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ABSTRACT
The hypergraph matching game is a cooperative game defined on a

hypergraph such that the vertices are the players, and the character-

istic function is the value of a maximum hypergraph matching on a

hypergraph induced by a coalition. This game models the nature of

group formation and will have applications in, e.g., organ exchange

and joint purchasing. The hypergraph matching game is intractable

in general because evaluating its characteristic function is already

NP-hard. Thus, we study a more tractable condition, called the

convexity. First, we prove that the problem of checking whether a

given hypergraph matching game is convex or not is solvable in

polynomial time. Second, we prove that the Shapley value of a given

convex hypergraph matching game is exactly computable in poly-

nomial time. Third, we show that the problem of finding a minimum

compensation to make a given hypergraph matching game convex

is NP-hard, even if the input is a graph, and is 2-approximable in

polynomial time if the input is an antichain. Finally, we consider

the fractional hypergraph matching game and prove that if the

fractional hypergraph matching game is convex, then its charac-

teristic function coincides with the characteristic function of the

corresponding (integral) hypergraph matching game.
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1 INTRODUCTION
1.1 Background and Motivation
A cooperative game (V ,ν ) is given by a finite set V and a function

ν : 2
V → Rwith ν (∅) = 0, whereV is the set ofn players and ν is the

characteristic function such that ν (X ) denotes the value if players
X ⊆ V form a coalition. The main problem of a cooperative game is

to find a “fair way” to distribute the collective value to the players.

Here, the way is referred to as a solution concept, which includes

the stable set [32], core [13], Shapley value [27], kernel [9], and

nucleolus [25]. See [7] for the details of cooperative game theory.

In this study, we consider the hypergraph matching game (V ,ν ),
which is also known as the packing game [10] or synergy coalition

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

group representation [8]; see Section 2 for the terminology of hy-

pergraphs. Let G = (V ,E) be a hypergraph, and c : E → R+ be the
weights of the hyperedges. A matchingM is a collection of hyper-

edges that are pairwise disjoint. Then, the characteristic function

ν : 2
V → R of the hypergraph matching game is given by

ν (X ) = max

M :matching of G[X ]

∑
e ∈M

c(e), (1.1)

where G[X ] is the subgraph induced by X . Note that ν is super-

additive, i.e., for all disjoint X ,Y ⊆ V , the following inequality

holds.

ν (X ) + ν (Y ) ≤ ν (X ∪ Y ). (1.2)

Intuitively, this game models the nature of group formation. Sup-

poseV is the set of players, and E ⊆ 2
V
is the set of all the possible

groups of V . When players X ⊆ V form a coalition, they find sub-

groups (i.e., hypergraph matching) in the coalition to maximize

their total profit ν (X ). Then, the behavior of the players is captured
by the hypergraph matching game.

The hypergraph matching game is a generalization of the as-

signment game [29] and the matching game [10] whose inputs

are bipartite and general graphs, respectively. These games have

been studied extensively for a long time [1, 2, 6, 15, 16]. Moreover,

they have many practical applications such as trading markets [29],

kidney exchange [5], and spectrum sharing [22].

The hypergraph case is much difficult than the graph case be-

cause evaluating ν (X ) is already NP-hard [12]. Consequently, most

computational problems about this game are NP-hard. Deng et

al. [10] gave a necessary and sufficient condition of the core non-

emptiness (see Remark 4.4). Conitzer and Sandholm [8] proposed

(1.1) as a compact representation of a characteristic function and

named synergy coalition group representation (with transferrable

utility). They proved that checking the core non-emptiness is NP-

hard [8, Theorem 2] but in P if the optimal hypergraph matching

of G is provided [8, Theorem 4].

Because the general hypergraph matching game is intractable,

we here consider a (possibly) computationally tractable subclass of

the hypergraph matching game. A cooperative game is convex if

its characteristic function ν : 2
V → R is supermodular [29], i.e., the

following inequality holds for all X ,Y ⊆ V [11]:

ν (X ) + ν (Y ) ≤ ν (X ∩ Y ) + ν (X ∪ Y ). (1.3)

Note that the supermodularity (1.3) is a stronger requirement than

the superadditivity (1.2). Convex hypergraph matching games have

natural applications in drug manufacturing; see Section 7 in [8].

A convex game has several desirable properties. For example,

the core is always non-empty [28], coincides with the bargaining

set [20], is the unique von Neumann–Morgenstern stable set [28,

32], and contains the Shapley value [28]. A core element is obtained

in oracle polynomial time (i.e., polynomial number of characteristic
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u v w

Figure 1: A convex game. The
hyperedge weights are c(e) =
2
|e |−1. Then ν ({u,v}) = 1,

ν ({v,w}) = 1, ν ({v}) = 0, and
ν ({u,v,w}) = 4. Therefore,
ν ({u,v})+ν ({v,w}) ≤ ν ({v})+
ν ({u,v,w}).

u v w

Figure 2: A non-convex
game. All the hyper-
edge weights are 1.
Then ν ({u,v}) = 1,
ν ({v,w}) = 1, ν (v}) = 0, and
ν ({u,v,w, }) = 1 (attained
by {u,v} or {v,w}). There-
fore, ν ({u,v}) + ν ({v,w}) ̸≤
ν ({v}) + ν ({u,v,w}).

function evaluations), and the core membership problem is solv-

able in oracle polynomial time [29]. The nucleolus coincides with

the kernel [20], and is computable in oracle polynomial time [18],

etc. In particular, for the hypergraph matching game, Conitzer

and Sandholm showed that a solution in the core is obtained in

O(|V |2 |E |) time. Therefore, researchers have been interested in con-

ditions of the convexity of several games such as minimum base

games [21], communication games [31], and maximum spanning

tree games [17, 23].

A hypergraph matching game is sometimes convex (Figure 1)

and sometimes non-convex (Figure 2). Thus, we are interested in

a condition under which a hypergraph matching game is convex.

