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ABSTRACT
We investigate the representation of game-theoretic measures of

network centrality using a framework that blends a social network

representation with the formalism of cooperative skill games. We

discuss the expressiveness of the new framework and highlight

some of its advantages, including a fixed-parameter tractability re-

sult for computing centrality measures under such representations.

As an application we introduce new network centrality measures

that capture the extent to which neighbors of a certain node can

help it complete relevant tasks.
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1 INTRODUCTION
Measures of network centrality have a long and rich history in the

social sciences [7] and Artificial Intelligence. Such measures have

proved useful for a variety of tasks, such as identifying spreading

nodes [32] and gatekeepers for information dissemination [28],

advertising in multiagent markets [23], marketing [15], finding

important nodes in terrorist networks [22, 25]. Recent work has

demonstrated that the use of (coalitional) game-theoretic versions
of centrality measures is especially beneficial [34, 35], and has mo-

tivated the study of other topics, such as the extension of centrality

measures to more realistic settings [36], or the study of (frontiers

of) tractability of such measures [1, 33, 37].

The starting point of this paper is the observation that, centrality

measures are often regarded (e.g. [18]) as exclusively graph the-
oretic properties, the informal "motivating stories" behind many

centrality measures involve the capability of "central" nodes to

perform certain useful actions, a feature not explicitly encoded by

a graph theoretic framework. For example: - degree centrality
quantifies the capability of a given node to disseminate information;
- betweenness centrality attempts to measure the propensity of
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the node to control information flow in the network by possibly

disrupting a large percentage of the flows along shortest paths.

For another (famous) example: Granovetter’s celebrated paper

on the strength of weak ties [14] considers edges adjacent to a

given node by their frequency of interaction. It argues that so-

called weak ties (i.e. to those agents only interacting with the given

node occasionally) are especially important. Such nodes may be
capable to tell v about a certain job j, that v itself does not
know about. The bolded statement may be seen, of course, as

specifying a task tell[j], that weak tie neighbors of v may be able

to complete as a consequence of their network position.

The purpose of this paper is to propose and study represen-
tational frameworks for network centrality that explicitly
take into account the acting capabilities of various nodes.We

follow [30] in advocating the study of network centrality measures

from a coalitional game-theoretic perspective. Our concerns are

somewhat different: whereas [30] mostly investigated represen-

tations of centrality measures from an axiomatic perspective, we

investigate the use of (succinct) coalitional representation frameworks
[6, 9, 11, 13, 16] for such representations. The particular setting we

consider blends a network-based specification G = (V ,E) of the
agent system with one such framework, the so-called coalitional
skill games (CSG) [6]. Informally, agents are endowed with skills
that may prove instrumental in completing certain tasks, and in

getting profit from completing them. A centrality measure arises

as an indicator (often the Shapley value) of the “importance” of the

agent in the associated coalitional game, measuring the extent to

which the agent helps coalitions profit from completing tasks. A sig-

nificant motivation for choosing CSG over alternative frameworks

is that models similar to CSG are informally used in the Knowledge

Discovery literature in the context of the team formation problem

[20, 21]. This opens the prospect of applying such game-theoretic

centrality measures to problems in this direction.

Through our paper we aim to start offering answers to the fol-

lowing questions:

(1) Are CSG representations of centrality "universal" ? That is, can
all centrality measures be ("naturally") represented as the

Shapley value of some CSG ? This is a natural question, given

that all monotone coalitional games can be simulated by CSG

games [6], while all centrality measures can be represented

by a (monotone) coalitional game [30].

(2) Are there representational advantages to using such frame-
works ? I.e., are there natural examples of social phenom-

ena and centrality measures inspired by the concepts of

skills/tasks from CSG representation ?

(3) Are there computational advantages of such frameworks ?
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The following is an outline of our answers to the previous ques-

tions (and of the main results of the paper):

1) We show that question (1) has a somewhat subtle answer:

on one hand we prove (Theorem 3.1) that our representations are

universal: all centrality measures have an equivalent CSG repre-

sentation. However, if we insist on "natural" representations the

answer is negative: eigenvector centrality cannot be represented

in this way. We prove this result by identifying a useful class of

centrality measures (those represented as a rational function of

vertex/edge indicator functions). We show that this class is quite

robust, containing for example degree and betweenness central-

ity, and subsuming all "natural" CSG representations. However we

show (Theorem 3.14) that eigenvector centrality is not rational.

2) We show that the answer to the second question is affirmative:

the social phenomenon we showcase is helping, i.e. the capability of
agents to help completing tasks not by their skills but by enlisting
their neighbors for this purpose. The importance of this phenom-

enon has been previously recognized in the literature on social

networks: For instance, authors of [10] write: "Given a person with

a set of skills and a neighborhood of friends in a social network,

the skills of the friends to some extent are accessible through that

person, and therefore they should be considered when evaluating

her..." However, the results in [10] go in a different directions than

ours. We define two associated helping centrality measures. These

measures are related to some important concepts such as the orig-

inal game-theoretic network centrality ν1 [24, 32]. We compute

these measures in a setting inspired by [25], that of a 9/11 terrorist

network. We then show that our measures, though intractable in

general, have efficient explicit formulas for some special CSGs.

3) Finally we highlight a computational benefit of CSG repre-

sentations, in the form of fixed parameter tractability results for

centrality measures induced representable as the Shapley value of

a CSG (Thm. 4.1) and for our new centrality measures (Thm. 6.2).

The paper concludes with brief discussions and open problems.

2 PRELIMINARIES AND NOTATIONS
We will use (and review below) notions from several areas:

Probabilistic Methods.We will assume familiarity with discrete

probability at the level provided, e.g. by [26]. In particular for a

discrete integral random variable X we will denote by E[X ] its
expected value, equal to

∑
i i · Pr [X = i].

Theory of multisets. A multiset is a generalization of a set in

which each element appears with a non-negative multiplicity. The

union of two multisets A,B, also denoted A ∪ B, contains those
elements that appear in A,B, or both. The multiplicity of such an

element in A ∪ B is the sum of multiplicities of the element into

A,B. Given multisets A,B, we write A ⊂ B iff every element with

positive multiplicity in A has at least as high a multiplicity in B.
Coalitional game theory. We assume familiarity with the basics

of Coalitional Game Theory (see [8] for a recent readable introduc-

tion). For concreteness we review some definitions:

A coalitional game is specified by a pair Γ = (N ,v ) where N =
{1, 2, . . . ,n} is a set of players, and v is a function v : 2

N → R,
called characteristic function, which satisfies v (∅) = 0. We will

often specify a game by the characteristic function only (since N
is implicitly assumed in its definition). Also, denote by Γ(N ) the

set of all coalitional games on N . Given integer 0 ≤ k ≤ n, we
denote by Ck (Γ) the set of coalitions of Γ (i.e. subsets of N ) having

cardinality exactly k , and let C (Γ) be the union of all sets Ck (Γ). A
game is monotonically increasing if v is monotonically increasing

with respect to inclusion.

