Research Paper

AAMAS 2020, May 9-13, Auckland, New Zealand

Hindsight Planner

Yaqing Lai
Tsinghua University
Beijing, P.R.China
yastingl@gmail.com

Jihong Zhu
Tsinghua University
Beijing, P.R.China
Jihong_Zhu@hotmail.com

ABSTRACT

Goal-oriented reinforcement learning capacitates agents to accom-
plish variant goals, which is crucial for robotic tasks. However, the
sparse-reward setting of these tasks aggravates sample inefficiency.
Hindsight Experience Replay (HER) was introduced as a technique
to elevate sample efficiency by imaging hindsight virtual goals for
unsuccessful trajectories, which mitigates long-term domination
of negative rewards. Nevertheless, there is still a gap between the
distribution of hindsight goals and desired goals of the tasks, which
was narrowed by lots of aimless exploration in HER. In this paper,
we propose Hindsight Planner(HP) to generate several subgoals
guiding the agent to explore towards the desired goal step by step,
which allows the agent to exploit its local knowledge learned from
achieved goals. The planner uses history trajectories to learn the
structure of feasible goal space, then generalizes its knowledge
to unseen goals. We have extensively evaluated our framework
on a number of robotic tasks and show substantial improvements
over the original HER in terms of sample efficiency and converged
performance.
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1 INTRODUCTION

Recent progress in deep reinforcement learning (RL), including
value-based methods and policy gradient methods, have continued
to push the boundaries of the ability of RL agents, from playing
games [13, 25] to solving robotic tasks [6, 20, 30].

Despite its notable success, there still exists a common challenge
that we need to design a proper reward function to guide the pol-
icy learning and avoid unexpected hacking behavior with careful
shaping [15, 19], sometimes leading to numerous experiments. The
substantial task-specific knowledge and RL expertise required in
this process hinders the application of RL methods to broader fields,
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including real-world problems. Therefore, the natural and conve-
nient sparse reward setting attracts more and more researchers’
attention. Moreover, many previous efforts proved that sparse indi-
cator rewards, rather than the shaped dense rewards, often induce
more rational behaviors close to what the designer wants [1, 30].
However, the sparse reward setting presents another challenge for
current deep RL algorithms: sparse positive signals deteriorate the
sample inefficiency with which RL methods have been confronting
all the time. Therefore, an important direction for RL research is
towards more sample efficient methods that reduce the number
of environment interactions, yet can be trained using only sparse
rewards.

To this end, Andrychowicz et al. [1] introduced the idea of Hind-
sight Experience Replay(HER), which can efficiently train a goal-
conditioned policy by retroactively transforming failed trajecto-
ries into successful ones. HER makes use of failed attempts by
re-labeling original goals with achieved goals mapping from visited
states and constructing new positive transitions into replay buffer,
which can be seen as a form of implicit curriculum learning. How-
ever, the distribution of hindsight goals differs from that of task
goals, which has to be approximated via a large number of aimless
explorations.

In this work, we address the limitation by introducing a method
called Hindsight Planner (HP). We propose this technique based
on the assumption that after some explorations around the initial
state, agents have acquired enough knowledge about the local space
around it. It is still difficult to reach faraway goals. We hope to learn
a planner that knows how to break down inapproachable goals to
a series of subgoals which are much easier to get close to with the
knowledge that agents already have.

For the purpose of not demanding extra interactions with en-
vironment and the generality of algorithm, we propose to take
advantage of the goal sequences that collected trajectories have
explored and verified to provide data for planner learning. In other
words, the achieved goal mapping from the terminal state of one
trajectory could be approached by that goal sequence (a goal se-
quence is the projection of a trajectory into goal space). That goal
sequence could tell us how can a goal be achieved, and then help
us to infer goal sequences for unseen goals. In this way, rather
than by the slow spreading of state values or state-action values,
guiding an agent to act towards a given goal could be much easier
and faster. Hence, the distribution of hindsight goals is accelerated
to approximate to task goals distribution.
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In order to learn such a generator of goal sequences, or to be more
practical, subsequences, we use the supervised learning method to
train a planner. To be specific, we choose some points of that goal
sequence as the supervising label of subgoals which the planner
needs to produce given starting point and ultimate goal. To pick out
waypoints that are crucial for reaching the terminal goal, we present
two simple but effective strategies: time-sample and route-sample.

