact agent k’s
observation. If K. is empty, then no reward reshaping happens. We
assume that Ky is given a priori; otherwise, K = A \ {k}. We also
use action-value function Q instead of value function V to reduce
the noise from the agent’s own action.

Reshaping reward from peer evaluation. Let a be a “peer” of
the agent k, i.e., k € K, and a € K, who would receive the peer
evaluation signal zltc from each k € K. From the perspective of
agent a, we average the received peer evaluation signals of its
observation o}, and action ul, from its peer set K, to the reward
reshaping term Z!, [0, ul] as follows.*

1
" 1Kl 2 %

keK,

Zq |0g ug

©

Figure 1a shows an example of the reward reshaping term and the
peer evaluation signal. The reshaping term Z% [0}, ul] is sampled

several times to evaluate the averaged effect of (0%, u}) to its peers.

~

1
|Kal

X
keK,

Z (04 ug]

E(0,0',u,r)~n’:0a:05,ua:u,ﬁ [Zk(ok» O],c’ Uk, rk)] (5)

In order to estimate the expectation, we maintain the moving aver-
age of Z! [0}, ul], as follows.

22“ [02, ufl] — (1- a)Zé[oZ,ué] + aZf, [02, ufl] , 6)
where « is the learning rate hyperparameter. Then, the reshaped

reward 7% [0}, ul] is derived as the summation of the base reward
r! and the reshaping term Z! [0}, ul]:

Afr ot ot t Strot ot
Falog.ugl =1y + BZ,l04 ugl,

™

4The square bracket in (4) means we update the entry [0}, u4] in Z%.
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where f is the weight hyperparameter quantifying how willing the
agents are to reshape their own reward. Depending on the individ-
ual reward functions, setting f > 0 will sometimes prevent agents
to achieve their individual optimal rewards. Since the goal is to
maximize the social welfare, this sacrifice of individual optimum is
a natural compromise. The case when f = 0 corresponds to totally
selfish agents, which becomes equivalent to independent learning
(e.g., IQL [26]). Given this formulation, we can say that the reshaped
reward vector #! is a mapping from the average evaluation vector
Zt. That said, the reward update = H(#, n%) can be under-
stood as the evaluation update Zt+ = H’(Zt, 7t) for some other
mapping H’, where the relation between the reshaped rewards and
the evaluation signals is given by (7).

We note that this reward reshaping plays a pivotal role in aiding
the agents on how to “behave as is expected of them”. With training,
each agent is essentially incentivized to act in ways other agents
think it would, with the collective welfare in mind. This makes the
learning process easier and intuitively corresponds to a gradual re-
moval of non-stationarity. This is because even though the updates
may be concurrent, agents can somewhat tell how the other agents
would update. CESs implicitly evaluate changes in other agents’
policies. Typically, policies change due to exploration; however, in
our mechanism, these exploration steps will automatically have
consequences in the form of CESs, which will discourage agents
from transitions that have been given highly negative CESs.

One interesting property of the reward reshaping scheme is that
the resulting reshaped rewards is also dependent on the definition
of peers. In particular, there is a trade-off between the locality of
peers and the agent-interpretability of the reshaping term. If we
consider all the other agents as the peers of a (i.e. K; = —a), then
the reshaping term is highly diluted and becomes less informative
in terms of crediting the change of rewards to a because any of
the other agents could have caused the Z, to be non-zero. On the
other hand, if the set of peers is too “localized®, peer evaluations
that should affect all the agents will propagate too slowly or in
extreme cases, not propagate to the other agents at all. A reasonable
definition of the peer set would be the set of observable agents as it
is easier for the agents to interpret rewards that they can associate
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Algorithm 1 Peer Evaluation based Dual DQN Training Algorithm