We are also interested in whether computational problems on con-

vex hypergraph matching game are tractable or not. There is a

polynomial-time algorithm to compute a solution in the core [8],

but the tractability of other problems are still open.

1.2 Our Problems and Contributions
In this paper, we consider three computational problems and one

structural property related to the convexity of the hypergraph

matching game. The first problem is the following.

Problem 1. Given a hypergraphG = (V ,E) and hyperedge weights
c : E → R, determine whether the hypergraph matching game is con-
vex or not.

Our first contribution is a polynomial-time algorithm to solve

Problem 1 (Theorem 4.1). We first establish a necessary and suffi-

cient condition of the convexity of a hypergraph matching game

(Theorem 3.3). Then, we construct an algorithm that checks the

condition efficiently. Note that, during the proof of this theorem, we

also show that the characteristic function of a convex hypergraph

matching game is evaluated in polynomial time (Lemma 4.3).

After obtaining the characterization and algorithm for the con-

vexity of a hypergraph matching game, we consider solution con-

cepts to a convex hypergraph matching game. The convexity and

the polynomial-time evaluation of ν imply that the stable set, core,

kernel, and nucleolus are tractable [18, 20, 28]. In particular, there

is an efficient algorithm to get a solution in the core [8]. Thus, we

focus on another standard solution concept, the Shapley value.

The Shapley value [27] ϕ : V → R is defined by

ϕ(u) =
∑

X ⊆V \{u }

|X |!(|V | − |X | − 1)!

|V |!
(ν (X ∪ {u}) − ν (X )). (1.4)

The Shapley value is one of the most standard solution concepts.

Computing the Shapley value of a matching game is #P-complete,

but it admits a fully-randomized polynomial-time approximation

scheme (FPRAS) [3]. There exists a convex game of which the

Shapley value is not computable in polynomial time unless P = NP,

and any convex game admits a FPRAS [19]. Therefore, an exact

algorithm for computing the Shapley value of a convex hypergraph

matching game is still an open problem. This is our second problem.

Problem 2. Given a hypergraphG = (V ,E) and hyperedge weight
c : E → R that form a convex hypergraph matching game. Compute
the Shapley value.

Our second contribution is a polynomial-time algorithm for solv-

ing this problem (Theorem 5.1). The algorithm is derived as follows.

We observe that the marginal gain, ν (X ∪ {u})−ν (X ), takes at most

O(|E |) different values associated with the hyperedges (Lemma 5.4).

Thus, the subsets are grouped by their marginal gain, and their con-

tributions are computed independently. Here, the cardinality of each

group is computed by the double-counting argument (Lemma 5.5)

with the Möbius inversion formula [30] (Equation (5.2)).

Thus far, we see that a convex hypergraph matching game has

several desirable properties. However, because the convexity is

a strong condition, most instances of the hypergraph matching

game may be non-convex (cf: Corollary 3.4). Thus, we consider the

following problem, called the minimum compensation problem.

Let us consider the following scenario: We hope the players form

the grand coalitionV . Because the convexity is a sufficient condition

that the players do not deviate from the grand coalition [28], we

slightly modify the game to make it convex. Here, we provide a

compensation h(u) ∈ R+ to each user u if he/she affiliates with a

coalition X but does not affiliate with a maximum matching. In this

case, the value of the coalition X is given by

νh (X ) = max

M :matching of G[X ]

©­«
∑
e ∈M

c(e) +
∑

u ∈X \VM

h(u)
ª®¬ , (1.5)

where VM =
⋃
e ∈M e is the set of vertices covered by M . If the

compensation h is sufficiently high, the grand coalition will be

formed but no players affiliate with a matching because they are

satisfied by getting the compensation. Thus, we are interested in a

smallest compensation h such that the game (V ,νh ) is convex. The
third problem is given as follows.

Problem 3. Given a hypergraphG = (V ,E) and hyperedge weight
c : E → R, find a vertex weight h : V → R+ such that the game
(V ,νh ) is convex and

∑
u ∈V h(u) is minimized.

Our third contribution is the following: We first prove that Prob-

lem 3 is NP-hard, even if the input is a graph (Theorem 6.1) by

reducing the 3-SAT problem. Thereafter, we construct a polynomial-

time 2-approximation algorithm if the input is an antichain (Theo-

rem 6.4). The algorithm is based on the LP-relaxation of the problem.

Note that Problem 3 is a variation of the vertex stabilizing prob-
lem [1, 15], which removes a smallest vertex subset to make the

game have a non-empty core. This problem is polynomial-time

solvable if the vertices have the same removal cost, and in general

case, it is NP-hard but 2-approximable. Our Problem 3 requires re-

moval (compensation) of a vertex subset to make the game convex.

2
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Because the convexity is stronger than the core non-emptiness, our

problem requires modifying the game with more than the vertex

stabilizing problem.

Finally, we consider the fractional hypergraph matching game,
whose characteristic function ν ′(X ) is given by the optimal value

of the following linear programming problem:

maximize

∑
e ∈E

c(e)x(e)

subject to

∑
e ∈E :e ∋u

x(e) ≤ 1, (u ∈ V ),

x(e) = 0, (e < E[X ]),
0 ≤ x(e) ≤ 1, (e ∈ E).

(1.6)

Note that this game is a special case of the linear production game [24].
The characteristic function ν ′(X ) is evaluated in polynomial time

via linear programming [14]. Thus, it will be much tractable than

the integral hypergraph matching game.

If the integral hypergraph matching game is convex, the core of

the game is non-empty. Hence, the LP-relaxation (1.6) is integral

(Deng et al. [10, Theorem 1]). Therefore, we have ν = ν ′, and hence,
the fractional hypergraph matching game is also convex.

Our fourth contribution shows the converse direction: if the frac-

tional hypergraph matching game is convex, then we have ν ′ = ν
(Theorem 7.1), i.e., the integral hypergraph matching game is also

convex (Corollary 7.7). This implies that relaxing the integrality

does not change the situation in convex hypergraphmatching game.

