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ABSTRACT
This paper focuses on two-sided matching where one side (a hospi-

tal or firm) is matched to the other side (a doctor or worker) so as to

maximize a cardinal objective under general feasibility constraints.

In a standard model, even though multiple doctors can be matched

to a single hospital, a hospital has a responsive preference and a

maximum quota. However, in practical applications, a hospital has

some complicated cardinal preference and constraints. With such

preferences (e.g., submodular) and constraints (e.g., knapsack or

matroid intersection), stable matchings may fail to exist. This paper

first determines the complexity of checking and computing stable

matchings based on preference class and constraint class. Second,

we establish a framework to analyze this problem on packing prob-

lems, and the framework enables us to access the wealth of online

packing algorithms so that we construct approximately stable algo-
rithms as a variant of generalized deferred acceptance algorithm.

We further provide some inapproximability results.
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1 INTRODUCTION
This paper studies a two-sided, one-to-many matching model when

one side (a hospital or firm) is allocated members from the other

side (a doctor or worker), covering constraints to satisfy practical

or social demands and prohibiting infeasible allocation (matching).

The theory of two-sided matching has been extensively developed,

as illustrated by the comprehensive surveys [29, 33]. Matching

with constraints has been prominent across computer science and

economics since the seminal work by [21]. In many applications,

various constraints are often imposed on an outcome, e.g., type-
specific quotas on hospitals to assign several different types (skills)

of doctors [1], budget constraints on hospitals to limit the total

amount of wages [2, 23, 24]. The current paper exactly covers these

complicated constraints and further generalizes them. Specifically,

we consider general constraints of upper bounds known as indepen-
dence system constraints, i.e., any subset of a feasible set of doctors

is also feasible. We assume that each constraint is represented by a
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capacity (maximum quota), an intersection of multiple matroids, or a
multi-dimensional knapsack. It should be noted that every indepen-

dence system constraint can be represented by an intersection of

multiple matroids and a multi-dimensional knapsack. In addition,

we assume that each hospital’s preference is represented by a utility

function. We consider three important classes of cardinal utilities:

cardinality, additive, and submodular. 1

With such preferences and constraints, stable matchings may

fail to exist. Determining whether a given matching market has a

stable matching is hard in general. It is known to be Σ
P

2
-complete

when hospitals’ utilities are additive, and the constraints are given

as (1-dimensional) knapsack [17]. Note that the existence of stable

matchings is guaranteed when the utilities are additive and the

constraints are matroid [26] or the utilities are cardinality (matched

size) and the constraints are knapsack [23].

There are several possibilities to circumvent the nonexistence

problem. One modifies the notion of stability and proposes a variant

of the Deferred Acceptance (DA) algorithm [2, 16, 21]. Another

restricts hospitals’ priorities to ensure the existence of a stable

matching, e.g., lexicographic priorities [8]. Alternatively, Kawase

and Iwasaki [23] and Nguyen et al. [31] focused on near-feasible
stable matchings that approximately satisfy each budget of the

hospitals.

This paper focuses on approximately stable matchings where

the participants are only willing to change the assignments for

a multiplicative improvement of a certain amount [3]. This idea

can be interpreted as one in which a hospital in a blocking pair

changes its match as soon as its utility after the change increases

by any (arbitrarily small) amount. Arkin et al. [3] examined a stable

roommate problem, which is a non-bipartite one-to-one matching

problem, while we examine a bipartite one-to-many matching prob-

lem. It is reasonable for a hospital to change its assignments only

in favor of a significant improvement; even though the grass may

be greener on the other side, crossing the fence takes effort.

Our results
The following is the contribution of this paper. First, we analyze the

problem of checking the stability on (offline) packing problems so
that we understand the features and obtain the complexity results,

which vary according to hospitals’ utilities and imposed constraints.

In particular, Theorem 3.1 proves that given a matching, checking

whether it is stable or not is equivalent to solving a packing prob-

lem. Once we know the complexity of a packing problem in a given

setting (utilities and constraints), we obtain that of the stability

checking problem associated with the setting. Our results are sum-

marized in Table 1 (a). For example, the stability checking problem

1
A functionu : 2

D → R+ is called cardinality, additive, and submodular ifu(S ) = |S |,
u(S ) =

∑
d∈S u({d }), and u(S ) + u(T ) ≥ u(S ∪ T ) + u(S ∩ T ) (∀S ,T ⊆ D),

respectively.
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is solvable in polynomial time if the utilities are additive and the

constraints are 2-matroid intersections. Also, if the utilities are sub-

modular, the stability checking problem is coNP-complete even for

the capacity constraints.

Second, Table 1 (b) summarizes our trichotomy results charac-

terizing the complexity of determining whether a given market

has a stable matching or not. The problem is polynomially solvable

in very restricted classes of utilities and constraints, while it is

NP-complete or Σ
P

2
-complete in the other settings. Here, Σ

P

2
(also

known as NP
NP

) is the class of problems solvable in polynomial

time by a nondeterministic Turing machine with an oracle for some

NP-complete problem. To prove the NP-hardness, we give a re-

duction from DisjointMatching, which is NP-complete [13]. In

addition, we prove the Σ
P

2
-hardness by reductions from the ∃∀3DM

or ∃∀SubsetSum, which are Σ
P

2
-complete [5, 30].

Finally, we introduce a framework that leads us to construct

algorithms that find approximately stable matchings as a variant

of generalized deferred acceptance (GDA). Theorem 5.1 enables

GDA-based algorithms to access the proficiency of online packing
algorithms. Intuitively, each hospital utilizes an online packing algo-
rithm while running a GDA procedure. We show that if there exists

an α-competitive algorithm for a class of online packing problems,

then we can construct an algorithm that always yields an α-stable
matching for the markets in a corresponding class. Table 1 (c) sum-

marizes the upper and lower bounds of the approximation ratios

that we obtained. Note that Theorem 6.1 provides a basis to derive

some novel lower bounds. Here, for the knapsack constraints, we

assume that the weight of each element on every dimension is at

most a (1 − ϵ) fraction of the total capacity.

Let us note that recently there have been a certain amount of

studies on two-sided matchings in the AI community, although this

literature has been established mainly in fields across algorithms

and economics. Drummond and Boutilier [10, 11] examined prefer-

ence elicitation procedures for two-sided matching. In the context

of mechanism design, Hosseini et al. [18] considered a mechanism

for a situation where agents’ preferences dynamically change.

2 MODEL
This section describes our model of two-sided matching markets.

A market is a tuple (D,H , ≻D ,uH ,IH ) where each component is

defined as follows. There are a finite set of doctorsD = {d1, . . . ,dn }
and a finite set of hospitals H = {h1, . . . ,hm }. We denote by

≻D= (≻d )d ∈D the doctors’ preference profile where ≻d is the strict

relation of d ∈ D over H ∪ {∅}; s ≻d t means that d strictly prefers

s to t , where ∅ denotes being unmatched. LetuH = (uh )h∈H denote

the hospitals’ cardinal preference profile whereuh is the utility func-
tionuh : 2

D → R+. We assume thatuh is normalized (i.e.,uh (∅) = 0)

and monotone (i.e., uh (D ′′) ≤ uh (D
′) for any D ′′ ⊆ D ′ ⊆ D). Let

IH = (Ih )h∈H denote the feasibility constraints for hospitals where
Ih ⊆ 2

D
for each h ∈ H . We assume that (D,Ih ) is an independence

system for each h ∈ H , i.e., (I1) ∅ ∈ Ih and (I2) S ⊆ T ∈ Ih implies

S ∈ Ih . Here, Ih is called an independence family. We say thath ∈ H
is acceptable to d ∈ D if h ≻d ∅. In addition, D ′ ⊆ D is said to be

feasible to h ∈ H if D ′ ∈ Ih .
Note that a pair of utilityuh and constraintIh can be represented

by a single (non-monotone) utility function ûh : 2
D → R ∪ {−∞}

Table 1: Summary of results (k ≥ 3 and ρ ≥ 2)