1: Initialize replay memory D
2: Initialize [Qf], with random parameters 64 = {0{;‘ }g]: 1
3. Initialize [QM], with random parameters 6M = {1 }sz: 1
4: Initialize target parameters oM = M 94 = 94
s: for episode = 1 to max_episodes do
6:  Observe initial observation 0 = {0(1), og, OON}
7. fort =1 to max_steps do
8: With probability e, select a random action u},
9: ul, = arg max,: Q‘;‘(oé, u2|9‘;‘) for each agent a
10: Take action u? = {ué}fl\lzl
11: Retrieve next observation o’*! and reward r = {ré}fz\]: 1
12: Calculate the peer evaluation z., for each agent a
2l = rl +y max Q3 (o} ul6)") — QN (of ufl0")
13: Identify peers K, and aggregate peer evaluations Z, for
each agent a using Eq. (4).
14: Store transition (of, u?, rf, 0!, Z%) in D
15: Sample a random minibatch of transitions (o, u,r, 0’, Z)
from D
16: if ET +t > warm_up_period then
17: Fq = rq + PZ, for each sample of agent a
18: else
19: Fq = rq for each sample of agent a
20: end if
21: Let y2 (o’ ra|9,‘;") =r +ymax Q% (o, ut’l|92‘/)
22: Let y (o2, ra|92/[') = f+ymaXQM(o&,uéz|9{1W)
23: For each agent a update 64 by minimizing the loss
L?(oa, Ug, rq, o;|92‘, 93/)
=) QY ouled) -y (o108
(o,u,r,0’)e
(0a,Ua,7a,05)
24: For each agent a update ™ by minimizing the loss
LM (04, uq, Fa, 0,103, 631
= > (@M (o,ulosh) - yi (o' rl0A"))?
(o,u,r,0’)e
(0a,Ua,7a,04)
Update target network parameters oM = oM’ 94" = g4
every period [
25:  end for
26: end for

to an observation. We leave the problem of selecting optimal peer
sets for future studies.

3.3 Peer-evaluation based Dual DQN
(PED-DQN)

To instantiate our idea on the evaluation-based reward reshaping,

we now describe the design of our training architecture called Peer

Evaluation based Dual DQN (PED-DQN). PED-DQN consists of two

DQNs running under different time-scales, where each learning
agent is equipped with an Action DQN (A-DQN) and a Mission DQN
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Figure 2: Prisoner’s dilemma: Evolution of Q-values and re-
shaped rewards for agent 1.

(M-DQN), used for action selection and peer evaluation, respec-
tively.

Figure 1b shows the flow of information during the training. A-
DON outputs the Q-values Q";‘, which is trained with the reshaped
reward 74. The agents use the output of A-DQN to select an action
that has the maximum Q-value for a given observation. Updating
the A-DON corresponds to a mapping F in (1). M-DQN maintains
an estimate of QM with respect to the current joint policy 7%,
which can be trained according to its own “mission” defined by
the base reward r,. The output of M-DQN is used to calculate the
peer evaluation signal as in (3). As the joint policy of agents is
updated, the peer evaluation signal also changes accordingly by
updating the M-DQN, which corresponds to the mapping H in (2).
As discussed with (1) and (2) in mind, we train the A-DQN and M-
DON in two different time-scales via employing different learning
rates. As in the actor-critic method, where the critic usually has a
faster learning rate, we use a faster learning rate for the M-DQN,
which updates for quasi-stationary A-DQN.

We do note that, although agents can be trained simultaneously
in a single computer, the mechanism is distributed by nature. Agents
only transmit their peer evaluation to a subset of agents, which
will allow for an easier distributed implementation. In addition,
the method is flexible in terms of the number of agents. Increas-
ing the number of agents would obviously affect the policies, but
the algorithm and its implementation do not require any special
consideration when introducing new agents.

The training algorithm for PED-DQN is described in Algorithm 1.
Our training algorithm is based on DQN algorithm. For practical
stability, we use the target network parameters of the M-DQN to
calculate the peer evaluation as shown in line 12. We also allow
the agents to train the A-DQN using the base reward r, for some
period of time, called warm_up_period, before training with the
reshaped reward as indicated in lines 16-20.