2 PRELIMINARIES
We introduce the basic terminology of hypergraphs. See [4] for a

theory of hypergraphs.

A hypergraph G = (V ,E) is a pair of finite set V and a collection

of its subsets E ⊆ 2
V
. Each u ∈ V is called a vertex, and each e ∈ E

is called a hyperedge. We say that e and e ′ are adjacent if e ∩ e ′ , ∅.
For a vertex subsetX ⊆ V , we denote by E[X ] = {e ∈ E : e ⊆ X }.

We also denote by G[X ] = (X ,E[X ]) the hypergraph induced by
X . For a hyperedge subset F ⊆ E, we denote by VF =

⋃
e ∈F e the

vertices incident to F .
A setM of hyperedges is a matching if the hyperedges inM are

pairwise non-adjacent. A hypergraph G = (V ,E) is a matching if E
is a matching.

A k-hypergraph is a hypergraph whose hyperedges have the

same cardinality k . A hypergraphG = (V ,E) is an antichain if there
are no e, e ′ ∈ E with e ⊆ e ′. Any matching is an antichain, and any

k-hypergraph is an antichain.

3 CHARACTERIZATION OF CONVEXITY
We give a characterization of the convexity of a hypergraph match-

ing game. This characterization forms the basis for all the results

that appear in the subsequent sections.

We assume that the weights of the hyperedges of cardinality

one are zero. This condition is satisfied by subtracting a modular

function X 7→
∑
{u }∈E ;u ∈X c({u}) from ν ; this operation preserves

the supermodularity of ν .
We say that a matchingM attains ν (Z ) for Z ⊆ V if e ⊆ Z for all

e ∈ M and ν (Z ) =
∑
e ∈M c(e). A hyperedge e ∈ E is synergetic [8] if

ν (e) is uniquely attained by {e}. Note that the value of ν is preserved

if we remove non-synergetic edges [8, Lemma 6]. The following is

easily verified.

Lemma 3.1. For a synergetic hyperedge e ∈ E, we have ν (e) >
ν (X1) + · · · + ν (Xk ) for all subpartitions {X1, . . . ,Xk } of e .

From now, we give a necessary and sufficient condition of the

convexity of a hypergraph matching game. We say that two hyper-

edges e, e ′ are intersecting if e \ e ′ , ∅, e ′ \ e , ∅, and e ∩ e ′ , ∅.
We repeatedly use the following lemma.

Lemma 3.2 ([8, Lemma 3]). If the characteristic function ν is su-
permodular, for any two intersecting synergetic hyperedges e, e ′ ∈ E,
their union e ∪ e ′ is also a synergetic hyperedge in E.

Our main theorem is stated as follows.

Theorem 3.3. The characteristic function ν is supermodular if
and only if for any intersecting synergetic hyperedges e, e ′ ∈ E their
union e ∪ e ′ is a synergetic hyperedge in E and satisfies c(e)+c(e ′) ≤
ν (e ∩ e ′) + c(e ∪ e ′).

Proof. The “only-if” part follows from Lemma 3.2. Now we will

prove the “if” part. Suppose that there exist two subsets X ,Y ∈ V
such that ν (X )+ ν (Y ) > ν (X ∩Y )+ ν (X ∪Y ). We choose X ,Y with

the minimum value of |X ∪ Y |. If there are many such candidates,

we choose a pair with the minimum value of |X ∩ Y |. We can

assume that X and Y are intersecting. Otherwise, if X ∩ Y = ∅,
then ν (X ) + ν (Y ) ≤ ν (X ∪Y ) from the definition of ν , which shows

the supermodularity of ν . Moreover, if Y ⊆ X , then ν (X ) + ν (Y ) =
ν (X ∩ Y ) + ν (X ∪ Y ), which shows the supermodularity of ν .

Let M = {e1, . . . , e |M |} ⊆ E and N = { f1, . . . , f |N |} ⊆ E be

matchings that attain ν (X ) and ν (Y ), respectively. By the minimality

of X and Y , we have X = VM and Y = VN ; otherwise, we have

ν (VM ) + ν (VN ) =ν (X ) + ν (Y ) (3.1)

>ν (X ∩ Y ) + ν (X ∪ Y ) (3.2)

≥ν (VM ∩VN ) + ν (VM ∪VN ), (3.3)

where the first line is the definition ofM and N , the second line is

the definition ofX andY , and the third line is from themonotonicity

of ν with VM ⊆ X and VN ⊆ Y . This means that the pair VM and

VN is a candidate of X and Y with a smaller union and intersection,

but this contradicts the choice of X and Y .
If each of M and N consists of one edge, i.e., M = {e1} and

N = { f1}, we have

c(e1) + c(f1) =ν (e1) + ν (f1) (3.4)

>ν (e1 ∩ f1) + ν (e1 ∪ f1) (3.5)

=ν (e1 ∩ f1) + c(e1 ∪ f1), (3.6)

where the last line uses the assumption that e1 ∪ f1 is a synergetic

hyperedge. However, this contradicts the assumption.

Now we consider the case thatM contains two or more hyper-

edges. If e1 ∩ Y = X ∩ Y , we have

ν (X ) + ν (Y ) =ν (e1) + ν (X \ e1) + ν (Y ) (3.7)

≤ν (e1 ∪ Y ) + ν (X \ e1) + ν (e1 ∩ Y ) (3.8)

≤ν (X ∪ Y ) + ν (X ∩ Y ), (3.9)

where the second line is the supermodularity on e1 and Y , and the

last line is the supermodularity on e1 ∪Y and X \ e1, and (X \ e1) ∩

3
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(e1 ∪ Y ) = ∅ by the assumption. This shows the supermodularity

of ν . Otherwise, i.e., if e1 ∩ Y ⊊ X ∩ Y , we have

ν (X ) + ν (Y ) =ν (e1) + ν (X \ e1) + ν (Y ) (3.10)