(a) Complexity of checking the stability

Constraints

Hosp. Utils

Cardinality Additive Submodular

Capacity P P coNP-c

Matroid P P coNP-c

2-mat. int. P P coNP-c

k-mat. int. coNP-c coNP-c coNP-c

1-dim. knap. P coNP-c
†

coNP-c

ρ-dim. knap. coNP-c coNP-c coNP-c

(b) Complexity of checking existence

Constraints

Hosp. Utils

Cardinality Additive Submodular

Capacity P
*

P
*

Σ
P

2
-c

b

Matroid P
*

P
*

Σ
P

2
-c

b

2-mat. int. NP-c
a

NP-c
a

Σ
P

2
-c

b

k-mat. int. Σ
P

2
-c

c

Σ
P

2
-c

c

Σ
P

2
-c

b,c

1-dim. knap. P
‡

Σ
P

2
-c
†

Σ
P

2
-c
†,b

ρ-dim. knap. Σ
P

2
-c

d

Σ
P

2
-c
†,d

Σ
P

2
-c
†,b,d

(c) Approximation ratios (Upper Bound
/
Lower Bound)

Constraints

Hosp. Utils

Cardinality Additive Submodular

Capacity 1
*

/
1 1

*

/
1 4

g

/
1.28

l

Matroid 1
*

/
1 1

*

/
1 4

g

/
1.28

l

2-matroid int. 2
e

/
2

k (
√

2+1)2 f

/
2

k

8
g

/
2

k

k-matroid int. k e

/
2

k

(
√
k+
√
k−1)2 f

/
k m

4k g

/
k m

1-dim. knap. 1
‡
/

1
1

ϵ
‡
/

1

ϵ
‡ O( 1

ϵ 2
) j
/

1

ϵ
‡

ρ-dim. knap. ρ h

/
2

k
ρ
ϵ

i

/ ρ
2ϵ

n O(
ρ
ϵ 2
) j
/ ρ

2ϵ
n

*
[26];

†
[17];

‡
[24];

a
Thm. 4.4;

b
Thm. 4.1;

c
Thm. 4.2;

d
Thm. 4.3;

e
Cor. 5.2;

f
Cor. 5.3;

g
Cor. 5.4;

h
Cor. 5.6;

i
Cor. 5.7;

j
Cor. 5.8;

k
Ex. 2.2;

l
Ex. 2.3;

m
Thm. 6.2;

n
Thm. 6.3.

such that ûh (X ) = uh (X ) if X ∈ Ih and û(X ) = −∞ otherwise.

However, we treat it separately to define classes of markets clearly.

For a set of utility functionsU and a set of independence families

Γ, a market (D,H , ≻D ,uH ,IH ) is (U, Γ)-market if uh ∈ U and

Ih ∈ Γ for all h ∈ H . Namely, the (U, Γ)-markets are those in

which the utilities and the feasibility constraints are restricted to be

inU and Γ, respectively. We analyze the properties of the (U, Γ)-
markets based on utility classU and constraint class Γ.

A matching is a set of pairs µ ⊆ {(d,h) ∈ D ×H : h ≻d ∅} such
that each doctor appears in at most one pair of µ; that is, we have��{(d ′,h′) ∈ µ : d ′ = d}

�� ≤ 1 for any d ∈ D. For d ∈ D, h ∈ H , and

a matching µ ⊆ D × H , we define µ(h) B {d ′ : (d ′,h) ∈ µ} (⊆ D)
and µ(d) B s (∈ H ∪{∅})where s = ∅ if {(d ′,h′) ∈ µ : d ′ = d} = ∅
and {(d, s)} = {(d ′,h′) ∈ µ : d ′ = d} otherwise.
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We call matching µ feasible if µ(h) ∈ Ih for all h ∈ H . Given

a matching µ and a real α ≥ 1, a set of doctors D ′ ∈ Ih is an α-
blocking coalition for hospital h if (i) h ⪰d µ(d) for any d ∈ D ′ and
(ii) uh (D

′) > α · uh (µ(h)).
2
We then obtain a stability concept.

Definition 2.1 (Arkin et al. [3]). A feasible matching µ is α -stable
if there exists no α-blocking coalition.

Note that 1-stability is equivalent to the standard stability con-

cept. As we will see in Examples 2.2 and 2.3, 1-stable matching may

not exist in general. Intuitively, α-stability means that the hospitals

are only willing to change the assignments for a multiplicative

improvement of α . This idea regards the value of α as a switching

cost for the hospitals.

2.1 Classes of Utilities and Constraints
Here, we formally describe three important classes of utility func-

tions: cardinality, additive, and submodular, which capture wide

varieties of applications. We assume that utility functions are mono-

tone and nonnegative throughout this paper. First, a utility function

u : 2
D → R+ is called cardinality if u(D ′) = |D ′ | for all D ′ ⊆ D. Let

us denoteU
card

as the set of cardinality utility functions. Second,

it is called additive (or modular) if u(D ′) =
∑
d ∈D′ u(d) holds for all

D ′ ⊆ D (where we denote u({d}) by u(d) for simplicity). Third, it

is called submodular if u(D ′) + u(D ′′) ≥ u(D ′ ∪ D ′′) + u(D ′ ∩ D ′′)
holds for all D ′,D ′′ ⊆ D (see [14] for more details). As well as for

the cardinality functions, we define the set of additive and sub-

modular utilities as U
add

and U
sub

, respectively. Here, we have

U
card

⊊ U
add

⊊ U
sub

.

Next, we formally define three classes of constraints: capacity,
matroid intersection, and multidimensional knapsack. An indepen-

dence system (D,I) represents a capacity constraint of rank r if
I = {D ′ ⊆ D : |D ′ | ≤ r }. We define the set of independence fami-

lies that represent rank r capacities as Γ
(r )
cap

. Also, we denote Γcap as⋃
r ∈Z+ Γ

(r )
cap

. This class represents a standard matching model with

maximum quotas.

An independence system (D,I) is calledmatroid if, for D ′,D ′′ ∈
I, |D ′ | < |D ′′ | implies the existence of d ∈ D ′′ \D ′ such that D ′ ∪
{d} ∈ I. Moreover, it is called k-matroid intersection if there exist k
matroids (D,I1), . . . , (D,Ik ) such that I =

⋂
i ∈[k ] I

i
, where [k]

denotes set {1, . . . ,k}. We denote the set of independence families

of the k-matroid intersection as Γ
(k )
mat

.

Note that we have Γcap ⊊ Γ
(1)
mat

⊊ Γ
(2)
mat

⊊ · · · . We assume

that each independence system (D,I) in Γ
(k )
mat

is represented by⋂
i ∈[k] I

i
with matroids (D,Ii ) (i ∈ [k]), and every Ii (i ∈ [k]) is

given by a compact representation. For more details on matroids,

see, e.g., [32].

Furthermore, for a natural number ρ and a positive real ϵ , the

set of ρ-dimensional knapsack with ϵ-slack Γ
(ρ ,ϵ )
knap

is defined as the

set of independence families I that can be represented as

I =
{
D ′ ⊆ D :

∑
d ∈D′ w(d, i) ≤ 1 for all i ∈ [ρ]

}
2
Although the second condition can also be defined in an additive manner: u(X ′′) >
u(X ′h ) + α , it is inappropriate since it does not satisfy scale invariance. For example,

when a market has no α -stable matching in the additive sense, a market with the

hospitals’ utilities that are multiplied by 100 has no 100α -stable matching.

with weightsw(d, i) ∈ [0, 1 − ϵ] for each d ∈ D and i ∈ [ρ], where
[ρ] = {1, . . . , ρ}. We assume that independence systems (D,I) in

Γ
(ρ ,ϵ )
knap

are given by weights.