We can represent any game on set N as a linear combination of

veto games: given ∅ , S ⊆ N , the S-veto game on N is the game

with characteristic function

vS (T ) =

{
1, if S ⊂ T ,
0, if otherwise.

Indeed, it is well-known [17] (and easy to prove) that the set of

veto games (vS ) forms a basis for the linear space of coalitional

games on N . Coefficients aS in the decompositionv =
∑
S aSvS are

called Harsányi’s dividends and the decomposition itself is called

veto (game) decomposition.
We will use solution concepts associated to coalitional games,

notably the Shapley value. This index tallies the fraction of the value
v (N ) of the grand coalition that a given player x ∈ N could fairly

request. It has the formula [8]

Sh[v](x ) =
1

n!
·
∑
π ∈Sn

[v (Sxπ ∪ {x }) −v (S
x
π )], (1)

where Sxπ = {π [i]|π [i] precedes x in π }. On the other hand, if v =∑
S aSvS is the veto game decomposition of v then for every i ∈ N

we have

Sh[v](i ) =
∑
i ∈S

aS
|S |

(2)

We also need to review several particular classes of coalitional

games. A (weighted) dummy game is a triple Γ = (N ,w,v ) where
w : N → [0,∞) is a weight function and the characteristic function

has the form v (S ) =
∑
i ∈S w (i ).

Definition 2.1. A coalitional skill game (CSG) [5, 6] is a 4-tuple
Γ = (N , Sk,T ,v ), where N is a set of players, Sk is a set of skills,
T is a set of tasks, and v is a characteristic function. We assume

that each player x ∈ N is endowed with a set of skills Skx ⊆ Sk .
We extend this notation from players to coalitions by denoting, for

every S ⊂ N , SkS := ∪x ∈SSkx . We will denote by P (s ) the set of
players having a certain skill s . On the other hand, each task t ∈ T
is identified with a set of skills Tt ⊆ Sk , the set of skills needed
to complete task Tt . Finally, each task Tt has a profit wt ≥ 0. The

value of a coalition S ⊂ N is defined as

v (S ) =
∑

t ∈T :Tt ⊆SkS

wt .

In other words: the value of a coalition S is the sum of profits of all

tasks that require only skills possessed by members of S .

We will actually slightly extend the framework from [5, 6] by

requiring that tasks are multisets (rather than sets) of skills.
Skillsets are still required to be ordinary sets, but the condition

Tt ⊆ SkS is now considered as a multiset inclusion. A justification

for this extension is given by the following example:

Example 2.2. We build upon a scenario from [25] based on the

9/11 terrorist network initially reconstructed in [19]. In addition

to ordinary nodes (displayed as white circles), some nodes are en-

dowed with one of two skills: M ("martial arts", displayed as yellow
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squares), P ("pilot", displayed as grey diamonds) (Figure 1). A coali-

tion of nodes could execute a hijacking attack iff it contains at least

two agents with capabilityM and one agent with capability P . This
description maps easily onto an (extended) CSG with a single task

("hijacking") specified as the multiset of skills {M,M, P }, and profit

(for the attackers) equal to one. For ease of exposition/computation

we leave out from the specification of our example a condition

which was crucial in [25], that an attacking coalition be connected,

i.e. that the CSG game is a connectivity game [3] or a Myerson game

[27]. With additional technical complications along the lines of [31]

one can probably incorporate this condition into our example as

well.

Semivalues [12] generalize the well-known concepts of Shapley

and Banzhaf index. Given coalitional game Γ and C ∈ C (Γ), de-
note byMC (C, i ) := v (C ∪ {i}) −v (C ) the marginal contribution of

player i to coalition C . Consider a function β : {0, . . . ,n − 1} →

[0, 1] satisfying
∑n−1
i=0 β (k ) = 1. Given semivalue β , the semivalue

ϕi (v ) for player i in cooperative game v is ϕi (v ) =
∑n−1
k=0 β (k ) ·

EC ∈Ck [MC (C, i )]. For βSh (k ) = 1/n we recover the Shapley value.

Another important case is the trivial semivalue βtr iv (0) = 1,

βtr iv (i ) = 0 otherwise. Finally, family of semivalues β = (βn )
is called polynomial time computable if the two-argument function

(n,k ) → (βn )k has this complexity.

1

3

14

15

16

19

5

7

9

12

2

4

6

8

10

1113

17

18

Figure 1: The 9/11 WTC attack social nework (after [19],
with skills assigned by [25]).

We note the following very simple result:

Lemma 2.3. If Γ = (N ,w,v ) is a weighted dummy game and β is
a semivalue then for every i ∈ N , ϕi (v ) = w (i ).

Graph Theory and Network Centralities. A graph is a pairG =
(V ,E) with V a set of vertices and E a set of edges. The degree of v ,
deд(v ) is the number of nodes v is connected to by edges. We will

use ∆ to denote the maximum degree of a node in V . If v ∈ V is a

vertex we will denote by N (v ) the set of neighbors of v in G and

by
EN (v ) = N (v ) ∪ {v}. We extend these definitions to sets S ⊆ V

by N (S ) = {z | ∃w ∈ S, (z,w ) ∈ E}.
We will denote by GV the set of all graphs on the vertex set V .

A centrality index is a function, c : GV → RV that assigns to every

node v ∈ V a real number, called the centrality of v quantifying

the importance of node v in G. We will denote by CV the set of all

centrality measures on the set V . We will usually drop V from our

notation and write G,C, . . . instead of GV ,CV and so forth.

We need several concrete measures of centrality. The following

is a listing of some of them:

- degree centrality of nodev in graphG is defined by cD (v,G ) =
|{(v,u) ∈ E |u ∈ E}|.

- betweenness centrality of node v in graph G is defined as

follows: given two distinct nodes z1, z2 ∈ V , denote by

p (z1, z2) the number of shortest paths in G between z1 and
z2, and by p (z1, z2,v ) the number of shortest paths passing
through v . Now we can define betweenness centrality as

cclose (v,G ) =
∑
z1,z2∈V

p (z1,z2,v )
p (z1,z2 )

.

- game-theoretic network centrality ν1 of node x in graph G is

defined as the Shapley value of x in game Γ with character-

istic function v∗ (S ) = |S ∪ N (S ) |. This measure is explicitly

computed in [24], but versions of it were considered earlier

e.g. in [32, 38, 39].

- the eigenvector centrality of node v in graph G is defined

as the v’th component of the eigenvector associated to the

largest eigenvalue of the adjacency matrix of G.