≤ν (e1) + ν ((X \ e1) ∩ Y ) + ν ((X \ e1) ∪ Y ) (3.11)

where the last line is the supermodularity. Because |e1 ∪ ((X \ e1) ∪

Y )| = |X ∪Y | and |e1 ∩ ((X \ e1) ∪Y )| = |e1 ∩Y | < |X ∩Y |, by the

minimality of X and Y , we have

ν (e1) + ν ((X \ e1) ∪ Y ) ≤ ν (X ∪ Y ) + ν (e1 ∩ Y ). (3.12)

Therefore,

ν (X ) + ν (Y ) ≤ν (X ∪ Y ) + ν (e1 ∩ Y ) + ν ((X \ e1) ∩ Y ) (3.13)

≤ν (X ∪ Y ) + ν (X ∩ Y ), (3.14)

where the last line is from superadditivity of ν (1.2). This shows the

supermodularity of ν . □

Corollary 3.4. If G = (V ,E) is an antichain, the hypergraph
matching game is convex if and only if G is a matching.

Proof. We first mention that any hyperedge e of an antichain

G is synergetic because E[e] = {e}.
If the game is convex, and ifG has a pair of adjacent hyperedges

e, e ′ ∈ E, by Lemma 3.2 with the above observation,G must contain

hyperedge e∪e ′, which includes e and e ′. However, this contradicts
the assumption that G is an antichain.

Conversely, ifG is a matching, we obtain a closed formula of the

characteristic function:

ν (X ) =
∑

e ∈E[X ]

c(e). (3.15)

We verify the supermodularity using this formula as follows:

ν (X ) + ν (Y ) =
∑

e ∈E[X ]

c(e) +
∑

e ∈E[Y ]

c(e) (3.16)

=
∑

e ∈E[X ]∪E[Y ]

c(e) +
∑

e ∈E[X ]∩E[Y ]

c(e) (3.17)

≤
∑

e ∈E[X∪Y ]

c(e) +
∑

e ∈E[X∩Y ]

c(e) (3.18)

=ν (X ∪ Y ) + ν (X ∩ Y ), (3.19)

where E[X ] ∪ E[Y ] ⊆ E[X ∪ Y ] and E[X ] ∩ E[Y ] = E[X ∩ Y ] were
used in the third line. □

4 ALGORITHM TO CHECK CONVEXITY
We consider the problem of checking the convexity of a given

hypergraph matching game (Problem 1). The result in this section

is the following.

Theorem 4.1. There exists a polynomial-time algorithm that de-
termines whether a given hypergraph matching game is convex or
not.

Our algorithm, as shown in Algorithm 1, enumerates all the

synergetic hyperedges (stored in E∗) and verifies the condition in

Theorem 3.3 simultaneously in ascending order of the cardinality of

the hyperedges. Here, I (e) stores the pairs of intersecting synergetic
hyperedges e ′, e ′′ such that e ′ ∪ e ′′ = e . The correctness of the

Algorithm 1 Checking the convexity of the game

Require: Hypergraph G = (V ,E)
Ensure: Decide whether the game (V ,ν ) is convex
1: E∗ ← ∅
2: I (e) ← ∅ for all e ∈ E
3: for e ∈ E in ascending order of the cardinality do
4: if e is synergetic then
5: for (e ′, e ′′) ∈ I (e) do
6: if the condition of Theorem 3.3 does not hold then
7: return false
8: end if
9: end for
10: for e ′ ∈ E∗ do
11: if e and e ′ are intersecting then
12: if e ∪ e ′ ∈ E then
13: I (e ∪ e ′) ← I (e ∪ e ′) ∪ {(e, e ′)}
14: else
15: return false
16: end if
17: end if
18: end for
19: E∗ ← E∗ ∪ {e}
20: else if I (e) , ∅ then
21: return false
22: end if
23: end for
24: return true

algorithm is clear from the construction. The only remaining issue

is how to implement the lines 4 and 6.

We say that a matching M in G[e] is proper if M , {e}. Line 4
requires checking whether a hyperedge e is synergetic. This is per-
formed by computing a maximum proper matching in G[e]. Line 6
is performed by computing a maximummatching inG[e∩e ′]. Com-

puting a maximum (proper) hypergraph matching is NP-hard in

general [12]; however, in both lines, because the algorithm exam-

ines the hyperedges in their ascending order of the cardinalities,

we can suppose that all the synergetic hyperedges in the candidate

subset are enumerated, and ν is supermodular in its proper sub-

sets. We prove that, under these conditions, a maximum matching

is computable in polynomial time. We first prove the following

structural property.

Lemma 4.2. Let Z ⊆ V . Suppose that the supermodular inequality
(1.3) holds for all X ,Y ⊆ Z with X ∪ Y ⊊ Z . Let M be a maximum
proper matching in Z . Then, any synergetic hyperedge in Z is a subset
of a member ofM or adjacent to all the members ofM .

Proof. LetM = {e1, . . . , e |M |} be a maximum proper matching

in Z . Then, all the hyperedges in M are synergetic. Let e ∈ E[Z ]
be a synergetic hyperedge. If e ⊆ ei for some ei ∈ M then there

is nothing to prove. Otherwise, let M ′ = {ei ∈ M : ei ∩ e , ∅}. If
M ′ = M then the lemma is proved. Otherwise, F = e ∪

⋃
ei ∈M ′ ei

is a proper subset of Z . Thus, by Lemma 3.2, it forms a synergetic

hyperedge. By the construction, F is disjoint with all ej ∈ M \M
′
;

therefore, (M \M ′) ∪ {F } forms a matching in Z having a higher

objective value thanM . This is a contradiction. □

4
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Then, we construct a polynomial-time algorithm to compute a

maximum matching as follows.

Lemma 4.3. Under the same assumption as for Lemma 4.2, there
exists a polynomial-time algorithm that computes a proper maximum
matching in Z .