Note that every independence system can be represented by a

matroid intersection and a multidimensional knapsack. The rep-

resentability of matroid intersection is not stronger than that of

multidimensional knapsack, and vice versa. Formally, Γ
(1)
mat

⊈ Γ
(ρ ,ϵ )
knap

and Γ
(1,ϵ )
knap

⊈ Γ
(k )
mat

for any positive integers ρ and k and any non-

negative real ϵ < 1.

For an independence system (D,I) and a subset A ⊆ D, the
restriction of (D,I) to A is defined as I|A B {X : A ⊇ X ∈ I}.
In this paper, we only consider a constraint class Γ that is closed

under the restriction, i.e., I ∈ Γ implies I|D ′ ∈ Γ for all D ′ ⊆ D.

We remark that Γ
(r )
cap

, Γ
(k )
mat

, and Γ
(ρ ,ϵ )
knap

satisfy the condition.

2.2 Applications
This section illustrates several existing and critical situations raised

in the literature of matchings with constraints and describes how

our constraint representation (the feasible subsets of doctors) is

reduced to such situations.

Type-specific quotas One of the simplest examples of the feasi-

bility family is type-specific quotas, in which doctors are partitioned

based on their types, and each hospital has type-specific quotas in

addition to its capacity [1]. Fix hospital h and suppose that (Dt )t ∈T
is the partition of doctors with types T , i.e.,

⋃
t ∈T Dt = D and

Dt ∩Dt ′ = ∅ for all t, t
′ ∈ T with t , t ′. Let q ∈ Z+ be the capacity

of h, and let qt ∈ Z+ be the quota for type t ∈ T . Then D ′ (⊆ D)
belongs to Ih if and only if |D ′ | ≤ q and |D ′ ∩ Dt | ≤ qt for every
t ∈ T . In this case, (D,Ih ) is a matroid, and if the utilities are addi-

tive, a 1-stable matching always exists and can be found efficiently.

If the utilities are submodular, the matching no longer exists (see

Example 2.3). However, we reveal that a 4-stable matching always

exists and is efficiently found (Theorem 5.4).

Overlapping types Here, we generalize the type-specific quotas
to those where each doctor can simultaneously belong to multiple

types [28]. Fix a hospital h, let T be the set of types and let Dt ⊆ D
be the set of type t (∈ T ) doctors. Here, Dt ∩Dt ′ may not be empty

even if t , t ′. In addition, let q ∈ Z+ be the capacity and qt ∈ Z+ be
the quota for type t ∈ T . Then D ′ (⊆ D) belongs to Ih if and only if

|D ′ | ≤ q and |D ′ ∩ Dt | ≤ qt for every t ∈ T . In this case, (D,Ih ) is
a |T |-matroid intersection. Kurata et al. [28] treated quotas as soft

constraints that can be violated and found a quasi-stable matching

in a different manner. To the best of our knowledge, we are the first

to treat them as hard constraints that should be precisely satisfied

and for finding an approximately stable matching.

Budget constraints Under budget constraints, one side (a firm or

hospital) can make monetary transfers (offer wages) to the other

(a worker or doctor), and each hospital has a fixed budget; that
is, the total amount of wages allocated by each hospital to doc-

tors is constrained [2, 23, 24]. Letwh (d) be the offered wage from

hospital h to doctor d , and let bh be its budget. Then constraint

Ih is defined as I = {D ′ ⊆ D :

∑
d ∈D′ w

h (d) ≤ bh } and be-

comes a 1-dimensional knapsack. In fact, we have Ih ∈ Γ
(1,ϵ )
knap

with

ϵ = 1 − maxd ∈D wh (d)/bh . Kawase and Iwasaki [24] considered
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up to the additive utility case and we disentangled the submodular

utility case.

Refugee match (multiple resource constraints) In refugee re-

settlement, different refugee families require such various services

as school seats, hospital beds, slots in language classes, and em-

ployment training programs [9]. Suppose that the set of services is

Σ and the capacity of h (local areas in this context) is bhs for each

s ∈ Σ. In addition, each doctor (refugee family) d needs wh (d, s)
units of service s ∈ Σ. Then, the feasibility constraint of hospital h

is defined: Ih =
{
D ′ ⊆ D :

∑
d ∈D′ w

h (d, s) ≤ bhs (∀s ∈ Σ)
}
. In this

case, the constraint is a |Σ|-dimensional knapsack. In fact, we have

Ih ∈ Γ
( |Σ |,ϵh )
knap

with ϵh = 1 −maxs ∈Σ maxd ∈D
wh (d ,s)

bhs
.

Separating conflicting groups In some applications, the author-

ity should not allocate different types of individuals to the same

place. For example, in refugee resettlement, refugees from conflict-

ing religious or ethnic groups should be separated [22]. Formally,

there exists a partition of the doctors D =
⋃
t ∈T Dt with an index

set T such that D ′ (⊆ D) is in Ih if and only if D ′ ⊆ Dt for some

t ∈ T . Then, we have Ih ∈ Γ
(k )
mat

where k = maxt ∈T |Dt |. These

constraints are different from those for overlapping types, although

both are represented by k-matroid intersection constraints.

2.3 Markets without Stable Matchings
Let us show a market may not have 1-stable matchings, even when

the utilities are cardinality.

Example 2.2. Consider amarketwith four doctorsD = {d1,d2,d3,

d4} and two hospitals H = {h1,h2}. The preferences of the doctors

are h1 ≻di h2 ≻di ∅ for i = 1, 2 and h2 ≻di h1 ≻di ∅ for i = 3, 4.

Suppose that each hospital has a cardinality utility. The feasibility

families are Ih1
= 2
{d1,d3 } ∪ 2

{d2,d4 }
and Ih2

= 2
{d1,d4 } ∪ 2

{d2,d3 }
.

Then, it is straightforward to see that, for 1 ≤ α < 2, this market

has no α-stable matching.

Let us remark that the independence systems (D,Ih1
) and (D,Ih2

)

can be represented by a 2-matroid intersection and a 2-dimensional

knapsack with ϵ (< 1/2). For example, Ih1
is in Γ

(2)
mat

because

Ih1
= I1 ∩ I2

for

I1 =
{
D̂ ⊆ D :

|D̂∩{d1,d2 } |≤1,

|D̂∩{d3,d4 } |≤1

}
and I2 =

{
D̂ ⊆ D :

|D̂∩{d1,d4 } |≤1,

|D̂∩{d2,d3 } |≤1

}
.

Further, Ih1
is in Γ

(2,ϵ )
knap

because it is represented by the following

weights:

w(d1, 1) = 1 − ϵ, w(d2, 1) = 1/2, w(d3, 1) = 0, w(d4, 1) = 1/2,

w(d1, 2) = 0, w(d2, 2) = 1/2, w(d3, 2) = 1 − ϵ, w(d4, 2) = 1/2.

Moreover, if hospitals’ utilities are submodular, a market fails to

have 1-stable matchings even under capacity constraints.

Example 2.3. Consider amarketwith four doctorsD = {d1,d2,d3,

d4} and two hospitals H = {h1,h2}. The preferences of the doctors

are h1 ≻di ∅ ≻di h2 for i = 1, 2, h2 ≻d3
h1 ≻d3

∅, and h1 ≻d4

h2 ≻d4
∅. Suppose the Ih1

and Ih2
are capacity constraints of rank

2 and rank 1, respectively. Let uh1
be a submodular utility such that

uh1
(D ′) =

∑
e ∈

⋃
di ∈D′ Ai

w(e) where A1 = {a1,a3}, A2 = {a2,a4},

A3 = {a3,a4,a5}, A4 = {a1,a2}, w(a1) = w(a2) = w(a5) = 4, and

w(a3) = w(a4) =
√

17 − 1. Here, uh1
is clearly submodular since it

is a weighted-coverage function. Let uh2
be an additive utility such

that uh2
(d3) = 1 and uh2

(d4) = 2. Then, it is straightforward to see

that, there exists no (1 +
√

17)/4 (≈ 1.28)-stable matching in this

market.