Coalitional Network Centralities. Following [30], a represen-
tation function is a function ψ mapping every graph G = (V ,E)
onto a cooperative game ΓG whose players are the vertices of G,
ΓG = (V ,vG ). We will call a representation w skill-based if for every

graph G, the associated game ΓG is a CSG. A coalitional centrality
measure is a pair (ψ ,ϕ), whereψ is a representing function and ϕ is

a solution concept. A skill-based centrality measure is one for which
representationψ is skill-based. Given semivalue β , a β-skill-based
centrality measure is a pair (ψ ,ϕ) where ψ is a skill-based and ϕ
is the semivalue induced by β . A skill-based centrality measure is

trivial iff the solution concept ϕ is simply the value function of the

CSG associated to graph G by ϕ. Note that for weighted dummy

games this is equivalent to requiring thatϕ is the semivalue induced

by the trivial semivalue βtr iv .
Parameterized Complexity.A parameterized problem is specified

by a set of pairsW ⊆ Σ∗ × N and a function f : A→ N. Problem
(W , f ) is fixed-parameter tractable if there exists a computable

function д : N → N, an integer r > 0 and an algorithm A that

computes f (z) on inputs z = (x ,k ) fromW in time O (д(k ) · |x |r ).

3 UNIVERSALITY OF SKILL-BASED
CENTRALITIES.

[30] have shown that any centrality measure is equivalent to a

coalitional centrality measure. We make this result slightly more

precise: the cooperative game can be taken to be a CSG and the

solution concept can be induced by any arbitrary semivalue:

Theorem 3.1. For every semivalue β and every centrality c ∈ C
there exists an equivalent β-skill-based representation.

Proof. Let c ∈ C be a centrality measure on graph G. Consider
the dummy game in which v (S ) =

∑
v ∈S c (v ).

One can represent this dummy game by associating to G the

CSG game Γ as follows: Sk = V , i.e. skills correspond to agents.

For every v ∈ V define w (v ) = c (v ). Finally T = V . This yields
a skill-based representation ψC . Completing this representation
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by the trivial semivalue induced by β in Γ yields a β-skill-based
centrality measure which (by Lemma 2.3) is equivalent to c . □

Example 3.2. [Degree centrality:] Consider a graphG = (V ,E).
We associate toG a game Γ as follows: skills correspond to vertices

of G . Tasks correspond to edges of G , seen as pair of vertices/skills.

Each task has profit 2.

Then the Shapley value of each node is equal to its degree (cen-

trality). Indeed, Γ is essentially a induced subgraph game [11], whose
Shapley value divides the profit of each edge equally between its

endpoints.

Sometimes, as the following example shows, the "natural" repre-

sentation of centralities using CSG is non-effective, as it requires

exponential size games:

Example 3.3. [Betweenness centrality]: Consider a graphG =
(V ,E). Associate to G a game Γ as follows:

- skills correspond to nodes of G.
- Tasks, seen as the set of the corresponding skills/nodes, cor-

respond to shortest paths connecting two nodes in G.
- A task corresponding to a shortest path P between two nodes,

say z1, z2, in G has a weight equal to the number of nodes

on P divided by the number of shortest paths between z1, z2.

The Shapley value divides the payoff of each task among the nodes

of the path. Hence the Shapley value of each node is nothing but

its betweenness centrality.

3.1 Limitations of (Rational) Centralities.
In the proof of Theorem 3.1 we were, in some sense, "cheating", as

the values of network centrality were "pre-computed" and built-

in as the weights of the dummy game representing the measure.

In particular the game depended in a complicated manner on the

structure of the graphG . It is natural to askwhether this universality
result fails to hold once we impose some further restrictions on the

framework that preclude such "pathological" representations.

In this section we show that the answer is yes: an important

centrality measure, eigenvector centrality, cannot be represented

as the Shapley value of a CSG with rational payoffs.

This result is proved by first identifying an interesting and natu-

ral restriction on characteristic functions and centrality measures

that formalizes the idea of "simple dependence (of these functions)

on the structure of the graph": we will require that they are "rational

functions of the graph topology", i.e. a quotient of two polynomials

with rational coefficients. We show that this class is large enough

to include all Shapley values of CSG with constant, rational, co-

efficients. Then we show that eigenvector centrality cannot be

computed by rational functions.

We formalize the idea of "rational functions of the graph topol-

ogy" as follows: Given a set of verticesV , denote by En (V ) the set of
subsetsw = {v1,v2} of distinct vertices inV . Associate to everyw ∈
En (V ) a boolean variable Xw . We can interpret the set E of edges of

any graph G on V as a 0/1 assignment (Xw )w ∈En (V ) ∈ {0, 1}
En (V )

,

Xw = 1 if w ∈ E, Xw = 0, otherwise. By forcing notation we will

write E instead of (Xw )w ∈En (V ) ∈ {0, 1}
En (V )

. We do similarly for

vertices, identifying a vertex i with a boolean variable Yv . This way
we can specify a set of vertices S by a boolean vector of size n, with
ones corresponding to those vertices v with Yv = 1.

Definition 3.4. Family of characteristic functions (vn )n≥1 is called
rational if there exists two families of polynomials Pn (Xe ,Yv )
and Qn (Xe ,Yv ) ∈ Q[X ,Y ] such that for every n ≥ 1 and S ⊆ [n]

vn (S ) =
Pn[E, S]

Qn[E, S]
(3)

Example 3.5. For every S ⊆ [n] characteristic functions vS are

rational. Indeed vS (·) =
∏

i ∈S Yi .

Example 3.6. Characteristic functionv∗ in the definition of game-

theoretic network centrality ν1 is rational. Indeed,

v∗ (S ) =
∑
i ∈[n]

Yi +
∑
i ∈[n]

(1 − Yi )[1 −
∏
j,i

(1 − YjXi, j )]

To see that this equality is true: each i ∈ S contributes 1 to the

first sum. Only i < S may contribute to the second sum, but only

when some term 1 − YiXi, j is equal to zero, that is when there is

some j , i with Yj = 1 (i.e. j ∈ S) and Xi, j = 1 (i.e. (i, j ) ∈ E).

Definition 3.7. LetV be a set of vertices. A centrality measure c =
(cn )n≥1 is called rational iff there exist multivariate polynomials

Pn,v ,Qn ∈ Q[X ] such that, for every n ≥ 1, and every graph

G = (V ,E) on V we have

cn (v,G ) =
Pn,v [E]

Qn[E]
(4)

Example 3.8. Degree centrality is rational. Indeed, one may take

Pn,v [X ] =
∑
e ∋v

Xe and Qn[X ] = 1.

The case of betweenness centrality is more interesting:

Theorem 3.9. Betweenness centrality is rational.