In summary, we introduce a method to accelerate the approx-
imation of hindsight goals distribution to task goals distribution
in HER, meanwhile providing the property of general applicability.
Beyond combination with HER, our method is also compatible with
other RL algorithms, including off-policy and on-policy ones, due to
its minimal assumption about the RL algorithm and specific tasks.
We evaluate our method on three kinds of robotic environments.
From the experiment results, comparing to vanilla HER and an-
other technique made to improve HER, we observe superiorities
of our method, in terms of both sample efficiency and converged
performance.

2 BACKGROUND

In this section, we present introductions to those relevant concepts
for goal-oriented reinforcement learning with sparse reward as well
as RL algorithms used in this paper.

2.1 Goal-oriented Reinforcement Learning

Reinforcement learning pursues the goal of finding the policy =
for an agent interacting with an environment which maximizes
the expected reward. In the traditional RL framework, we assume
that the environment is fully observable, thus the interacting can
be modeled as a Markov Decision Process(MDP), involving the the
environment state s € S and agent action a € A, with the transition
probabilities p(s;+1]s¢, ar) and reward function r : S X A — R that
yields a reward for the action a; performed over state s;, and also
a discount factor y € [0, 1]. The policy is the mapping from a state
to an action: 7 : S — A

We consider goal-oriented reinforcement learning with sparse
rewards setting. Universal Value Function Approximators [22] was
introduced to solve goal-oriented MDP. Let G be the goal space.
Afterwards, the reward function adapts to condition on a given
goal g € G, such that r9 : S X AX G — R. Every episode starts
with sampling a state-goal from some distribution p(so, g), while
the goal g stays fixed during the whole episode. At each timestep,
the agent also takes the goal into consideration 7 : SX G — A
and gets the rewards rtg . In the sparse reward setting, the reward
function usually has the following form:

0, if [Y¥(st+1) =gl < Jg
-1,

1

g9
ry =1 St, At St+1 = .
¢ (st ar, 9) otherwise

while ¢ : S — G is a given function that projects a state into goal
space G. dg is a predefined threshold that indicating whether the
goal is considered to be reached (see [18]). | - | is a distance matric.

As stated before, we model the policy as a conditional probability
distribution over state and goal, 7g(a;|ss, g), where 6 are learnable
parameters. Following policy gradient methods, Our objective is to
optimize 0 with respect to the expected cumulative reward, given
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by:

J©) = Esozs,at~ﬂ(~|s,,g),st+1~p(s”1 |s¢.ar) [Z Ytr(stv ar, St+1,9)

t=0
)
To simplify the notation, we simply use E[-] to denote expectation
Esy=s,ar~(-1s,9).s041~p(sta1 Is,a.)[] in the rest of paper. According
to the policy gradient theorem (Sutton et al. [28]), the gradient of
J(0) can be written as:

VJ(6) = Ex[Viogn(als, 9)Q (s, a.9)] ®)

where Q7 (s,a,9) = E[X;2, vir(ss, as, st+1, g)), called the critic,
denotes the expected return under poliy 7 after taking an action in
state s, with goal g.