3 CHECKING THE STABILITY OF A GIVEN
MATCHING

In this section, we discuss the computational complexity of checking

the α-stability of a given matching. We are going to prove that the

problem is equivalent to computing an offline packing problem
which finds a set X ∈ I that maximizes a given utility u(X ). Note
thatu and I are given fromU and Γ, respectively. Formally, we call

it the (U, Γ)-packing problem, which corresponds with a (U, Γ)-
market.

Theorem 3.1. Fix a set of utility functionsU and a set of indepen-
dence families Γ. If the (U, Γ)-packing problem is solvable in polyno-
mial time, then the α -stability of a given matching in a (U, Γ)-market
can be checked in polynomial time for any α (≥ 1). Moreover, the
problem of deciding whether a given solution is α -approximate to an
instance of the (U, Γ)-packing problem is polynomial-time reducible
to the problem of deciding whether a given matching is α-stable in a
(U, Γ)-market.

Proof. We first prove the former part. Let (D,H , ≻D ,uH ,IH )
be a (U, Γ)-market and let µ ⊆ D × H be a matching. Then µ is

α-stable if and only if

α · u(µ(h)) ≥ max

{
u(D ′) : D ′ ∈ Ih |Dh

}
for all h ∈ H , where Dh B {d ∈ D : h ⪰d µ(d)} and Ih |Dh is

the restriction Ih to Dh . The right-hand side value is computed

in polynomial time if the corresponding (U, Γ)-packing problem

is solvable in polynomial time. Thus, the α-stability is checked

efficiently.

Next, we give a reduction to prove the latter part. For an instance

(D,u,I) of the (U, Γ)-packing problem, let us consider a (U, Γ)-
market with doctors D and one hospital H = {h∗}. Suppose that
h∗ ≻d ∅ for all d ∈ D, uh∗ = u, and Ih∗ = I. We reduce the (U, Γ)-
packing instance (D,u,I) to the (U, Γ)-market (D,H , ≻D ,uH ,IH ).
Then, a matching µ is α-stable if and only if uh∗ (µ(h

∗)) is an α-
approximation of max {u(D ′) : D ′ ∈ Ih∗ }. Thus the claim holds.

□

The theorem enables us to access the proficiency of packing prob-

lems. For example, since the (U
add
, Γ
(2)
mat
)-packing problem (i.e., the

weighted matroid intersection problem) is solvable in polynomial

time [12], one can efficiently check the α-stability of a given match-

ing in a (U
add
, Γ
(2)
mat
)-market. The book of Garey and Johnson [15]

presents the coNP-completeness of several packing problems. They

notify us that checking the stability of a matching is coNP-complete

in the corresponding markets, summarized in Table 1 (a).

4 HARDNESS OF COMPUTING A STABLE
MATCHING

In this section, we discuss the negative side of computing an α-
stablematching. Kojima et al. [26] reveals that we can efficiently find

a 1-stable matching for any (U
add
, Γ
(1)
mat
)-market and Kawase and
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Iwasaki [23] proves the same for (U
card
, Γ
(1,0)
knap
)-market. In general,

the existence problems we consider belong to Σ
P

2
, since yes-instance

can be verified by checking the stability of a guessed 1-stable match-

ing with the NP-oracle.

We can say that it is NP-hard to find (or determine the nonexis-

tence of) an α-stable matching in a (U, Γ)-market if it is NP-hard

to find an α-approximate solution to a (U, Γ)-packing instance, by

applying the similar argument in Theorem 3.1. Furthermore, we

can conclude that the existence problem for the hard cases are all

Σ
P

2
-complete. Note that the Σ

P

2
-completeness for the (U

add
, Γ
(1)

knap
)-

markets has been shown by Hamada et al. [17]. We prove the

hardness for the other cases by reductions from the ∃∀3DM or

∃∀SubsetSum, which are Σ
P

2
-complete [5, 30].

∃∀3DM We are given three disjoint sets X1,X2,X3 of the same

cardinality, and two disjoint subsets S∃, S∀ ⊆ X1 × X2 × X3.

Our task is to determine whether there exists T ∃ ⊆ S∃ so
that, for anyT ∀ ⊆ S∀,T ∃ ∪T ∀ is not a perfect matching, i.e.,

|{M ∈ T ∃ ∪T ∀ : e ∈ M}| , 1 for some e ∈ X1 ∪ X2 ∪ X3.

∃∀SubsetSum Weare given two disjoint sets S∃, S∀withweights

a : S∃ ∪ S∀ → Z+, and an integer q. Our task is to determine

whether there existsT ∃ ⊆ S∃ so that
∑
e ∈T ∃∪T ∀ a(e) , q for

any T ∀ ⊆ S∀.

We show Theorems 4.1 and 4.2 by reductions from ∃∀3DM and
Theorem 4.3 by a reduction from ∃∀SubsetSum.

Theorem 4.1. It is Σ
P

2
-hard to decide whether a given (U

sub
, Γcap)-

market has a 1-stable matching.

Theorem 4.2. It isΣ
P

2
-hard to decide whether a given (U

card
, Γ
(3)
mat
)-

market has a 1-stable matching.

Theorem 4.3. It isΣ
P

2
-hard to decide whether a given (U

card
, Γ
(2)

knap
)-

market has a 1-stable matching.

Proof. Here we only provide a proof for Theorem 4.1. Proofs

for Theorems 4.2 and 4.3 can be obtained in similar ways.

We give a reduction from ∃∀3DM. Suppose that disjoint sets

S∃, S∀ ⊆ X1 × X2 × X3 are given as an instance of ∃∀3DM.
We construct a (U

sub
, Γcap)-market that has a 1-stable matching

if and only if the given instance is a yes-instance. Consider a market

(D,H , ≻D ,uH ,IH ) with D = {d1,d2,d3,d4} ∪ {d
e }e ∈S∃∪S∀ and

H = {h∗,h1,h2} ∪ {h
e }e ∈S∃ . The doctors’ preferences over the

acceptable hospitals are given as:

• de : he ,h∗ (e ∈ S∃),
• de : h∗ (e ∈ S∀),

• d1 : h∗,h1,

• d2 : h1,

• d3 : h2,h1,

• d4 : h1,h2.

Here, and henceforth, preference lists are ordered from left to right

in decreasing order of preference. The feasibility constraint is the

capacity constraint of rank 1 for h2 and he (e ∈ S∀), rank 2 for h1,

and rank |X1 | (= |X2 | = |X3 |) for h
∗
. Suppose that uh1

and uh2
are

the same as Example 2.3 (the utilities of unmatchable doctors are

considered to be zero), and uhe is identically zero (∀e ∈ S∃). In
addition, for X ⊆ D, we define

uh∗ (X ) =
���⋃d (x1

,x
2
,x

3
)∈X \{d1,d2,d3,d4 }

{x1, x2, x3}

��� + 2|X ∩ {d1}|.

This is a weighted-coverage function and hence submodular.

Consider the case when the instance is a yes-instance. We show

that there exists a 1-stable matching in this case. Let T̂ ∃ ⊆ S∃ be
a certificate of the instance. Without loss of generality, we may

assume that |T̂ ∃ | ≤ |X1 |−1, |T̂ ∃ |+ |S∀ | ≥ |X1 |, and T̂
∃
is a matching.

Let us define

T̂ ∀ ∈ arg max

{
uh∗

(
{de }e ∈T̂ ∃∪T ∀

)
: |T̂ ∃ | + |T ∀ | = |X1 |, T

∀ ⊆ S∀
}
.

Then, T̂ ∃ ∪ T̂ ∀ is not a matching, and hence there exists e∗ ∈ T̂ ∀

such that

uh∗
(
{de }e ∈T̂ ∃ ∪ {d

e }e ∈T̂ ∀

)
≤ uh∗

(
{de }e ∈T̂ ∃ ∪ {d

e }e ∈T̂ ∀\{e∗ }

)
+ 2.