Proof. Given vertices z1 , z2, define Dz1,z2 to be the family of

simple paths from z1 to z2 inG . Given P ∈ Dz1,z2 , definemonomials

XP =
∏
e ∈P

Xe

and

X̃P = XP ·
∏

Q∈Dz
1
,z
2

l (Q )<l (P )

(1 − XQ ).

Also, for vertices z1 , z2 define Pn,v,z1,z2 [X ] =
∑

P :z1→v→z2
X̃P ,

Qz1,z2 [X ] =
∑

P :z1→z2
X̃P . With these notations, we claim that we

have the following formula

BCn[v] =
∑

v1,v2∈V

Pn,v,z1,z2 [X ]

Qz1,z2 [X ]

(5)

To prove equation (5) we first show that

Claim 1. Given graph G = (V ,E), X̃P = 1 iff P is a shortest path
in G between its extremities z1, z2.

Proof. X̃P = 1 iff XP = 1 and for all Q ∈ Dz1,z2 , l (Q ) < l (P ),
XQ = 0, that is Q is not a path in G. □

Applying Claim 1 we infer that Pn,v,z1,z2 count shortest paths
between z1, z2 passing through v and Qz1,z2 counts all shortest

paths between z1, z2. □
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The following two theorems show that the family of rational

centrality measures is reasonably comprehensive:

Theorem 3.10. Every centrality measure induced by a rational
family of characteristic functions is rational.

Proof. From the marginal contribution formula for the Shapley

value. □

Corollary 3.11. Game-theoretic network centrality ν1 [24] is a
rational centrality measure.

Corollary 3.12. Ifvn is a family of characteristic functions whose
Harsanyi dividends are rational numbers then the family of centrality
measures induced by vn is rational.

Proof. From Exp. 3.5 and the fact that linear combinations of

rational functions with coefficients in Q are rational. □

Theorem 3.13. Every centrality measure induced by a family of
CSG with constant coefficients in Q is rational.

Proof. We will use the decomposition of coalitional skill games

by linearity to reduce the problem to reasoning about simple skill
games, i.e. CSG consisting of a single task t of unit profit. In this

setting a coalition S is called winning if it can accomplish task t
and losing otherwise. Define byW (t ) the set of minimal winning

coalitions for task t , i.e. of subsetsA such thatv (A) = 1 andv (B) = 0

for any strict subset B of A.
Then the polynomial 1 −

∏
A∈W (t ) (1 −

∏
r ∈A Yr ) is equal to 1

precisely when for some A ∈ W (t ) we have Yr = 1 for all r ∈ A.
Hence, denoting S = {r : Yr = 1}, we have

v (S ) = 1 −
∏

A∈W (t )

(1 −
∏
r ∈A

Yr ).

□

Theorem 3.13 connects rationality to the representation of cen-

trality by CSG, essentially showing that when we disallow adaptive

representations like those used in the proof of Theorem 3.1 induced

centrality measures are indeed rational.

Despite these two results, rational measures are not universal;
they fail to capture a natural centrality measure:

Theorem 3.14. Eigenvector centrality is not rational, hence not
representable by CSG with constant, rational coefficients.

Proof. Consider the graph G from Figure 2 (a). Simple com-

putations show that eigenvector centrality values of node 1, 3 are

equal to
1√
2+1

and that of 2 is equal to

√
2

√
2+1

. In particular the eigen-

vector centrality of 1, 3 is an irrational number. But this would be

impossible if the eigenvector centrality were a rational centrality

measure. □

It would be interesting to define an extension of the family of

rational centralities that captures all "natural" centralities. Another

problem is to characterize (perhaps axiomatically) all centrality

measures that have CSG representations of polynomial size.

4 PARAMETERIZED COMPLEXITY OF
SKILL-BASED CENTRALITIES.

Since computing the Shapley value of CSG is #P-complete [4], it

follows that computing skill-based centralities is intractable in

general. On the other hand, by imposing a natural restriction on

the family of CSG games under consideration, that of an existence

of an upper bound on the largest set of skills needed for a task, we

get a fixed-parameter tractable class of algorithms:

Theorem 4.1. Let β be a poly-time computable family of semival-
ues. The following problem

- [INPUT:] A CSG Γ = (N ,v ) and a player i ∈ N .
- [TO COMPUTE:] Semivalue Φβi (v ).

parameterized by k , the cardinality of the largest skill set required by
any task, is fixed parameter tractable.

Proof. We will again use the decomposition of CSG by linearity

to reduce the problem to reasoning about simple skill games.
Clearly Φ

β
i can be computed by estimating, for k = 0, . . . ,n − 1

quantities EC ∈Ck [MC (C, i )]. Nonzero marginal contributions arise

from ordered coalitions C ∈ Ck such that (1). i is the last element

of C . (2). C is winning. (3). C \ {i} is not winning. For every task

Tj (identified with a multiset of skills) denote by T ∗j the set of

submultisets of Tj . For T ∈ T
∗
j and 1 ≤ r ≤ n − 1 denote by

niT ,r the number of ordered coalitions X of size exactly r and not
containing i such that SX ∩Tj = T . DenoteWi, j = Ci ∩Tj the set
of skills of agent i that can contribute towards completing task j.
An ordered coalition satisfies properties (1)-(3) above if and only
if Tj \Wi, j ⊂ SC\{i } ⊊ Tj . Thus

Φ
β
i =

n−1∑
r=0

β (r )
[ ∑
Tj \Wi, j ⊆T ⊊Tj

(n − r − 1)!

n!
· niT ,r

]
. (6)

We use a dynamic programming approach to compute parame-

ters niT ,r . The table has at most 2
k
columns, each corresponding

to a submultiset of Tj . Rows of the table correspond to pairs (r , s ),
where r ≤ s ≤ n. The element on row (r , s ) and T , denoted by

niT ,r,s , counts ordered coalitions X of size r not containing element

i , formed with elements from a1,a2, . . . ,as , such that SX ∩Tj = T .

Clearly niT ,r = n
i
T ,r,n .

We start the table by filling in rows (r , s ) = (0, 0) and (r , s ) =
(1, 1). Clearly, niT ,0,k = 0 for all k ≥ 1 andT ⊆ Tj , and n

i
T ,1,1 equals

the number of players k , i such that Sk ∩Tj = T . Thus rows (0, 0)
and (1, 1) can be completed by simple player inspection.

Coalitions X of size r not containing element i with elements

from the set a1,a2, . . . as such that SX ∩ Tj = T decompose into

two types:

- Coalitions not containing as . niT ,r,s−1 counts them.