Proof. We guess a synergetic hyperedge e1 ∈ M in a maximum

proper matching. Then, any synergetic hyperedge that is not a

subset of a member of M is adjacent to e1. Therefore, by remov-

ing them, the set of the remaining maximal hyperedges forms a

matching. □

By using the algorithm in Lemma 4.3 at lines 4 and 6 in Al-

gorithm 1, we obtain a polynomial-time algorithm to solve the

problem. This proves Theorem 4.1.

Remark 4.4. Conitzer and Sandholm [8] proved Lemma 4.3 by

proposing a combinatorial algorithm based on Lemma 3.2. Our

Algorithm 1 is similar to their algorithm because ours is based on

Theorem 3.3, and its “only-if” part relies on the same lemma. Note

that ours is more involved because it also contains a procedure for

the “if” part.

Lemma 4.3 can also be proved by combining classical results as

follows. We first guess a hyperedge that is in a maximum matching,

and we consider the remaining problem. By the assumption, the

remaining problem forms a convex game. Here, we recall that the

core of a convex game is non-empty [28], and the core of a hyper-

graph matching game is non-empty if and only if the LP-relaxation

of the corresponding hypergraph matching problem has an integral

optimal solution [10, Theorem 1]. Therefore, ν (X ) is obtained by

the LP-relaxation, which is solvable in polynomial time [14].

5 SHAPLEY VALUE
We consider the problem of computing the Shapley value for a

given convex hypergraph matching game (Problem 2). The result

in this section is the following theorem.

Theorem 5.1. There is a polynomial-time algorithm that computes
the Shapley value of a convex hypergraph matching game.

As a preprocessing, we remove all the non-synergetic hyperedges

from the given hypergraph. This is performed in polynomial time

by running Algorithm 1. Consequently, for the rest of this section,

we can assume that all the hyperedges are synergetic.

We first give a presentation of themarginal gain ν (X∪{u})−ν (X )
for a vertex u and a subset X ⊆ V \ {u}. The next lemma is easily

verified.

Lemma 5.2. If there is no hyperedge e such that u ∈ e ⊆ X ∪ {u}
then ν (X ∪ {u}) − ν (X ) = 0.

Proof. The assumption implies E[X∪{u}] = E[X ]. Hence,ν (X∪
{u}) = ν (X ). □

Now we concentrate on the counter case, i.e., there exists e ∈ E
such thatu ∈ e ⊆ X ∪{u}. Let eX ,u be a maximal hyperedge among

them. Then, the next lemma holds.

Lemma 5.3. eX ,u is uniquely determined.

Proof. If there exist two such hyperedges e and e ′, by Lemma 3.2,

e ∪ e ′ also satisfies the condition. This contradicts the maximality

of e and e ′. □

An explicit representation of the marginal gain is given by using

eX ,u as follows.

Lemma 5.4. ν (X ∪ {u}) − ν (X ) = ν (eX ,u ) − ν (eX ,u \ {u}).

Proof. From the maximality of eX ,u with Lemma 3.2, any hy-

peredge e ′ ∈ E[X ] are a subset of eX ,u or disjoint with eX ,u . Thus,

ν (X ∪{u}) = ν (eX ,u )+ν (X \eX ,u ) and ν (X ) = ν (eX ,u \{u})+ν (X \
eX ,u ). Therefore, ν (X ∪ {u}) − ν (X ) = ν (eX ,u ) − ν (eX ,u \ {u}). □

For a vertex u, hyperedge e , and integer k , we define E(u, e,k) =
{X ⊆ V \ {u} : |X | = k, eX ,u = e} and L(u, e,k) = |E(u, e,k)|.
Lemma 5.4 implies that all the subsets in E(u, e,k) have the same

contribution to the Shapley value. Therefore, by grouping the sub-

sets by E(u, e,k), we obtain the following representation of the

Shapley value.

ϕ(u) =

|V |−1∑
k=0

k!(|V | − k − 1)!

|V |!

×
©­­«

∑
u ∈V ,e ∈E

u ∈e

L(u, e,k)(ν (e) − ν (e \ {u}))
ª®®¬ . (5.1)

In this representation, the number of summands is polynomial.

Moreover, ν (e) is computable in polynomial time (Lemma 4.3).

Hence, if we can calculate L(u, e,k) in polynomial time, the Shapley

value is obtained in polynomial time. The next lemma shows a

combinatorial identity of L(u, e,k).

Lemma 5.5. For each u ∈ V and e ∈ E,∑
e⊆e ′

L(u, e ′,k) =

(
|V | − |e |

k − |e |

)
. (5.2)

Proof. Weprove this by the double-counting argument. The left-

hand side is the number of subsets X such that u < X , e ⊆ X ∪ {u},
and |X | = k . This quantity is equal to the number of ways to choose

k − |e | vertices from V \ e , which is the right-hand side. □

Nowwe apply theMöbius inversion formula [30] to Equation (5.2)
to obtain L(u, e,k) as follows: By rearranging the summation, the

identity becomes

L(u, e,k) =

(
|V | − |e |

k − |e |

)
−

∑
e⊊e ′

L(u, e ′,k). (5.3)

Here, the right-hand side depends on L(u, e ′,k) with larger e ′.
Hence, by examining the hyperedges in their decreasing order of

cardinalities, we can compute L(u, e,k) for all e ∈ E in polynomial-

time. This proves Theorem 5.1.

6 MINIMUM COMPENSATION
We consider the minimum compensation problem (Problem 3). We

say that a vertex u is compensated by h if h(u) > 0. Also, we say

that an edge e is disabled by h if c(e) −
∑
u ∈e h(u) ≤ 0.
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Figure 5: An instance of D = x ∨ y ∨ z̄.

6.1 Hardness
We first prove that the problem is NP-hard, even if the input is a

bipartite graph. In this case, by Corollary 3.4, the problem is equiv-

alent to finding h that minimizes

∑
u ∈V h(u) under the condition

that the set of non-disabled edges forms a matching.

Theorem 6.1. The minimum compensation problem is NP-hard,
even if the input is a bipartite graph whose edge weights are 1.