Research Paper

3.4 Case Study: Prisoner’s Dilemma

Table 1: Prisoner’s dilemma

(a) original payoff (b) reshaped payoff

C D C D
C|33|04 C | 3.11,3.13 | 0.10,1.13
D[40 11 D | 1.11,0.13 | -1.90,-1.87

We illustrate how our evaluation-based reward reshaping works
for a two-person Prisoner’s Dilemma (PD) (see Table 1a). It is widely
known that PD’s Nash equilibrium (D,D) differs from the socially
optimal joint action (C,C). At each step, both agents choose their
actions and receive a reward according to their joint actions. In
this case study, we simply use a single-state tabular Q-learning [28]
with two actions for easier interpretability. For testing purposes,
we keep track of the reshaped rewards by simulating all possible
combinations of actions.

Figures 2a and 2b show the evolution of Q-values and reshaped
rewards, respectively. Only Agent 1’s values are shown since the
game is symmetric. Independent Q-learning (IQL) can be seen as
a best response strategy since it chooses the action that has the
maximum Q-value. As expected, agents learn to choose defect (D),
which is a sub-optimal point. When we use peer evaluation signals,
the payoft tables are effectively reshaped, so that the each agent’s
best response leads to (C,C). At early stages of training, agents
tend to prefer defection but eventually learn to cooperate as can
be seen in Figure 2c, where the upper and lower shaded regions
represent the actions of Agents 1 and 2, respectively. As seen in
Table 1b, the game has been successfully reshaped and thus become
well-coordinated.

4 EXPERIMENTS

To evaluate the performance of our algorithm, we consider two
environments detailed in this section. For comparison, we use a
feed-forward QMIX® to represent the assumption that giving a
joint reward induces cooperation. We allow QMIX access to the
global state, which can comprise all the agents’ observations and
actions, and the whole environment information (e.g., coordinates
in the PCP task). We use Independent DQN (IDQ) to be a baseline
algorithm for agents with separate rewards. To illustrate the indi-
vidualized importance of the different components of PED-DQN,
we created ablated versions of our algorithm, which is detailed in
the next subsection (Section 4.1).

4.1 Ablation Algorithms

Peer Evaluation based DQN. To illustrate the importance of A-
DQN and M-DQN’s separation, we created an ablated version of our
algorithm, called PE-DQN. This ablated version of the PED-DQN is
only composed of a single DQN, which is used for both action selec-
tion and peer evaluation. The agent follows the logic of training the
Action-DQN. However, for peer evaluation, the following formula
is used: zg = rq + y maxy Qq(0g,u|60}) — Qq(0}, uql6}).

Prosocial DQN. Prosocial DQN is a modified version of the
PE-DOQN. Instead of sending peer evaluations, agents use the im-
mediate reward as the peer evaluation (i.e, z, = rg). This can

5Our experiments show better results and faster training when we removed recurrent
layers in QMIX.
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be thought of as the modified version of the prosocial agents in
[19]. However, the difference is that only peers can share rewards,
and that agents are using DON instead of policy gradients. Given
agent a’s peers, K, the agent’s perceived reward is now given by:

P B
Fa =ra+ 1] 2keK, Tk

4.2 Environments

Resource sharing (RS). The scenario takes the structure of a
graph, where each agent is a node. Agents are given g} gems at the
start of the episode. Each agent’s goal is to have g, gems. At each
time step ¢, agents choose whether to open, close, or share their
gems. If the agent chooses share, it will share a gem to each of its
one-hop neighbors who chose open. If there is not enough gems to
share, the receivers are chosen randomly. Sharers and receivers will
have to pay a link usage cost, which is worth —1 reward per gem.
If the agent chooses close, it will not accept any gems from other
agents. An agent’s observation is the tuple of, = (g%, g5, u},1, ufgal),

t-1
Ka
In this scenario, at least two obvious reward functions can be

formulated in addition to the link usage cost. We can simply use
the negative individual absolute error (iAE)(i.e., —|g} — g}|) as an
individual reward or use the negative mean absolute error (MAE)
as a common reward across the agents. We show that even though
MAE is an intuitive reward to enforce cooperation, it might be
easier to train using the iAE.