2.2 Deep Deterministic Policy Gradient

The objective J() could be maximized using value function meth-
ods, policy gradient, or the combination of both, i.e. the actor-critic
methods. For continuous control tasks, Deep Deterministic Pol-
icy Gradient (DDPG) [9] shows promising performance, which is
essentially an off-policy actor-critic method. However, our pro-
posed framework is not restricted to DDPG. There are two sepa-
rate neural networks carry out the role of actor p(s, g) and critic
QC(s, a, g). The agent uses a behavior policy to explore the environ-
ment, whose action is sampled from actor network plus some noise,
a ~ u(s,g) + N(0,1). The critic is trained using temporal differ-
ence with the target y; = ry + yQ(s¢+1, gz, fi(st+1, gt ). The actor
is trained using policy gradient by descending on the gradients of
loss L, = —J(0) = —Es[Q(s, g, ji(s, g))] through the deterministic
policy gradient algorithms [24],

VJ(0) = E[Vou(s, 9)VaQ(s. 9. a)la=p(s,g)] 4)

Out of consideration for training stability, two additional networks
are maintained as the target networks, whose weights are periodi-
cally updated to the weights of latest network [9, 12, 13].

2.3 Hindsight Experience Replay

Learning with the presence of sparse rewards which save the annoy-
ance of reward shaping remains a challenge. Intuitively, the reason
why learning from sparse reward settings has the problem of ineffi-
ciency is that the extremely low probability of encountering a given
goal leads to the absolute domination of negative signals, therefore
the gradient method is difficult to choose effective promoting direc-
tion based on minuscular positive transitions. Hindsight Experience
Replay (HER) [1] is a remarkable advance to address this challenge
by exploiting failure trajectories in an alternative way. The main
idea of HER is substituting the original goal g by what it actually
achieved (¢”) during experience replay as if the agent was instructed
to reach g’ from the beginning, which greatly increases the ratio of
positive transitions feed into gradient computing, thus make the
learning more viable. In practice, the future strategy in HER works
well by randomly sampling a mini-batch of episodes from buffer.
Then for each episode {{Si}iT:p {a,-}iT:l, {gi}iT:p {ri}iT:p {slf}iT:l},
it randomly chooses sj, s € {si}iTzl, 1 < j < k < T and relabels
transition (s}, aj, gj, rj, sj+1) to (s, aj, Y(sk), r]f, sj+1), where rjf is
recomputed according to Eq.1.
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3 HINDSIGHT PLANNER
3.1 Motivation

As stated above, HER proposed a highly effective scheme to tackle
the challenge of sparse reward signals in robotic manipulation tasks.
However, the replacement of desired goals by hindsight virtual goals
shifts the task distribution towards the near-at-hand tasks, which
does not provide the guarantee of accomplishment of original tasks.
In other words, unless the distribution of hindsight goals is close
to that of original goals or approximates to it through exploration
gradually, the agent will keep performing badly in terms of original
goals. In HER, the distribution gap was narrowed down by aimless
exploration, although it can get much local information around its
initial states. Both [1] and [21] have observed that if the original
goal was restricted to a small enough area, the learning became
inefficient again and easy to get stuck in the area around the starting
point. These phenomena suggest the inability of generalization to
strange goals from hindsight goals.

However, as humans, we know how to reach faraway goals even
if we only have skills of moving around locally: break down the
far goals into several subgoals which can be accomplished by our
local knowledge one by one. Of course, our local knowledge around
each subgoal is not acquired at a time, but the arrival at the subgoal
enables us to explore the space closer to the ultimate goal. That
is to say, the planned subgoals allow us to explore with higher
intentionality.

Take an example for toy ant locomotion on a plain, assuming that
the ant has known how to move to any goal around it within one
decimetre (by hindsight experience replay). Right now, we give it a
goal five decimetres away, which is still bizarre to the ant of current
level. The ant might know the rough direction to take action, but
not precise and confident. If we make the assumptions that the
opening angle of direction the ant might move in is proportional
to the distance between its state and goal, and that the movement
direction keeps unchanged over a period of time. Then, given the
red dot as ultimate goal, the possible areas in which the ant might
explore could be represented by the blue shaded fans in Figure 1.
However, if the ultimate goal were broken down to three subgoals
(yellow dots), the opening angle is substantially narrowed, depicted
by yellow shaded fans, which enables the exploration towards the
ultimate goal meaningful.