Before proceeding to the proof of this theorem, we show the

integrality of the problem on bipartite graphs.

Lemma 6.2. If G is a bipartite graph, there exists an integral op-
timal solution h. Moreover, if all the edge weights are one, we can
choose h(u) ∈ {0, 1}.

Proof. LetM be the set of edges that are not disabled byh, which
forms a matching by Corollary 3.4. Then, h is a fractional minimum

vertex cover ofG \M because of the definition of “disable.” Because

G \M is bipartite, it has an integral optimal solution [26]. The last

claim follows because there is no advantage to put h(u) ≥ 2. □

Now we prove Theorem 6.1 by a reduction from 3-SAT, which

is known to be NP-complete [12]. Let I be an instance of the 3-

SAT problem. For each variable x in I, we put a variable gadget,
which is a cycle of length six whose vertices are named x1, . . . ,x6 in

consecutive order. For each clause D, we put a clause gadget, which
is a cycle of length four whose vertices are named D1, . . . ,D4 in

consecutive order. Let z1, z2, and z3 be the literals in D. If z1 is

a positive literal x , we connect D1 to x1; otherwise, we connect

D1 to x3. Similarly, if z3 is a positive literal x , we connect D3 to

x1; otherwise, we connect D3 to x3. If z2 is a positive literal x , we
connect D2 to x4; otherwise, we connect D2 to x6. Note that the

above “non-symmetric” connection of z2 is for bipartiteness. See

Figure 5 for an example.

By the construction, the obtained instance I ′ is a bipartite graph.

It satisfies the following property.

Lemma 6.3. There is a feasible solution to I if and only if the
optimal value of I ′ is 2n + 2m.

Proof. Any instanceI ′ has the objective value of at least 2n+2m
because each variable gadget must have at least two compensated

vertices, and each clause gadget also must have at least two com-

pensated vertices.

We first prove the “if” part. Let h be a solution to I ′ whose

objective value is exactly 2n + 2m. By Lemma 6.2, we assume that

h(u) ∈ {0, 1} for allu ∈ V . In this case, by the above discussion, each

variable gadget has exactly two compensated vertices. These must

be located at the opposite vertices. If x1 and x4 are compensated,

we set x = true; otherwise x = false. The assignment of these

values gives a feasible solution to I. For each clauseD, by the above
discussion, the clause gadget has exactly two compensated vertices,

i.e., there exists at least one connecting edge that is not disabled

by the vertices in the clause gadget. Therefore, the corresponding

variable gadget must have a compensated vertex at the terminal.

This implies that the literal appears true in the clause, i.e., D is

satisfied.

The “only-if” part is proved similarly by following the above

construction. Thus, we obtain the lemma. □

This proves Theorem 6.1.

6.2 Approximation Algorithm
Because the problem is NP-hard (Theorem 6.1), we consider an

approximation algorithm. Here, we show that if the input is an an-

tichain, there exists a polynomial-time 2-approximation algorithm.

Theorem 6.4. There is a polynomial-time 2-approximation al-
gorithm for the minimum compensation problem if the input is an
antichain.

Proof. When the input is an antichain, by Corollary 3.4, the

problem is represented as the following integer linear programming

problem (ILP):

minimize

∑
u ∈V

h(u)

subject to

∑
e ∋v

y(e) ≤ 1, (v ∈ V ),∑
v ∈e

h(u) ≥ (1 − y(e))c(e), (e ∈ E),

y(e) ∈ {0, 1}, (e ∈ E),

h(u) ≥ 0, (u ∈ V ).

(6.1)

Here, variable y(e) represents whether e is disabled or not. We relax

the integral constraint “y(e) ∈ {0, 1}” to the nonnegative constraint
“y(e) ≥ 0” to obtain a LP-relaxation. Our algorithm computes an

optimal solution h to the LP-relaxation, and outputs 2h as a solution

to the problem.
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We show that 2h is a feasible solution to the problem. For any

pair of adjacent hyperedges e, e ′ ∈ E, by the first constraint of

the LP, we have y(e) + y(e ′) ≤ 1. By symmetry, we can assume

y(e) ≤ y(e ′). Then, y(e) ≤ 1/2. Therefore, by the second constraint

of the above LP, we have

∑
u ∈e 2h(u) ≥ c(e), i.e., 2h disables e . This

means that the set of non-disabled edges by 2h forms a matching.

Hence, 2h is a feasible solution to the problem.

The approximation factor is clearly 2. The running time is poly-

nomial in the size of the input because the above LP has polynomial

size. Therefore, we obtain the theorem. □

We have less hope to break the 2-approximation if we use the

LP-relaxation of (6.1).

Corollary 6.5. The integrality gap of the LP relaxation of (6.1)

is 2.

Proof. Theorem 6.4 shows that the integrality gap is at most

2. We prove that there exists an instance whose integrality gap is

exactly 2. Let us consider an unweighted cycle of length four as

an input. Then, the optimal value of the LP relaxation of (6.1) is 1,

where the corresponding optimal solution isy(e) = 1/2 for all e ∈ E
and h(u) = 1/4 for all u ∈ V . On the other hand, by Theorem 6.2,

the optimal value of the ILP (6.1) is 2 because at least two vertices

must be compensated. □

7 FRACTIONAL HYPERGRAPH MATCHING
GAME

We consider the fractional hypergraph matching game. We prove

the following theorem, which shows that the convexity of the frac-

tional hypergraph matching game implies the “integrality” of the

game.

Theorem 7.1. If the characteristic function ν ′ of the fractional
hypergraph matching game, defined by (1.6), is supermodular, we
have ν (X ) = ν ′(X ) for all X ⊆ V , where ν is the characteristic
function of the hypergraph matching game.

We say that a vector x ∈ RE attains ν ′(X ) if it is the optimal

solution to the fractional hypergraph matching problem (1.6). We

denote by c(x) =
∑
e ∈E c(e)x(e).