Thus, the matching

µ∗ ={(de ,h∗)}e ∈T̂ ∃ ∪ {(d
e ,h∗)}e ∈T̂ ∀\{e∗ }

∪ {(de ,he )}e ∈S∃\T̂ ∃ ∪ {(d1,h
∗), (d2,h1), (d3,h2), (d4,h1)}

is 1-stable.

Conversely, consider the case when the instance is a no-instance.
We show that there exists no 1-stable matching in this case. Suppose

to the contrary that µ is a 1-stable matching. Then, µ must contain

(d1,h
∗) since the submarket induced by {d1,d2,d3,d4} and {h1,h2}

is equivalent to Example 2.3 (which has no 1-stable matching).

Hence, uh∗ (µ(h
∗)) ≤ 3|X1 | − 1. Let T̃ ∃ = {e ∈ S∃ : de ∈ µ(h∗)}.

Since the instance is a no-instance, there exists T̃ ∀ ⊆ S∀ such that

|T̃ ∃ | + |T̃ ∀ | = |X1 | and T̃ ∃ ∪ T̃ ∀ is a matching. Thus, we have

uh∗
(
{de }e ∈T̃ ∃ ∪ {d

e }e ∈T̃ ∀
)
= 3|X1 |, which implies that T̃ ∃ ∪ T̃ ∀ is

a 1-blocking coalition for h∗. □

Now the remaining cases to be treated are (U
card
, Γ
(2)
mat
)- and

(U
add
, Γ
(2)
mat
)-markets. For a (U

add
, Γ
(2)
mat
)-market, although the α-

stability (especially 1-stability) of a given matching can be checked

in polynomial time by Theorem 3.1, the existence problem becomes

NP-complete, even if utilities are restricted to cardinality. We prove

the NP-hardness by a reduction from DisjointMatching, which
is NP-complete [13].

DisjointMatching Weare given two bipartite graphs, (S,T ;A1)

and (S,T ;A2) with |S | = |T |, and our task is to determine

whether perfect matchingsM1 ⊆ A1 andM2 ⊆ A2 exist such

thatM1 ∩M2 = ∅.

Theorem 4.4. It is NP-complete to decide whether there exists a
1-stable matching in a given (U

card
, Γ
(2)
mat
)-market.

Proof. The problem is inNP by Theorem 3.1 since the (U
add
, Γ
(2)
mat
)-

packing problem is solvable in polynomial time [12].

To prove NP-hardness of the problem, we give a reduction from

DisjointMatching. Let (S,T ;A1) and (S,T ;A2) be the bipartite

graphs of a given disjoint matching instance and let A1 ∪ A2 =

{a1, . . . ,aℓ}. Without loss of generality, we assume |A1∪A2 | ≥ 2|S |.
We construct a market that has a 1-stable matching if and only if

the given instance has disjoint perfect matchings. Consider amarket

(D,H , ≻D ,uH ,IH ) with 4ℓ doctors D =
⋃ℓ
k=1
{dk

1
,dk

2
,dk

3
,dk

4
} and

2ℓ + 3 hospitals H = {h1,h2,h3} ∪
⋃ℓ
k=1
{hk

1
,hk

2
}. The doctors’

preferences over the acceptable hospitals are given as:

• dk
1

: h1,h2,h3,h
1

k ,h
2

k (k ∈ [ℓ]),

• dk
2

: hk
1
,hk

2
(k ∈ [ℓ]),

• dk
3

: hk
2
,hk

1
(k ∈ [ℓ]),
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• dk
4

: hk
2
,hk

1
(k ∈ [ℓ]).

Suppose that each hospital has the cardinality utility. We equate

each doctor dk
1
∈ D with edge ak ∈ A1 ∪A2. Then, the feasibility

constraint for each hospital is defined:

• Ih1
= {D ′ ⊆ A1 : D ′ is a matching in (S,T ;A1)},

• Ih2
= {D ′ ⊆ A2 : D ′ is a matching in (S,T ;A2)},

• Ih3
= {D ′ ⊆ A1 ∪A2 : |D ′ | ≤ |A1 ∪A2 | − 2|S |},

• Ihk
1

= 2
{dk

1
,dk

3
} ∪ 2

{dk
2
,dk

4
} (k ∈ [ℓ]),

• Ihk
2

= 2
{dk

1
,dk

4
} ∪ 2

{dk
2
,dk

3
} (k ∈ [ℓ]).

Note that each feasible family can be represented as an intersection

of two matroids.

Consider the case when the instance has disjoint perfect match-

ings. LetM1 ⊆ A1 andM2 ⊆ A2 be the matchings. Then

µ ={(d,h1)}d ∈M1
∪ {(d,h2)}d ∈M2

∪ {(d,h3)}d ∈(A1∪A2)\(M1∪M2)

∪
⋃ℓ
k=1
{(dk

2
,hk

1
), (dk

3
,hk

2
), (dk

4
,hk

1
)}

is a 1-stable matching.

Conversely, consider the case when the instance has no disjoint

perfect matchings. Let µ be a feasible matching. Then, there exists

a doctor dk
1
such that µ(dk

1
) < {h1,h2,h3}. In this case, µ is not

1-stable since doctors {dk
1
,dk

2
,dk

3
,dk

4
} and hospitals {hk

1
,hk

2
} form

the same market as in Example 2.2. □

5 APPROXIMABILITY OF STABLE
MATCHINGS

To deal with the nonexistence or the hardness of stable matchings,

we focus on an approximately stable matching. This section pays

attention to an online version of packing problems, i.e., online pack-
ing problems (with cancellation) and incorporates the proficiency

into a variant of GDA in such a manner that choice functions of

hospitals are replaced with an online packing algorithm. We es-

tablish a framework so that the bounds of the algorithms become

consistent with how much stability is violated. Note that Kawase

and Iwasaki [24] apply a similar idea for (U
add
, Γ
(1,ϵ )
knap
)-markets.

In what follows, we consider algorithms that take a market as

input and yield an approximately stable matching as output. An al-
gorithm is called α -stable if it always produces an α-stable matching

for a certain α .

5.1 Online Packing Problem
Let us briefly introduce an online packing problem, which is a gen-

eralization of several online problems such as an online removable

knapsack problem [19]. Its instance consists of a set of elements

D = {d1, . . . ,dn }, a utility function u : 2
D → R+, and a feasibility

family I ⊆ 2
D
. We assume that u is monotone and I is an indepen-

dence family. Elements inD are given to an online algorithm one by

one in an unknown order. When an element is presented, the algo-

rithmmust accept or reject it immediately without knowledge about

the ordering of future elements. Although accepted elements can

be canceled, the elements that are once rejected (or canceled) can

never be recovered. The set of selected elements must be feasible in

each round. Suppose that elements are given according to order σ ,
which is a bijection from [n] to D. We denote by Alg(σ (1), . . . ,σ (i))
the set of selected elements at the end of the ith round, in which

Algorithm 1: Generalized DA algorithm

input :D , H , (≻d )d∈D , (Algh )h∈H output: matching µ
1 µ ← ∅, Rd ← H (∀d ∈ D);

2 L← {d ∈ D : max≻d (Rd ∪ {∅}) , ∅};

3 ah ← () for all h ∈ H ;

4 while L , ∅ do
5 pick d ∈ L arbitrarily and let h ← max≻d Rd ;

6 append d to the end of ah ;

7 µ ← {(d ′,h′) ∈ µ : h′ , h} ∪ Algh (a
h );

8 Rd ← Rd \ {h};

9 L← {d ∈ D : max≻d (Rd ∪ {µ(d)}) , µ(d)};

10 return µ;

σ (i) ∈ D arrives. We denote it as Alg(σ , i) for brevity. Then we have

Alg(σ , 0) = ∅, and Alg(σ , i − 1) ∪ {σ (i)} ⊇ Alg(σ , i) ∈ I holds for

every i ∈ [n]. In addition, for i ∈ [n] and the two orders of elements

σ and τ , equality Alg(σ , i) = Alg(τ , i) holds if σ (j) = τ (j) for any
j ∈ [i]. Our task is to maximize value u(Alg(σ , i)) for unknown
order σ and i (∈ [n]).