For all the algorithms, the individual DQNs are composed of
two fully connected hidden layers with 32 units and ReLU as the
activation function followed by 3 output units corresponding to the
agent’s possible actions. For QMIX, the global state is composed
of the goal, target, and previous actions of all agents. The mixing
network is composed of two hidden layers with 64 units.

where u;- " is the previous action of agent a’s one-hop neighbors.

Partially cooperative pursuit (PCP). A popular performance
evaluation environment in cooperative multi-agent systems is pur-
suit (a.k.a. predator-prey). The environment is a 10 X 10 grid world,
where each cell is either empty, a wall, or occupied by a preda-
tor or a prey. We only trained the predators while the prey is a
rule-based agent whose policy is to move to an empty adjacent cell.
Each agent has five possible actions corresponding to north, south,
east, west, and stay. The capture criterion is to have at least three
predators surrounding the prey. Agents can only observe a 7 X 7
grid centered at their own coordinates. We modified the scenario
by adding an individual factor to the rewards. We aim to show
that, given this kind of structure, a naive aggregation of rewards to
induce cooperation (e.g., mean or sum) may lead the agents to dis-
regard their individual factors, while using the individual rewards
may lead them to a suboptimal policy.

Each predator keeps track of their energy, which is initially set to
100 and is decreased by 1 for each action except stay. Each agent
receives a reward at the end of the episode. An agent’s reward
is given by the sum of the common and individual rewards, r, =
feom (P) + find(9ga), where p is the number of preys captured and
ga is the agent’s energy remaining at the end of the episode. We
modified the reward functions to show varying trade-offs, shown
in Figure 3.
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intervals based on 5-6 different seeds. In (a), (b), and (e), ‘PE’ and ‘Pro’ correspond to the ablated versions of PED-DQN (see

Section 4.1).

For all algorithms, the individual DQNs are composed for a con-
volutional layer with 32 filters with size 3 X 3. The output of the
convolutional layer is flattened and concatenated with the extra in-
formation (i.e., energy, prey captured, step). This is followed by two
fully connected layers with 64 units, and an output layer with five
actions. For QMIX, the global state is composed of the coordinates
of all the agents (including the prey) concatenated with the extra
information from all the predators. Although a recurrent network
may improve the performance, we figured that using RNNs only
adds complexity in training. Performance evaluations for each task
show that agents can achieve the estimated optimal values, and thus
the feed-forward network is deemed adequate for this scenario.
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4.3 Results and Discussion

In this section, we discuss the results of our experiments. Due to
space and visibility limitations only important ablation results are
shown in graphs. Full results are included in the Supplementary.

Resource sharing. In our experiments, we used 8 agents in a
circular graph. The total target gems and available gems are equal
(e, X gi = > g%, Vt) so that the maximum reward in one time step
is zero. Figure 4a shows the total episodic base rewards of the agents
averaged across multiple seeds. PED-DQN outperforms the other
algorithms by a considerable margin. In this scenario, using the PE-
DON still has some cooperation-inducing effect, even though it did
not achieve the same level as that of PED-DQN. Surprisingly, Pro-
DQN’s performance degraded after the first quarter of training. This
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is because sharing immediate rewards can amplify negative short-
term rewards (link usage cost in this case). Peer evaluations consider
possible future rewards, which dilute the negative effects of the
immediate reward when sharing or receiving gems. QMIX achieved
a similar performance as that of PE-DQN, though they learned
different policies. As shown in Figure 4b, QMIX tries to minimize
the mean absolute error, which is a large factor for the rewards.
However, QMIX downplayed the link usage cost in contrast to PE-
DON. Once an IDQ agent achieves its goal, it does not have any
incentive for letting gems pass through itself, which may hinder
others from completing their own goals.