We prove Theorem 7.1 by the induction on |X |. The statement

clearly holds on |X | = 1. Let s = |X | ≥ 2 and suppose that the

statement holds for all subset Y ⊆ V of size |Y | ≤ s − 1. Let x ∈
RE be the vector that maximizes the auxiliary function f (x) =∑
e ∈E 3

|e |x(e) among all vectors that attain ν ′(X ). LetM be the set

of hyperedges e with x(e) > 0. Note that each e ∈ M is synergetic

(in the sense of the integral hypergraph matching game) because,

otherwise, we can distribute x(e) to the hyperedges contained in e
to obtain a fractional matching of higher value. The next lemma

exploits the structure of x .

Lemma 7.2. If ν (Y ) = ν ′(Y ) for all Y ⊊ X , then for all intersecting
two hyperedges e1, e2 ∈ M , we have e1 ∪ e2 = X .

Proof. Let e1, e2 ∈ M be two intersecting hyperedges such

that e1 ∪ e2 ⊊ X . From the induction hypothesis on Theorem 7.1,

ν (Y ) = ν ′(Y ) holds for allY ⊆ e1∪e2. As mentioned in the above, e1

and e2 are synergetic. Therefore, by Lemma 3.2, e1∪e2 is synergetic.

Let ϵ = min(x(e1),x(e2)) and lety be a vector that attains ν ′(e1∩e2).

Let x ′ be a vector defined by

x ′(e1) = x(e1) − ϵ, (7.1)

x ′(e2) = x(e2) − ϵ, (7.2)

x ′(e1 ∪ e2) = x(e1 ∪ e2) + ϵ, (7.3)

x ′(e) = x(e) + ϵy(e) (e ∈ E \ {e1, e2, e1 ∪ e2}). (7.4)

Then x ′ is also a fractional hypergraph matching of X . We have

c(x ′) = c(x) + ϵ (c(e1 ∪ e2) + c(y) − c(e1) − c(e2)) (7.5)

= c(x) + ϵ
(
ν ′(e1 ∪ e2) + ν

′(e1 ∩ e2) − ν
′(e1) − ν

′(e2)
)

(7.6)

≥ c(x). (7.7)

Here, the first equality uses y(e1) = y(e2) = y(e1 ∪ e2) = 0 because

y is zero outside of e1 ∩ e2. The second equality uses c(e1) = ν (e1),

c(e2) = ν (e2), and c(e1∪e2) = ν (e1∪e2) because these are synergetic,

and ν (e1) = ν ′(e1), ν (e2) = ν ′(e2), and ν (e1 ∪ e2) = ν ′(e1 ∪ e2)

because of the induction hypothesis. The last inequality is the

supermodularity of ν ′. Moreover, we have

f (x ′) − f (x) = ϵ(3 |e1∪e2 | − 3
|e1 | − 3

|e2 | +
∑
e ∈E

3
|e |ye ) (7.8)

≥ ϵ(3 |e1∪e2 | − 3
|e1 | − 3

|e2 |) > 0. (7.9)

Here, the last inequality is from |e1 |, |e2 | ≤ |e1 ∪ e2 | − 1 because e1

and e2 are intersecting. This contradicts to the definition of x . □

We further investigate the structure of x . LetM ′ ⊆ M be the set

of hyperedges that does not intersect with other hyperedges inM .

By definition, any hyperedges in M ′ has no intersection, i.e., M ′

forms a laminar. Let

l(v) =
∑

e ∈M\M ′
e ∋v

x(e). (7.10)

Lemma 7.3. Suppose that ν (Y ) = ν ′(Y ) holds for all Y ⊊ X . Then,
l(v) = 1 holds for some vertex v ∈ X , or ν (X ) = ν ′(X ) holds.

Proof. Let ϵ = min(1 − maxv ∈X l(v),mine ∈M ′ x(e)). Suppose
that l(v) , 1 for all v ∈ X . Then ϵ > 0. We define a vector x ′ by

x ′(e) =

{
ϵ, e is a maximal hyperedge inM ′,

0, otherwise.
(7.11)

From the definition of ϵ and the fact thatM ′ forms a laminar, we see

that both x1 =
1

ϵ x
′
and x2 =

1

1−ϵ (x − x
′) are fractional hypergraph

matchings ofX . Hence, for any λ ∈ [0, 1], their convex combination

λx1 + (1− λ)x2 is also feasible. Let c
′(λ) := c(λx1 + (1− λ)x2). Then,

this function attains the maximum at λ = ϵ because x = ϵx1 + (1 −

ϵ)x2 and x attains ν ′(X ). Therefore, because of the linearlity of c ′,
we have c(x1) = c(x), i.e., x1 also attains ν ′(X ). Because x1 is an

integral vector, we have ν (X ) = ν ′(X ). □

Next, we prove a stronger version of the above lemma.

Lemma 7.4. Suppose that ν (Y ) = ν ′(Y ) holds for all Y ⊊ X . Then,
l(v) = 1 holds for all v ∈ X , or ν (X ) = ν ′(X ) holds.

Proof. From Lemma 7.3, if ν (X ) , ν ′(X ), there is u ∈ X with

l(u) = 1. If there is v ∈ X with l(v) < 1, then there is a hyperedge

7
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e ∈ M \M ′ such thatv < e . From the definition of e , for allw ∈ X \e ,∑
w ∈e ′∈(M\M ′) x(e

′) ≤ 1 − x(e).
Let ϵ = mine ′∈M x(e ′). We define a vector x ′ by

x ′(e ′) =


ϵ, e ′ = e , or e ′ is a maximal hyperedge inM ′

that is disjoint with e,

0, otherwise.