- Coalitions containing as . Let Y = X \ as , D = SY ∩ Tj ,
D ⊆ T ,E = Sas ∩Tj . It follows that D ∪ E = T . Thus we get

recurrence niT ,r,s = n
i
T ,r,s−1+

∑
D∪(Ss∩Tj )=T

niD,r−1,s−1. This

equation allows us to fill row (r , s ) from rows (r , s − 1) and
(r − 1, s − 1), ultimately allowing to compute niT ,r for all i .

It is easily seen that the complexity of the provided algorithm is

O (2k ·poly ( |Γ |)). Thus the problem is fixed parameter tractable. □
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5 MEASURES OF HELPING CENTRALITY.
In this section we give an application inspired by the idea of rep-

resenting network centralities by CSG. [2] have recently defined

(using different ideas) a centrality measure that quantifies the ex-

tent to which a given agent adds value to a group. On the other

hand, an agent may be valuable to a group even when it lacks the

skills to contribute to completing a given task, provided it is capable

to help by enlisting neighbors with such skills.

Example 5.1. Members of the PC of computer science confer-

ences often use subreviewers to referee papers. Each paper needs to

receive a minimal number (say three) of reviews. A PCmember may

lack the skill to competently review the paper itself. But the ability

it may have to help the reviewing process by enlisting subreviewers

with the required reviewing skills, in order to complete the task of

getting three reviews for the given paper, is highly valuable.

Example 5.2. Consider again the coalitional game-theoretic frame-

work for theWTC 9/11 terrorist network in Example 2.2. Nodes 4, 7,

9, 11, 12, 13, 16 could have assembled an attacking team consisting

of (some of) their neighbors. In the case of node 16 (N. Alhazmi)

this happens despite not being known to have had any of the two

required skills P ,M . Because of this fact, node 16 intuitively can al-

ways "help" forming attacking teams by enlisting its neighbors. This

is intuitively, not true for nodes 4, 7, 9, 11, 12, 13 : they do not "help"

those coalitions that were already turned into attacking teams by

their mere joining. Neither do any other nodes in the network. So,

intuitively, node 16 should be the "most helping" node.

It turns out that properly defining a centrality notion for helping

is somewhat subtle and may not have a single, always best solution.

A natural first idea is that such a measure may involve the Shapley

value of a certain helping extension of the original game, inwhich the

value of a coalition involves "getting help from all their neighbors":

Definition 5.3. Given coalitional game Γ on graph G, we de-

fine the helping extension of Γ as the game with value function

vhelp (S ) = v (S ∪ N (S )).

Example 5.4. Consider the weighted dummy game with v (S ) =∑
i ∈S

w (i ). Then for every graph G the Shapley value of the helping

extensionvhelp (S ) ofv on graphG has the formula (which trivially

generalizes the one for game-theoretic centrality ν1 of G

Sh[vhelp ](z) =
w (z)

deд(z) + 1
+
∑

u ∈N (z )

w (u)

deд(u) + 1
(7)

To quantify helping we want to disentangle a given player’s

capability to help solve tasks using its own skills from its capability

to get help from its neighbors. Equation (7) suggests that in the

helping extension the contribution of each node’s skills "diffuses"

from the given node equally to itself and its neighbors. Indeed, in

the absence of helping each node z would have a Shapley value

ofw (z) (corresponding to its unique skill/task). In the presence of

helping, node z only retains a fraction of
1

deд (z )+1 of its original

Shapley value (since its neighbors can also "help" by enlisting z)
but also acquires a fraction of

1

deд (u )+1 of the Shapley values of

all neighbors u of z. The above argument seems to suggest that an

1

2

3

2

34

5

6 7

1

Figure 2: (a). Graph P2 (b). Star graph S7.

appropriate measure of the helping centrality of z would be the

quantity

Sh[vhelp ](z) −
1

deд(z) + 1
Sh[v](z). (8)

which subtracts from Sh[vhelp ] the quantity traceable to the orig-

inal Shapley value of z, only retaining the "help" of its neighbors.

Unfortunately, this heuristic is problematic: for some games v and

players z the helping centrality of z would be (under this definition)
negative !

Example 5.5. In the setting of Example 5.2 a computer program

shows that the quantity in equation (8) is negative (equal to -0.012...)

for z = 2.

To give a measure of helping centrality with nonnegative values

we depart from the idea on basing it on a combination of the Shapley

values Sh[vhelp ] and Sh[v]. Instead, we give a definition close in

spirit to the formula (1) for the Shapley value (and which directly

extends it when G is the empty graph):

Definition 5.6. Given coalitional game Γ and graphG, we define
the Helping Shapley value of a player x by

HSh[v](x ) =
1

n!
·
∑
π ∈Sn

[v (Sxπ ∪ {x } ∪ N (x )) −v (Sxπ )]. (9)

The helping centrality of player x is defined as

Help (x ) = HSh[v](x ) − Sh[v](x ) =

=
1

n!

∑
π ∈Sn

[v (Sxπ ∪ {x } ∪ N (x )) −v (Sxπ ∪ {x })]. (10)

Note that if game Γ is monotonically increasing then v (Sxπ ∪ {x } ∪
N (x )) −v (Sxπ ∪ {x }) ≥ 0. When the sign is strictly positive say that

x helps ordered coalition Sxπ .

Example 5.7. Let G = P2 be the graph in Figure 2, and Γ be

the T -veto game corresponding to coalition T = {1, 3}. That is

v {1,3} (S ) =

{
1, if {1, 3} ⊂ S,
0, if otherwise.

Considering the permutations

in S3 in the order (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2), (3, 2, 1),
simple computations show that HSh[v {1,3}](1) =

1

6
(0 + 0 + 0 +

1 + 1 + 1) = 1

2
, HSh[v {1,3}](2) =

1

6
(1 + 0 + 1 + 1 + 0 + 1) = 2

3
,

HSh[v {1,3}](3) =
1

6
(1 + 1 + 1 + 0 + 0 + 0) = 1

2
. As for help-

ing centralities, we have Sh[v {1,3}](1) = Sh[v {1,3}](3) =
1

2
and

Sh[v {1,3}](2) = 0, so Help (1) = Help (3) = 0, and Help (2) = 2/3.

Node 2 is the only one that has positive helping centrality, despite

being a null player !
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Observation 1. A plausible objection to our formula (10) for the
Helping Centrality is that elements of set Sxπ should also be allowed
to enlist their neighbors. That is, the right hand side should be
1

n!