The performance of an online algorithm is measured by the

competitive ratio. Denote

OPT(σ , i) ∈ arg max

{
u(S) : S ∈ I|{σ (1), . . . ,σ (i)}

}
.

Online algorithm Alg is called α -competitive (α ≥ 1) for (D,u,I) if

α · u(Alg(σ , i)) ≥ u(OPT(σ , i))

for any σ and i . Also, Alg is called α-competitive for an online

(U, Γ)-packing problem if it is α-competitive for any instance

(D,u,I) with u ∈ U and I ∈ Γ.

5.2 Generalized Deferred Acceptance
Algorithm

We use amodified version of the generalized DA algorithm, which is

formally described in Algorithm 1. In GDA, each doctor is initialized

to be unmatched. Then an unmatched doctor makes a proposal to

her most preferred hospital h that has not rejected her yet. Let ah

be the ordered list of proposed doctors to h. Then it chooses a set

of doctors according to the output of online algorithm Algh (a
h ).

The proposal procedure continues as long as an unmatched doctor

has a non-rejected acceptable hospital.

The next theorem guarantees that if Algh is α-competitive for

each h ∈ H , then Algorithm 1 is α-stable.3

Theorem 5.1. Algorithm 1 outputs an α-stable matching if Algh
is α-competitive for each h ∈ H .

Proof. We prove that the output µ is an α-stable matching by

contradiction. Suppose that D ′ ⊆ D is an α-blocking coalition

for h. Then, we have uh (D
′) > α · uh (µ(h)) = α · uh (Algh (a

h ))

and h ⪰d µ(d) for all d ∈ D ′. By the definition of the algorithm,

h ⪰d µ(d) implies thatd is inah . Hence, we have α ·uh (Algh (a
h )) ≥

uh (OPTh (a
h )) ≥ uh (D

′) since Alg is α-competitive. This is a con-

tradiction. □

3
Although the output of Algorithm 1 depends on the order of doctors selected in

Line 5, this claim holds regardless of the order.
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This theorem assures that if there exists an online packing al-

gorithm in a setting, we can construct a stable algorithm in the

corresponding market with it.

Let us first apply a greedy algorithm to a matching problem for

k-matroid intersection constraints: Start from the empty solution

and add an element to the current solution if and only if its addition

preserves feasibility. This greedy algorithm can be implemented

in the online setting as shown in Algorithm 2. If the utilities are

cardinality, it is a k-competitive algorithm [20, 27]. By Theorem 5.1,

we obtain the following corollary.

Corollary 5.2. For the (U
card
, Γ
(k )
mat
)-markets, there exists a k-

stable algorithm.4

Algorithm 2:
input :σ (1), . . . , σ (i) output: Alg(σ (1), . . . , σ (i))

1 if i = 0 then return ∅;
2 let Y ← Alg(σ (1), . . . ,σ (i − 1)) ∪ {σ (i)};

3 if Y ∈ I then return Y ;

4 else return Alg(σ (1), . . . ,σ (i − 1));

However, we require more sophisticated packing algorithms in

the online setting to handle the additive or submodular utility case.

For the additive case, a (
√
k +
√
k − 1)2-competitive algorithm

was given by Ashwinkumar [4]. For the submodular case, a 4k-
competitive algorithm was given by Chakrabarti and Kale [6]. Thus,

we obtain the following corollaries:

Corollary 5.3. For the (U
add
, Γ
(k )
mat
)-markets, there exists a (

√
k+

√
k − 1)2-stable algorithm.

Corollary 5.4. For the (U
sub
, Γ
(k )
mat
)-markets, there exists a 4k-

stable matching algorithm.

Next, let us consider ρ-dimensional knapsack constraints with

ϵ-slack. To the best of our knowledge, no suitable online packing

algorithm has been proposed for the cardinality or additive utility

case.We develop a simple greedy algorithm, which is formally given

as Algorithm 3. Intuitively, the algorithm chooses doctors according

to decreasing order of utility per largest size u(d)/maxi ∈[ρ]w(d, i).
It is not difficult to see that the algorithm is ρ-competitive for the

cardinality utility case and ρ/ϵ-competitive for the additive utility

case.

Theorem 5.5. Algorithm 3 is ρ- and ρ/ϵ-competitive for the online
(U

card
, Γ
(ρ ,ϵ )
knap
)- and (U

add
, Γ
(ρ ,ϵ )
knap
)-packing problems, respectively.

Accordingly, in conjunction with Theorem 5.1, we obtain the

following corollaries.

Corollary 5.6. For the (U
card
, Γ
(ρ ,ϵ )
knap
)-markets, there exists a

ρ-stable algorithm.

4
This claim can be generalized to the case when the set of independence families is the

k -system, which is an extension of k -matroid intersection. An independence system

(D , I) is called a k -system if for all S ⊆ D , the ratio of the cardinality of the largest

to the smallest maximal independent subset of S is at most k .

Algorithm 3:
input :σ (1), . . . , σ (i) output: Alg(σ (1), . . . , σ (i))

1 if i = 0 then return ∅;
2 let Y ← Alg(σ (1), . . . ,σ (i − 1)) ∪ {σ (i)};

3 while
∑
d ∈Y maxi ∈[ρ]w(d, i) > 1 do

4 Y ← Y \ {a} with a ∈ arg mind ∈Y
u(d )

maxi∈[ρ ]w (d ,i)
;

5 return Y ;

Corollary 5.7. For the (U
add
, Γ
(ρ ,ϵ )
knap
)-markets, there exists a ρ

ϵ -
stable algorithm.

Unfortunately, it is not easy to generalize the greedy algorithm

to the submodular utility case. However, we can borrow anO(ρ/ϵ2)-

competitive algorithm for the online (U
sub
, Γ
(ρ ,ϵ )
knap
)-packing prob-

lem [7] and provide the following corollary.

Corollary 5.8. For the (U
sub
, Γ
(ρ ,ϵ )
knap
)-markets, there exists an

O(ρ/ϵ2)-stable algorithm.

6 INAPPROXIMABILITY OF STABLE
MATCHINGS

In this section, we show some inapproximability results, i.e., lower

bounds. Aswe saw in Example 2.2, for any ϵ ∈ [0, 1/2) andα ∈ [1, 2),

there exists a (U
card
, Γ
(2)
mat
∩ Γ
(2,ϵ )
knap
)-market not admitting α-stable

matchings. Also, Kawase and Iwasaki [24] derived the lower bound

for the case of additive utilities and 1-dimensional knapsack with

ϵ-slack constraints. There exists a market that has no α-stable
matching with α < 1/ϵ if ϵ ∈ [0, 1/2).

To fill up the remaining shown in Table 1 (c), we now provide a

basis for deriving lower bounds. Unfortunately, we cannot directly

apply lower bounds for online packing problems because hospitals

are not offered by doctors in an arbitrary order. Hence, we consider

online packing problems with a restriction on the input orderings.

Roughly speaking, we partition elements D to D1, . . . ,Ds and only

consider input sequences such that, if an online algorithm rejects an

element in Dt for each t ∈ [s], then a new element in Dt is given to

the algorithm. In addition, we require that the (U, Γ)-markets allow

hospitals to have any additive utilities and the rank one capacity.