In addition to the algorithm comparisons, we also experimented
with different  values (Figure 5a) and different definitions of peers
K (Figure 5b). Smaller § values perform worse, while assigning
B > 1 does not significantly improve the performance. Since the
graph is circular, we added the two-hop neighbors and left-neighbor
as variations of the K definitions. Our results show that the one-
hop neighbors (default K) performs best because receiving feedback
from only one agent has less representational power, while it does
not make much sense to exchange evaluations beyond one’s obser-
vation.

Partially cooperative pursuit. Figures 4d-4f show the rewards
of each algorithm across time in different PCP configurations, and
Figure 4c shows the outcomes of the policies learned with respect
to the two factors of the agents’ rewards. In all the configurations,
PED-DON consistently achieves a relatively good reward.

For the middle-ground scenario (Figure 3a), the best policy is
to capture prey with some energy threshold. QMIX was fooled
into learning to actively capture preys, which resulted in a sub-
optimal reward. I-DQN performs surprisingly well for this reward
formulation. The reason is that agents can still passively capture the
preys when they come close, even though the agents have learned
to conserve energy.

In the extremes scenario (Figure 3b), agents are expected to ei-
ther prioritize capturing preys or saving energy. PED-DQN, Pro-
DON, and QMIX learned to prioritize prey captures while IDQ and
PE-DON learned to act selfishly by trying to conserve their own
energy. IDQ converged to this equilibrium because agents need
a much higher level of coordination as opposed to just staying
still, even though capturing preys produces higher rewards. As for
PE-DQN, poor performance could also be attributed to incorrect
peer evaluation. The peer evaluations given will be biased by the
peer evaluation received, in which a poor evaluation in the earlier
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stages of the training could propagate until the end of the training.
In contrast to the previous environment, Pro-DQN was able to find
a good equilibrium, though slower than QMIX and PED-DQN. This
is because the propagation of the pro-social reward is slower since
the rewards are only given at the end of the episode. However,
giving the rewards at the end of the episode actually encouraged
the Pro-DQN agents to group together when the episode is about
to end, allowing them to passively capture preys if possible.

An interesting outcome was observed in the trust scenario (Fig-
ure 3c). The best policy is to prioritize capturing preys, although a
high level of cooperation is required due to the form of the reward
function. PED-DQN agents learned to maximize the prey capture
counts; I-DQN agents conserved their energy; and QMIX agents
learned to balance the two factors. One of the possible reasons
why QMIX failed to find the best policy is the fact that the reward
function discourages the agents to explore the “risky” behavior.
Although the agents have established that capturing preys leads to
better rewards, they did not exploit this due to the risk of getting
lower rewards in the attempt. However, PED-DQN agents were
incentivized for capturing the prey, which mitigated the effect of
the trough in the reward function.

Convergence. Although
we do not have theoretical
convergence guarantees, Fig-
ure 6 presents an empiri-
cal evidence for convergence. .
We have that the PEs tending ™
towards zero so that the re-
shaped rewards are only re-
shaped “enough” to maintain
good social welfare. Reshap-
ing beyond this extent may
lead to policies that signifi-
cantly diverge from the original intent of the reward designs (i.e.,
prioritization). Similar observation can be found for other environ-
ments. It is also worth noting that similar to actor-critic methods,
the difference in learning rates is not an absolute necessity.

100

ds & PE

PAWRLA ALY

base
reshaped
PE

Y

1.0 1.5 2.0

x 109

Figure 6: Base reward, reshaped
rewards, and peer evaluation sig-
nals for PCP-Trust.

5 CONCLUSION

In this paper, we presented Peer Evaluation based Dual DQN (PED-
DON) in order to induce cooperation among semi-cooperative
agents. Through PED-DQN, agents exchange peer evaluation sig-
nals, which gradually change the game so that an agent’s myopic
best response eventually leads to a higher global reward. We per-
formed experiments in environments where semi-cooperation can
be beneficial and shown competitive results against other algo-
rithms. Our results show that the appropriate use of peer evaluation
reshapes the individual rewards, such that it encourages coopera-
tion among the agents. Future work includes smarter aggregation
of peer evaluation, as well as run-time peer evaluations, where
agents could change policies during execution.
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