N\

Figure 1: A far goal confuses the ant into bigger exploration
area, while subgoals narrow down the exploration by ex-
ploiting the principle of locality. Red dot is the ultimate goal
and yellow dots are subgoals.
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But what helps us to do the breaking down? The understanding of
legal goal space structure and environment. Well, the next question
would be "How to capture the structure of goal space?". In fact, we
already have the basic knowledge about the structure of goal space
after our preliminary exploration. Further, the knowledge about
the goal sequence leading to task goals would be more and more
precise as we perform further intentional exploration.

Based on these discussions, we propose hindsight planner com-
bining with HER to accelerate the learning process and lift the task
completion capability.

3.2 Algorithm Framework

3.2.1 Planner Design. The idea behind Hindsight Planner(HP) is
very straightforward: after experiencing some episodes 7%, 71, ..., r™
which terminates at sg., slT, e 55“”’ we now already have practical
trajectories to instruct the planner to generate subgoals. To be spe-
cific, given the number of subgoals k, we pick out k most critical
waypoints from each episode s;,, sj,, ..., $j;,0 < i < m, the goals
achieved at these k waypoints, g;,, gi, , .., gi; » are what the planner
needs to output given starting point and destination. For the sim-
plicity of notation, we just use the g1, ..., gi to refer to g;, ..., gi,
where ambiguity would not be incurred. To train the planner, we
set the learning objective as maximizing the likelihood:

max P(glgs, gu) = P(g1, 92, - Gk |gs> Gu)

Now, we need to model the P(gy, g2, ..., gk |gs» gu ). Note that when
we, as humans, make plans, we usually break up the ultimate goal
into the first subgoal, then the second subgoal, and so forth (of
course, it is also possible to draw up the last subgoal firstly, then
the second last one, and infer backward to the first one. Since they
have similar formation, we just discuss the former situation). That
is to say, the first subgoal is conditioned on (gs, gy), the second
one is conditioned on (g1; gs, gu ), the last one g is conditioned
on (gg_1, ---» 91; gs» gu)- Thus, the joint probability of g conditioned
on (gs, gu) would be P(g11gs, gu)IX_,P(gi|gi-1, ... 15 g5, Gu)- We
use the logarithmic form of the objective for the consideration of
practical optimization, and designate the parameterized planner
with ¢, which gives the following form of objective:

max logPy(glgs, gu) = logPy(g1lgs, gu)+

k ®)
Z logPy(gilgi-1. ---» 13 gs» Gu)
i=2

Under the settings of finite buffer B of trajectories, we maximize
the summation of logarithmic probability with respect to each tra-
jectory 7 € B. Furthermore, we may prioritize the trajectories that
have the properties we appreciate, such as fast completion, stable
control of robotic components, and etc. The relative worse trajecto-
ries may include some unnecessary motion due to the exploration
factor or the limited level of current policy. Therefore, we mul-
tiply the P(glgs, gu) by weighting factor p, which evaluating the
quality of that trajectory according to its start and end. In the ant
locomotion example, p would be the distance between start and
termination divided by completion time, which depicts the agility
of ant. Hence, the prioritized objective is given by:
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max > logPy(g" |95, 95) - p() 6)
TEB