Theorem 6.1. Suppose that U is a set of utilities and Γ is a set
of independence families such that U

add
⊆ U and Γ

(1)
cap
⊆ Γ. Let

(D̂, û, ˆI) be a (U, Γ)-packing instance, let D1, . . . ,Ds be a partition
of D̂ with Dt = {d

t
1
, . . . ,dtrt } for each t ∈ [s] (where rt = |Dt |), and

let q1, . . . ,qs be positive integers such that qt ≤ rt for each t ∈ [s].
We define

cl(D ′) =
⋃
t ∈[s]

{
dti ∈ Dt : |D ′ ∩ Dt | < qt or i ≤maxd tj ∈D

′∩Dt
j
}

and A = {D ′ ⊆ D̂ : |D ′ ∩ Dt | ≤ qt (∀t ∈ [s])}. Then, there exists
no α-stable algorithm for the (U, Γ)-markets if there exists no α-
competitive algorithm for the online packing problem with restricted
input sequences, i.e.,

α · û(D ′) < max

{
û(D ′′) : D ′′ ∈ ˆI|cl(D ′)

}
, (1)

for any D ′ ∈ ˆI ∩ A.
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Proof. Suppose that (1) holds for any D ′ ∈ I ∩ A. We set doc-

tors and hospitals asD = D̂ andH = {h∗}∪
⋃
t ∈[s]{h

t
qt+1
, . . . ,htrt },

respectively. Each doctor’s preference over her acceptable hospitals

is defined as:

• ≻d ti
: h∗,htqt+1

, . . . ,htrt (t ∈ [s], i ∈ [qt ]),

• ≻d ti
: hti ,h

∗,hti+1
, . . . ,htrt (t ∈ [s], i ∈ [rt ] \ [qt ]).

Suppose that uh∗ (D
′) = û(D ′) (∀D ′ ⊆ D) and each hospital hti has

an additive utility function such that uhti
(dtj ) = (α + 1)−j (t ∈

[s], i ∈ [rt ] \ [qt ], j ∈ [rt ]). The feasibility constraint of each

hospital is defined as: Ih∗ =
ˆI and Ihti

= {D ′ ⊆ D : |D ′ | ≤ 1}

(t ∈ [s], i ∈ [rt ] \ [qt ]). Note that (D,H , ≻D ,uH ,IH ) is a (U, Γ)-
market.

In what follows, we claim that no α-stable matching exists in

market (D,H , ≻D ,uH ,IH ) if (1) holds. Suppose, contrary to our

claim, that µ is an α-stable matching.

We show that h∗ ⪰d µ(d) if d ∈ cl(µ(h∗)). Fix t ∈ [s] and let

Dt \ µ(h
∗) = {dtσ (1), . . . ,d

t
σ (ℓ)} with ℓ = |Dt \ µ(h

∗)| and σ (1) <

· · · < σ (ℓ). It is worth mentioning that σ (i) ≤ qt + i for all i ∈
[ℓ]. By uhtqt +1

(dtσ (1)) > α · uhtqt +1

(dtσ (1)+1
) and σ (1) ≤ qt + 1, we

have µ(htqt+1
) = dtσ (1). Similarly, by induction we conclude that

µ(htqt+i ) = dtσ (i) for all i ∈ [ℓ]. Here, we have µ(d
t
i ) ≻d ti

h∗ if and

only if i = σ (i − qt ). Hence, we have h
∗ ⪰d ti

µ(dti ) if ℓ > rt − qt

(i.e., |µ(h∗) ∩ Dt | < qt ) or d
t
j ∈ µ(h∗) for some j ≥ i (i.e., i ≤

maxd tj ∈µ(h
∗)∩Dt

j).

Therefore, D∗ ∈ arg max{uh∗ (D
′′) : D ′′ ∈ ˆI|cl(µ(h∗))} is an

α-blocking pair for µ by D∗ ∈ Ih∗ , h
∗ ⪰d µ(d) (∀d ∈ D∗), and

uh∗ (D
∗) > α ·uh∗ (µ(h

∗)), which contradicts the α-stability of µ. □

Theorem 6.1 gives us a general lower bound in (1) and it enables

us to derive two novel lower bounds for k-matroid intersection and

ρ-dimensional knapsack constraints.

Theorem 6.2. For any integer k ≥ 2 and any real α ∈ [1,k), there
exists a (U

add
, Γ
(k )
mat
)-markets not admitting an α-stable matching.

Proof. Let D = D1 ∪ D2 with D1 = {d
1

1
, . . . ,d1

k } and D2 =

{d2

1
, . . . ,d2

k }. In addition, let q1 = q2 = 1, I = 2
D1 ∪ 2

D2 (∈ Γ
(k )
mat
),

and u(D ′) = |D ′ | for D ′ ⊆ D.
For set A in Theorem 6.1, we have I ∩ A = {∅} ∪ {{d1

i } :

i ∈ [k]} ∪ {{d2

i } : i ∈ [k]}. Thus, for any D ′ ∈ I ∩ A, we have

u(D ′) = |D ′ | ≤ 1 and max{u(D ′′) : D ′′ ∈ I|cl(D ′)} = k . Hence,

by Theorem 6.1, there exists a (U
add
, Γ
(k)
mat
)-market without α-stable

matchings. □

Theorem 6.3. For any positive integer ρ and any positive real
ϵ < 1/2, there exists a (U

add
, Γ
(ρ ,ϵ )
knap
)-markets not admitting a ρ

2ϵ -
stable matching.

Proof. Let r B ⌈1/ϵ⌉ − 1. We remark that ϵ < 1/r < 2ϵ . In
addition, letm be an integer such that (rρ)1−1/m >

ρ
2ϵ . Consider a

(U
add
, Γ
(ρ ,ϵ )
knap
)-packing problem withmrρ + 1 doctors D = D1 ∪D2

where D1 = {d0} and D2 = {d1 . . . ,dmrρ }. We define q1 = q2 = 1.

Let us partition D2
into Da,b B {dt+r (a−1)+r ρ(b−1) : t ∈ [r ]}

(a ∈ [ρ] and b ∈ [m]). Let u be an additive utility function such that

u(d0) = rρ and u(di ) = (rρ)
b/m

for di ∈ Da,b
with a ∈ [ρ] and

b ∈ [m]. The weights for dimension ℓ ∈ [ρ] are defined as:

• w(d0, ℓ) = 1 − ϵ ,

• w(di , ℓ) = 1/r (b ∈ [m]; di ∈ D
ℓ,b

), and

• w(di , ℓ) = 0 (a ∈ [ρ] \ {ℓ}; b ∈ [m]; di ∈ D
a,b ).

For setA in Theorem 6.1, we haveI∩A = {D ′ ⊆ D : |D ′ | ≤ 1}.

We show that (1) holds for any D ′ ∈ I ∩ A. If D ′ = ∅, we have
ρ
2ϵ · u(D

′) = 0 < rρ = max{u(D ′′) : D ′′ ∈ I|cl(D ′)}. Hence, we
can assume that D ′ = {di }. If i = 0, we have

max{u(D ′′) : D ′′ ∈ I|cl(D ′)}

u(D ′)
=
u(D1,m ∪ · · · ∪ Dρ ,m )

u({d0})

=
r · ρ · rρ

rρ
= rρ >

ρ

2ϵ
.

If 1 ≤ i ≤ rρ (i.e., di ∈ D
a,1

for some a ∈ [ρ]), we have

max{u(D ′′) : D ′′ ∈ I|cl(D ′)}

u(D ′)
≥

u({d0})

u({di })
=

rρ

(rρ)
1

m
>

ρ

2ϵ
.

Finally, if rρ < i ≤ mrρ, let q∗ B ⌈i∗/(rρ)⌉ (i.e., di ∈ Da,q∗
for

some a ∈ [ρ]), and then we have

max{u(D ′′) : D ′′ ∈ I|cl(D ′)}

u(D ′)
≥

u(D1,q∗−1 ∪ · · · ∪ Dρ ,q∗−1)

u({di })

≥
r · ρ · (rρ)(q

∗−1)/m

(rρ)q
∗/m

= (rρ)1−1/m >
ρ

2ϵ
.