∑
π ∈Sn

[v (Sxπ ∪ {x } ∪N (Sxπ ∪ {x })) −v (S
x
π ∪N (Sxπ ) ∪ {x })]. (11)

There aremultiple answers to this objection.We give two arguments,
a principled one and a pragmatic one:

- First of all, our formula (10) implicitly assumes a very specific
process of getting help, with three distinct phases:

(1) First, coalition S forms. It may not be able to solve task t ,
therefore

(2) x joins S . S ∪ {x } may still not be able to solve task t , therefore
(3) x enlists the elements of N (x ). Now the enlarged coalition

S ∪ {x } ∪ N (x ) may be able to solve t .
Only step 3 refers to the action taken by x that we want to
quantify, that of helping the coalition S . Otherwise, the assumptions
on the actions of coalition S are minimal: we only assume that S
forms, but not that it takes any further actions. By contrast, the
process embodied by formula (11) assumes more about the actions
taken by coalition S . Not only S forms, but that it is highly proactive in
dealing with the prospect of not completing task t : it seeks to enlist the
help of every neighbor it possibly can; such a course of action may be
infeasible for a variety of reasons, e.g. because of communication costs
that should be paid by S . Our measure thus quantifies helping
in a "minimal information scenario".

- On the other hand formula (11) has less "nice" mathematical
properties. For instance there appears to be no closed-form formula
similar to that of Theorem 5.8 for the alternate definition.

Measures HSh and Help do not have easy interpretations in

terms of classical notions of coalitional game theory. On the other

hand, they have exact formulas somewhat reminiscent of the for-

mula (2) for the Shapley value:

Theorem 5.8. Given game Γ = (N ,v ) with veto decomposition
v =

∑
S aSvS , graph G = (N ,E), i ∈ N and S ⊆ N denote by

NC (i, S ) the set of nodes in S \ N̂ (i ) and by Cov (i, S ) = S ∩ N̂ (i ).
Then

HSh[v](i ) =
∑
i ∈S

aS
|NC (i, S ) | + 1

+
∑

i∈N (S )
i<S

aS |Cov (i, S ) |

( |NC (i, S ) | + 1) ( |S | + 1)

Help (i ) =
∑
i ∈S

aS ( |Cov (i, S ) | − 1)

|S |( |NC (i, S ) | + 1)
+
∑

i∈N (S )
i<S

aS |Cov (i, S ) |]

( |NC (i, S ) | + 1) ( |S | + 1)

Proof. By the linear decomposition of games as combination of

veto games, we only need to compute the Helping Shapley value of

i for the S-veto gamevS . Clearly, if i < S∪N (S ), thenHSh[vS ](i ) =
0. Indeed, in this case i can help no coalition T contain S , since

N̂ (i ) ∩ S = ∅). So we concentrate on the case i ∈ S ∪ N (S ). There
are two subcases:

- i ∈ S . Then i is pivotal iff all elements of NC (i, S ) appear be-
fore i in π . The probability of this happening is

1

|NC (i,S ) |+1 .

- i ∈ N (S ) \ S . Then i is pivotal iff all elements of NC (i, S )
appear before i in π and some element of S ∩ N (i ) appears
after i in π . That is

Node v HSh(v)

7,9,12 0.3153

13 0.2940

16 0.2791

5 0.2042

4,6,8,10,11 0.1829

17,18 0.0940

1,3,14,15,19 0.0791

2 0.0598

Node v Help (v )

16 0.2791

13 0.2341

7,9,12 0.2

4,6,8,10,11 0.1230

5 0.0888

3,14,15 0.0791

1,19 0.0449

17,18 0.0341

2 0

Node v Sh(v )

5,7,9,12 0.1153

2,4,6,8,10,11,13,17,18 0.0598

1,3,14,15,16,19 0

Figure 3: (Unnormalized) values of (a). the Helping Shapley
value HSh (b) Helping centrality. (c). Shapley value.

(a). all elements ofNC (i, S ) apppear before i inπ (an event

which happens with probability 1/( |NC (i, S ) | + 1)), but it
is not the case that

(b). i appears after all elements of S in π . The probability
of (b) happening is 1/( |S | + 1).

To derive the second formula we simply use formula (1). □

5.1 Helping Centralities in Terrorist Networks
We next highlight our helping centrality measure to the terrorist

network in Figure 1. Other experiments are also possible, but their

presentation is deferred (for lack of space) to the journal version

of the paper. We could estimate helping centrality using sampling

techniques similar to those for the Shapley value, but in this case

of the 9/11 network exact computations are actually feasible. We

have implemented a simple Python script for computing measures

Sh, HSh and Help. The results are presented in Figure 3.

To reduce computational overhead, wemay use the following def-

inition: Call two nodes helping equivalent iff (a). They have the same

set of skills (b). The families of multisets of skills of their neighbors

are identical (as multisets). For Figure 1 helping equivalence splits

V into the following equivalence classes: {1, 19}, {2}, {3, 15}, {18},

{17}, {4, 11}, {5}, {16}, {14}, {13}, {9, 12}, {6, 8, 10}, {7}. It is easy to

see that equivalent nodes have identical Helping Shapley values

and Helping Centralities.

The Shapley value is the least discriminating of the three mea-

sures, still it tells us an interesting fact: on their own, pilots are the

most important, followed by those that know martial arts, followed

by those with no skill (and Shapley value 0).

Interestingly, Helping Shapley Value (which tallies the contribu-

tion of both node’s skill and those of its neighbors) and Helping

Centrality (which only measures the second factor) give different

predictions: in the first case the most important nodes are three

pilot nodes 7,9,12, whereas the node with most useful connections

seems to be 16, which has no skills of its own ! At the other extreme,

node 2 is identified by both measures as the least helpful node. Its

HSh value is nonzero (as 2 has some skills that may help) but its

Helping Centrality is 0, as its neighbors have no skills.
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That 13 is "more helping" than 7,9,12 could seem counterintuitive

at first, but this fact can be easily explained: nodes 7,9,12 have

the highest Shapley value (0.1153) of all nodes, hence their skill

(pilots) makes them the most likely to be able to contribute to

forming an attacking team on their own, without having to enlist
their neighbors. In contrast, node 13 has much less valuable own

skills (Shapley value 0.0598) but can contribute valuable neighbors.

6 COMPLEXITY OF HELPING CENTRALITIES.
Computing helping centralities is, as expected, intractable:

Theorem 6.1. The following problem is #P-complete:
- [INPUT:] Graph G, CSG Γ, and player x ∈ N .
- [COMPUTE:] The Helping Shapley value HSh[v](x ).

Proof. Since computing the Shapley value ofCSG is #P-complete

[4], the result follows by chosing G = the empty graph on V . □

On the other hand helping centralities are fixed-parameter tractable:

Theorem 6.2. The following problems
- [INPUT:] A CSG Γ = (N ,v ) and a player i ∈ N .
- [TO COMPUTE:] HSh[v](i ) and Help[v](i ).

parameterized by k , the cardinality of the largest skill set required by
any task, are fixed parameter tractable.

The proof of this result is quite similar to that of Theorem 4.1,

and is deferred to the full (arXiv) version.