(7.12)

Then, the rest of the proof is similar to Lemma 7.3. Both x1 =
1

ϵ x
′
and x2 =

1

1−ϵ (x − x
′) are feasible solutions to the fractional

hypergraph matching problem forX . Hence, for any λ ∈ [0, 1], their
convex combination λx1 + (1 − λ)x2 is also feasible. The function

c ′(λ) := c(λx1 + (1 − λ)x2) is linear and attains maximum at λ = ϵ .
Therefore, it also attains maximum at λ = 0, i.e., the integral vector

x1 attains ν ′(X ). This means that ν (X ) = ν ′(X ). □

Lemma 7.4 shows that if ν (X ) , ν ′(X ) then M ′ = ∅. Now we

have the following structure.

Lemma 7.5. If ν (Y ) = ν ′(Y ) for all Y ⊊ X and ν (X ) , ν ′(X ), then
there is an integer k ≥ 2 and a partition of X into k disjoint subsets
X1, . . . ,Xk such that M = {X \ Xi : i = 1, . . . ,k}. Furthermore,
x(e) = 1

k−1
for all e ∈ M .

Proof. From Lemma 7.2, M̄ = {X \ e : e ∈ M} forms a laminar.

If there are two hyperedges e, e ′ ∈ M such that e ⊊ e ′, then for

any v ∈ e ′ \ e , l(v) < 1 holds, which contradicts to Lemma 7.4. If

there is a vertexv that is contained in all the hyperedges inM , then

we have M = {X }. Otherwise, i.e., if there is e ∈ M with e , X ,
then for any u ∈ X \ e , l(u) ≤

∑
e ′∈M\e x(e

′) <
∑
e ′∈M x(e ′) = l(v),

which contradicts to Lemma 7.4. This implies that x is integral, i.e.,

ν (X ) = ν ′(X ), which is a contradiction. Thus, M̄ is a partition of X .

For each i = 1, . . . ,k , by evaluating l(v) at v ∈ Xi , we have

1 = l(v) =
∑

t ∈{1, ...,k }\{i }

x(Xt ). (7.13)

This linear equation has a unique solution x(e) = 1

k−1
for all e ∈ M .

Thus the lemma is proved. □

Finally, we show the induction step of the proof of Theorem 7.1.

Lemma 7.6. If ν (Y ) = ν ′(Y ) for all Y ⊊ X , then, ν (X ) = ν ′(X ).

Proof. Suppose the contrary. From Lemma 7.5, there is a par-

tition of X into k ≥ 2 disjoint subsets X1, . . . ,Xk , such that M =
{X \ Xi : i = 1, . . . ,k}. We treat the index of Xi in modk , i.e.,
Xk+t = Xt for all t . Let Xi, j = X \ {Xi , . . . ,Xi+j−1}.

We prove the following claim by the induction: For all j =
1, . . . ,k − 1, the following equality holds:

k∑
i=1

ν ′(Xi, j ) = (k − j)ν
′(X ). (7.14)

Lemma 7.5 shows the case of j = 1. In the general case, we have

ν ′(X1,t ) + ν
′(X2,t ) ≤ ν ′(X2,t−1) + ν

′(X1,t+1), (7.15)

ν ′(X2,t ) + ν
′(X3,t ) ≤ ν ′(X3,t−1) + ν

′(X2,t+1), (7.16)

...

ν ′(Xk,t ) + ν
′(X1,t ) ≤ ν ′(X1,t−1) + ν

′(Xk,t+1
). (7.17)

from the supermodularity of ν ′. Adding these inequalities yields

2

k∑
i=1

ν ′(Xi,t ) ≤
k∑
i=1

ν ′(Xi,t−1) +

k∑
i=1

ν ′(Xi,t+1). (7.18)

By the induction hypothesis of the claim, this can be written as

(k − t − 1)ν ′(X ) ≤
k∑
i=1

ν ′(Xi,t+1). (7.19)

Let xi,t+1 be the vector that attains ν ′(Xi,t+1). Then, the vector

x = 1

k−t−1

∑k
i=1

xi,t+1 is a feasible fractional hypergraph matching

of X . Thus,

(k − t − 1)ν ′(X ) ≥
k∑
i=1

ν ′(Xi,t+1). (7.20)

Therefore, the equality holds and the claim is proved.

Now, we have

k∑
i=1

ν ′(Xi ) =
k∑
i=1

ν ′(Xi,k−1
) = ν ′(X ). (7.21)

By the assumption of the lemma, ν ′(Xi ) is attained by an integral

vector. Summing up these vectors for all i yields an integral vector

that attains ν ′(X ). Thus the lemma is proved. □

Therefore, Theorem 7.1 is proved. As mentioned in Section 1.1,

the convexity of the integral hypergraph matching game implies

the convexity of the corresponding fractional hypergraph matching

game. The above theorem shows the converse direction. Therefore,

we obtain the following corollary.

Corollary 7.7. A fractional hypergraphmatching game is convex
if and only if the corresponding (integral) hypergraph matching is
convex.

8 CONCLUSION
We studied the hypergraph matching game. Because the game is

intractable due to the NP-hardness of the hypergraph matching

problem, we focused on a tractable subclass of the game, a “convex”

hypergraph matching game.

We solved three problems related to the convexity of the hyper-

graph matching game: (1) Determining the convexity of a hyper-

graph matching game, (2) Computing the Shapley value of a convex

hypergraph matching game, and (3) Computing the minimum com-

pensation that makes a hypergraph matching game convex. We

showed that (1) and (2) are solvable in polynomial time (Theorem 4.1

and Theorem 5.1, respectively), and (3) is NP-hard, even if the input

is a bipartite graph (Theorem 6.1), and it is 2-approximable if the

input is an antichain (Theorem 6.4). We also considered the frac-

tional hypergraph matching game and proved that if the fractional

game is convex, then its characteristic function coincides with the

characteristic function of the integral one (Theorem 7.1).

We conclude this paper by giving a few open problems. Firstly,

the hypergraph matching game is a subclass of the integral version

of the linear production game [24]. Thus, the most promising future

workwill be extending these results to the integral linear production

game. Secondly, in theminimum compensation problem, we derived

an algorithm for antichains. Finding an algorithm for the general

case will be an interesting and useful problem.
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