Thus, by Theorem 6.1, there exists a (U
add
, Γ
(ρ ,ϵ )
knap
)-market with-

out
ρ
2ϵ -stable matchings. □

7 CONCLUSION
This paper examined matching with general constraints and ana-

lyzed the approximability of stable matchings. We first identified

the computational complexity of checking and computing stable

matchings according to hospitals’ utilities and imposed constraints.

Second, we established a useful framework to connect packing prob-

lems and its online algorithms with approximately stable matchings

in the presence of complicated constraints. Then we successfully

built a series of algorithms with good approximation ratios as a vari-

ant of GDA. Next, we provided a framework to obtain an α-stable
algorithm for the (U, Γ)-markets from α-competitive algorithms

for the online (U, Γ)-packing problem. Conversely, we also show

that the nonexistence of the α-competitive algorithm for the online

(U, Γ)-packing problem (where the input is restricted to certain

sequences) implies the nonexistence of α-stable algorithms for the

(U, Γ)-markets.

ACKNOWLEDGMENTS
The authors thank anonymous reviewers for their valuable com-

ments. This work was supported by JST ACT-I Grant Number

JPMJPR17U7, and by JSPS KAKENHI Grant Numbers 16K16005,

16KK0003, and 17H01787.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

609



REFERENCES
[1] Atila Abdulkadiroğlu and Tayfun Sönmez. 2003. School Choice: A Mechanism

Design Approach. American Economic Review 93, 3 (2003), 729–747.

[2] Azar Abizada. 2016. Stability and incentives for college admissions with budget

constraints. Theoretical Economics 11, 2 (2016), 735–756.
[3] Esther MArkin, SangWon Bae, Alon Efrat, Kazuya Okamoto, Joseph S.B. Mitchell,

and Valentin Polishchuk. 2009. Geometric stable roommates. Inform. Process.
Lett. 109, 4 (2009), 219–224.

[4] Badanidiyuru Varadaraja Ashwinkumar. 2011. Buyback Problem - Approximate

Matroid Intersection with Cancellation Costs. In Proceedings of ICALP. 379–390.
[5] Piotr Berman, Marek Karpinski, Lawrence L Larmore, Wojciech Plandowski, and

Wojciech Rytter. 1997. On the complexity of pattern matching for highly com-

pressed two-dimensional texts. In Annual Symposium on Combinatorial Pattern
Matching. 40–51.

[6] Amit Chakrabarti and Sagar Kale. 2015. Submodular maximization meets stream-

ing: Matchings, matroids, and more. Mathematical Programming 154, 1–2 (2015),

225–247.

[7] T.-H. Hubert Chan, Shaofeng H.-C. Jiang, Zhihao Gavin Tang, and Xiaowei Wu.

2017. Online submodular maximization problem with vector packing constraint.

In Proceedings of ESA, Vol. 87. 24:1–24:14.
[8] Brian C. Dean, Michel X. Goemans, and Nicole Immorlica. 2006. The Unsplittable

Stable Marriage Problem. In Proceedings of IFIP TCS. 65–75.
[9] David Delacrétaz, Scott Duke Kominers, and Alexander Teytelboym. 2016.

Refugee resettlement. (2016). Working paper.

[10] Joanna Drummond and Craig Boutilier. 2013. Elicitation and Approximately

Stable Matching with Partial Preferences. In Proceedings of the 23rd International
Joint Conference on Artificial Intelligence (IJCAI). 97–105.

[11] Joanna Drummond and Craig Boutilier. 2014. Preference Elicitation and Interview

Minimization in Stable Matchings. In Proceedings of the 28th AAAI Conference on
Artificial Intelligence. 645–653.

[12] Jack Edmonds. 1970. Submodular functions, matroids, and certain polyhedra. In

Combinatorial Structures and Their Applications. Gordon and Breach, New York,

69–87.

[13] Alan M Frieze. 1983. Complexity of a 3-dimensional assignment problem. Euro-
pean Journal of Operational Research 13, 2 (1983), 161–164.

[14] Satoru Fujishige. 2005. Submodular functions and optimization. Vol. 58. Elsevier.
[15] Michael R. Garey and David S. Johnson. 1979. Computers and Intractability: A

Guide to the Theory of NP-Completeness. Freeman New York.

[16] Isa E Hafalir, M Bumin Yenmez, and Muhammed A Yildirim. 2013. Effective

affirmative action in school choice. Theoretical Economics 8, 2 (2013), 325–363.

[17] Naoto Hamada, Anisse Ismaili, Takamasa Suzuki, and Makoto Yokoo. 2017.

Weighted Matching Markets with Budget Constraints. In Proceedings of AAMAS.
317–325.

[18] Hadi Hosseini, Kate Larson, and Robin Cohen. 2015. Matching with Dynamic

Ordinal Preferences. In Proceedings of the 29th AAAI Conference on Artificial
Intelligence. 936–943.

[19] Kazuo Iwama and Shiro Taketomi. 2002. Removable Online Knapsack Problems.

In Proceedings of ICALP. 293–305.
[20] Thomas A Jenkyns. 1976. The efficacy of the “greedy” algorithm. In Proceedings

of SEICCGTC. 341–350.
[21] Yuichiro Kamada and Fuhito Kojima. 2015. Efficient Matching under Distribu-

tional Constraints: Theory and Applications. American Economic Review 105, 1

(2015), 67–99.

[22] Yuichiro Kamada and Fuhito Kojima. 2018. Fair Matching under Constraints:

Theory and Applications. (2018). Mimeo.

[23] Yasushi Kawase and Atsushi Iwasaki. 2017. Near-Feasible Stable Matchings with

Budget Constraints. In Proceedings of IJCAI. 242–248.
[24] Yasushi Kawase and Atsushi Iwasaki. 2018. Approximately Stable Matchings

with Budget Constraints. In Proceedings of AAAI. 242–248.
[25] Yasushi Kawase and Atsushi Iwasaki. 2019. Approximately Stable Matchings

with General Constraints. (2019). arXiv:1907.04163

[26] Fuhito Kojima, Akihisa Tamura, and Makoto Yokoo. 2018. Designing match-

ing mechanisms under constraints: An approach from discrete convex analysis.

Journal of Economic Theory 176 (2018), 803–833.

[27] Bernhard Korte and Dirk Hausmann. 1978. An analysis of the greedy heuristic

for independence systems. Algorithmic aspects of combinatorics 2 (1978), 65–74.
[28] Ryoji Kurata, Naoto Hamada, Atsushi Iwasaki, and Makoto Yokoo. 2017. Con-

trolled School Choice with Soft Bounds and Overlapping Types. Journal of
Artificial Intelligence Research 58 (2017), 153–184.

[29] David F. Manlove. 2013. Algorithmics of Matching Under Preferences. World

Scientific Publishing Company.

[30] Aileen McLoughlin. 1984. The complexity of computing the covering radius of a

code. IEEE Transactions on Information Theory 30, 6 (1984), 800–804.

[31] Thành Nguyen, Hai Nguyen, and Alexander Teytelboym. 2019. Stability in

Matching Markets with Complex Constraints. In Proceedings of EC. 61.
[32] James G. Oxley. 1992. Matroid Theory. Oxford University Press.

[33] Alvin E. Roth and Marilda A. Oliveira Sotomayor. 1990. Two-Sided Matching: A
Study in Game-theoretic Modeling and Analysis (Econometric Society Monographs).
Cambridge University Press.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

610

http://arxiv.org/abs/1907.04163

	Abstract
	1 Introduction
	2 Model
	2.1 Classes of Utilities and Constraints
	2.2 Applications
	2.3 Markets without Stable Matchings

	3 Checking the Stability of a Given Matching
	4 Hardness of Computing a Stable Matching
	5 Approximability of Stable Matchings
	5.1 Online Packing Problem
	5.2 Generalized Deferred Acceptance Algorithm

	6 Inapproximability of Stable Matchings
	7 Conclusion
	References