We also give in the sequel a class of games onwhich not only HSh

is efficiently computable, but it has a simple closed-form formula:

Definition 6.3. A pure skill game is a CSG where, for every t ∈ T ,
|Tt | = 1 (every task presumes a single skill with multiplicity 1).

Theorem 6.4. For pure skill games v and player x ∈ V

Help (x ) =
∑

t ∈TN (x )\Tx

wt
|P (t ) | + 1

Proof. We reduce again the proof by linearity to the setting

when the game is a single-task game t = {s} of profit 1. Because
the game is a pure skill game, the fact that x be pivotal for HSh
is equivalent to requiring that none of the elements before x in

π are in P (s ), while x does not have s , but has a neighbor that

has, i.e. t ∈ TN (x ) \ Tx and x is the first element from {x } ∪ P (t )
in permutation π . In a random permutation this happens with

probability 1/( |P (t ) | + 1). □

7 RELATEDWORK
Our work combines several important lines of research: the exten-

sive literature on (game-theoretic) centrality measures (see [7, 35]

for reviews from different perspectives) and that on compact repre-

sentation frameworks for cooperative games [6, 9, 11, 13, 16].

Ideas related to the use of compact representations in defining

notions of network centrality have been considered (implicitly or

explicitly) in previous literature, e.g. [30, 37]. This last paper is,

perhaps, the closest in spirit to our approach. They undertake a

comprehensive study of classes of network centralities and identify

axiomatic foundations for various representational frameworks.

Compared to this work our focus is, however, different: we are not

interested in comparing multiple frameworks, but strive to include

capabilities/tasks explicitly into the representational framework,

and identify one framework which does just that.

Finally, a related problem is team formation in the knowledge

discovery literature (e.g.[20, 21]). These papers often assume a

skills/tasks framework similar to ours. Their concerns are, however,

different: team formation is viewed not as a game-theoretic prob-

lem but as an optimization problem, and efficient (approximation)

algorithms are provided.

8 CONCLUSIONS, OPEN PROBLEMS.
Our work provides two important conceptual contributions:

(1). Giving an explicit framework for representing capabilities to
perform tasks in measures of network centrality, and

(2). Proposing the new notion(s) of helping centrality.
Several open issues arise: first of all, we have only used one of the

several formalisms for CSG games. A more extensive investigation

of the representational power of (other) families is in order. So are

the computational and experimental aspects of helping centralities.

The problem of defining representational formalisms that are able to

naturally model all "reasonable" centrality measures is interesting.

Also, note that Helping Centrality is missing from the list of #P-
complete results of Theorem 6.1. We leave its complexity open.

Finally, the Shapley value has a nice axiomatic characterization

[29]. The axiomatic approach to coalitional measures has devel-

oped into an important direction in coalitional game theory, and

has recently been adapted to centrality measures as well. A natural

question is whether our Helping Shapley value has a similar ax-

iomatic characterization. To attempt such a characterization define:

Definition 8.1. Given graph G = (V ,E), a function f : Γ[V ] →
RV satisfies the axioms of

- linearity if for every player x ∈ V and any two gamesv1,v2
on V , f [v1 + v2](x ) = f [v1](x ) + f [v2](x ) and, for every
α ∈ R, f [αv1](x ) = α · f [v1](x ).

- null helping if for every game v on V and i ∈ V s.t. for

every S ⊆ V , v (S ∪ {i} ∪ N (i )) = v (S ) then f [v](i ) = 0.

- veto game symmetry if for any veto game vS and players

x ,y , f [vS ](x ), f [vS ](y) > 0 then f [vS ](x ) = f [vS ](y).

One can easily prove the following:

Theorem 8.2. HSh satisfies linearity and null helping.

Unfortunately while the Shapley value satisfies veto game sym-

metry, this is not true for the Helping Shapley value:

Example 8.3. Consider the star network Sn in figure 2 (b). Then in

the unanimity game vN on Sn (corresponding to S = {1, 2, . . . ,n})
we have HSh[vS ](1) = 1 > 0, HSh[vS ](i ) =

1

n−1 > 0 for all i =
2, . . . ,n. Indeed, i ≥ 2 is pivotal for π iff all other nodes in S \ {1, i}
appear before i in π . This happens with probability 1/(n − 1).

This mismatch has implications for the axiomatic characteriza-

tion of HSh: the uniqueness of the ordinary Shapley value follows

from veto game symmetry, which is established via an equal treat-
ment axiom. The lack of veto symmetry means that we cannot

adapt this classical proof to HSh. It is an interesting open question

to give an axiomatization of HSh.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

573



REFERENCES
[1] Karthik V. Aadithya and Balaraman Ravindran. 2010. Game theoretic network

centrality: exact formulas and efficient algorithms. In Proceedings of the 2010
International Conference on Autonomous Agents and Multiagent Systems: volume
1-Volume 1. 1459–1460.

[2] Bedoor K Alshebli, Tomasz P Michalak, Oskar Skibski, Michael Wooldridge, and

Talal Rahwan. 2019. A Measure of Added Value in Groups. ACM Transactions on
Autonomous and Adaptive Systems (TAAS) 13, 4 (2019), 18.

[3] Rafael Amer and José Miguel Giménez. 2004. A connectivity game for graphs.

Mathematical Methods of Operations Research 60, 3 (2004), 453–470.

[4] Haris Aziz. 2009. Algorithmic and complexity aspects of simple coalitional games.
Ph.D. Dissertation. University of Warwick.

[5] Y. Bachrach, D. Parkes, and J. Rosenschein. 2013. Computing cooperative solution

concepts in coalitional skill games. Artificial Intelligence 204 (2013), 1–21.
[6] Yoram Bachrach and Jeffrey S Rosenschein. 2008. Coalitional skill games. In

Proceedings of the 7th international joint conference on Autonomous agents and
multiagent systems (AAMAS’08). 1023–1030.

[7] Francis Bloch, Matthew O Jackson, and Pietro Tebaldi. 2017. Centrality measures

in networks. Available at SSRN 2749124 (2017).
[8] G. Chalkiadakis, E. Elkind, and M. Wooldridge. 2011. Computational Aspects

of Cooperative Game Theory. Synthesis Lectures on Artificial Intelligence and
Machine Learning (2011).

[9] Vincent Conitzer and Tuomas Sandholm. 2003. Complexity of determining

nonemptiness of the core. In Proceedings of the 4th ACM Conference on Electronic
Commerce. ACM, 230–231.

[10] Michele Coscia, Giulio Rossetti, Diego Pennacchioli, Damiano Ceccarelli, and

Fosca Giannotti. 2013. You know because I know: a multidimensional network

approach to human resources problem. In Proceedings of the 2013 IEEE/ACM
International Conference on Advances in Social Networks Analysis and Mining.
ACM, 434–441.

[11] Xiaotie Deng and Christos H. Papadimitriou. 1994. On the complexity of co-

operative solution concepts. Mathematics of Operations Research 19, 2 (1994),

257–266.

[12] Pradeep Dubey, Abraham Neyman, and Robert James Weber. 1981. Value theory

without efficiency. Mathematics of Operations Research 6, 1 (1981), 122–128.

[13] Edith Elkind, Leslie Ann Goldberg, Paul Goldberg, and Michael Wooldridge. 2007.

Computational complexity of weighted threshold games. In Proc. AAAI’07, Vol. 22.
718.

[14] Mark S Granovetter. 1977. The strength of weak ties. In Social networks. Elsevier,
347–367.

[15] Oliver Hinz, Bernd Skiera, Christian Barrot, and Jan U Becker. 2011. Seeding

strategies for viral marketing: An empirical comparison. Journal of Marketing
75, 6 (2011), 55–71.

[16] Samuel Ieong and Yoav Shoham. 2005. Marginal contribution nets: a compact

representation scheme for coalitional games. In Proceedings of the 6th ACM
conference on Electronic commerce. ACM, 193–202.

[17] Anna R Karlin and Yuval Peres. 2017. Game theory, alive. Vol. 101. American

Mathematical Soc.

[18] Dirk Koschützki, Katharina Anna Lehmann, Leon Peeters, Stefan Richter, Dagmar

Tenfelde-Podehl, and Oliver Zlotowski. 2005. Centrality indices. In Network
analysis. Springer, 16–61.

[19] Valdis E Krebs. 2002. Mapping networks of terrorist cells. Connections 24, 3
(2002), 43–52.

[20] Theodoros Lappas, Kun Liu, and Evimaria Terzi. 2009. Finding a team of experts in

social networks. In Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining. ACM, 467–476.

[21] Cheng-Te Li and Man-Kwan Shan. 2010. Team formation for generalized tasks in

expertise social networks. In 2010 IEEE Second International Conference on Social

Computing. IEEE, 9–16.
[22] R. Lindelauf, H. Hamers, and B. Husslage. 2013. Cooperative game theoretic

centrality analysis of terrorist networks: The cases of Jemaah Islamiyah and Al

Qaeda. European Journal of Operational Research 229, 1 (2013), 230–238.

[23] Mahsa Maghami and Gita Sukthankar. 2012. Identifying influential agents for

advertising in multi-agent markets. In Proceedings of the 11th International Con-
ference on Autonomous Agents and Multiagent Systems-Volume 2. International
Foundation for Autonomous Agents and Multiagent Systems, 687–694.

[24] Tomasz P Michalak, Karthik V Aadithya, Piotr L Szczepanski, Balaraman Ravin-

dran, and Nicholas R Jennings. 2013. Efficient computation of the Shapley value

for game-theoretic network centrality. Journal of Artificial Intelligence Research
(2013), 607–650.

[25] Tomasz P. Michalak, Talal Rahwan, Oskar Skibski, and Michael Wooldridge. 2015.

Defeating terrorist networks with game theory. IEEE Intelligent Systems 30, 1
(2015), 53–61.

[26] Michael Mitzenmacher and Eli Upfal. 2017. Probability and computing: random-
ization and probabilistic techniques in algorithms and data analysis. Cambridge

University Press.

[27] Roger B Myerson. 1977. Graphs and cooperation in games. Mathematics of
Operations Research 2, 3 (1977), 225–229.

[28] Ramasuri Narayanam, Oskar Skibski, Hemank Lamba, and TomaszMichalak. 2014.

A Shapley value-based approach to determine gatekeepers in social networks

with applications. In Proceedings of the Twenty-First European Conference on
Artificial Intelligence (ECAI’14). IOS Press, 651–656.

[29] Lloyd S Shapley. 1953. A value for n-person games. Contributions to the Theory
of Games 2, 28 (1953), 307–317.

[30] Oskar Skibski, Tomasz P Michalak, and Talal Rahwan. 2017. Axiomatic character-

ization of game-theoretic network centralities. In Thirty-First AAAI Conference
on Artificial Intelligence.

[31] Oskar Skibski, Talal Rahwan, Tomasz P Michalak, and Michael Wooldridge. 2019.

Enumerating connected subgraphs and computing the Myerson and Shapley

values in graph-restricted games. ACM Transactions on Intelligent Systems and
Technology (TIST) 10, 2 (2019), 15.

[32] Rama N. Suri and Y. Narahari. 2008. Determining the top-k nodes in social net-

works using the Shapley value. In Proceedings of the 2008 international conference
on Autonomous agents and multi-agent systems. 1509–1512.

[33] Piotr L Szczepański, Tomasz P Michalak, and Talal Rahwan. 2016. Efficient

algorithms for game-theoretic betweenness centrality. Artificial Intelligence 231
(2016), 39–63.

[34] Piotr L Szczepanski, Tomasz P Michalak, and Michael J Wooldridge. 2014. A

Centrality Measure for Networks With Community Structure Based on a Gener-

alization of the Owen Value.. In ECAI, Vol. 14. Citeseer, 867–872.
[35] Mateusz K. Tarkowski, Tomasz P. Michalak, Talal Rahwan, and Michael

Wooldridge. 2017. Game-theoretic Network Centrality: A Review. arXiv preprint
arXiv:1801.00218 (2017).

[36] Mateusz K Tarkowski, Piotr Szczepański, Talal Rahwan, Tomasz P Michalak, and

Michael Wooldridge. 2016. Closeness centrality for networks with overlapping

community structure. In Thirtieth AAAI Conference on Artificial Intelligence.
[37] Mateusz K Tarkowski, Piotr L Szczepański, Tomasz P Michalak, Paul Harrenstein,

and Michael Wooldridge. 2018. Efficient computation of semivalues for game-

theoretic network centrality. Journal of Artificial Intelligence Research 63 (2018),

145–189.

[38] René Van Den Brink, Peter Borm, Ruud Hendrickx, and Guillermo Owen. 2008.

Characterizations of the β -and the degree network power measure. Theory and
Decision 64, 4 (2008), 519–536.

[39] René Van Den Brink and Robert P Gilles. 2000. Measuring domination in directed

networks. Social networks 22, 2 (2000), 141–157.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

574


	Abstract
	1 Introduction
	2 Preliminaries and Notations
	3 Universality of Skill-Based Centralities.
	3.1 Limitations of (Rational) Centralities.

	4 Parameterized Complexity of Skill-Based Centralities. 
	5 Measures of Helping Centrality.
	5.1 Helping Centralities in Terrorist Networks

	6 Complexity of Helping Centralities.
	7 Related work
	8 Conclusions, Open Problems.
	References