Actually, the formation of our objective resembles that of trans-
lation tasks, where the researchers usually approach the translation
problem by maximizing the probability of sentence in one language
translated from source sentence in another language by human. In
this domain, the sequence-to-sequence(seq2seq) models show ex-
traordinary capability in recent years [27, 32]. We adopt the seq2seq
thoughts and the basic recurrent neural network cell LSTM to con-
stitute our planner architecture. From the perspective of seq2seq,
the source sequence contains the starting point g5 and ultimate goal
gu, while k subgoals act as the role of target sequence. In fact, we re-
gard the destination as the end-of-sentence "<EOS>", which is used
in translation task broadly, to indicate the end of source sequence
and the start of the process of predicting target sequence, saving
the introduction of an extra meaningless vector. Therefore, strictly
speaking, the source sequence only contains gs in our model. Since
the source sequence in our task is quite short, we do not introduce
the attention technique into our architecture. As shown in Figure 2,
the model takes the g as the input of encoder and the ultimate g,
as the first input of decoder, then produces subgoals one by one. In
addition, we also experimented with the architecture that produces
subgoals in reverse order, showing insignificant differences in terms
of learning speed and performance.

91 92

(sm o tstv Ho{ Lstv Ho{ LsTm s £ 5{ LsT
T o1 LT LT .

9s u 91 92 k-1

93 9k

Figure 2: Planner architecture

3.2.2  Hindsight Waypoints Sampling Strategy. One choice which
has to be made in order to use HP is the picking of critical waypoints
used for SL. For generality, we intend to make as few assumptions
as possible about the specific tasks, therefore we proposed two
simple and general strategies, called time-sample and route-sample.
As their names imply, they select waypoints with equal interval of
time and equal interval of route length.

(1) Time-sample. Consider the total timestep of one trajectory
is T, we pick the waypoints on the trajectory with interval
of % timestep.

(2) Route-sample. We take the route of trajectory in the goal
space into consideration. We denote the distance moved
credited to each action a; as §;. Hence, the route length is
T = Zth_Ol &¢. Then, pick the waypoints with interval of %
route length.

In this paper, we experimented with both of them, whose results
are presented in Sec 5.4. It turns out even the simplest time-sample
strategy is an effective way to extract information of goal structure,
suggesting much promising results for more heuristic strategies.
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Algorithm 1 Hindsight Planner

Given:
e an off-policy RL algorithm A
e astrategy Sy, for sampling goals for replay
e k and a strategy S, for picking k waypoints for replay
1: Initialize 7,
2: Brl’Bp — @
3: for episode = 1, M do
4 Sample a goal g, and an initial state s.
5. Planning subgoals (g1, 92, ....gk) < W (s0), 9)s Grs1
guJ —1

6: fort=0T-1do
7 If g; is achieved, j < min(j + 1,k + 1)
8: Sample an action a; using the behavior policy from A
9 ar «— mp(sellgy)
10: Execute the action a; and observe a new state s;4+1
11:  end for
122 Pick k  waypoints s;, ... ;  using Sp, store
(Y50 Y(ir.i, ), 9) into By
132 fort=0,T—-1do
14: re = r(st, at, St+1,9)
15: Store the transition (s¢||g, at, ¢, st+11|g) into B,
16: Sample a set of additional goals for replay G :=
S(currentepisode)
17: for g’ € Gdo
18: r’:=r(s¢, ar, St+1,9")
19: Store the transition (s¢||g’, at, r’, s¢+1/g”) into B,
20: end for
21:  end for
22:.  fort=1,Ndo
23: Sample a minibatch By, By from the replay buffer B,, By,
respectively.
24: Perform one step of optimization over n using A and
minibatch By
25: Perform one step of optimization over 1 with minibatch
By
26:  end for
27: end for

3.2.3  Overall Algorithm. See Algorithm 1 for the overall descrip-
tion of our framework. Note that our critical modifications to the
vanilla HER locate at Step 5, 7, 12, 25, in which we fetch out the
hindsight waypoints from that episode and train the planner at
the replay stage. Actually, our framework is compatible with other
improvements of off-policy RL algorithms or HER, such as the prior-
itized experience replay strategy around Step 24 [11, 23, 33]. Further
more, it does not have to cooperate with HER, any RL algorithm
applied on decomposable tasks where all subtasks share same goal
space is compatible with our framework.

4 RELATED WORK

To learn an agent that would complete multiple tasks, or react
to different goal correspondingly, is the inevitable requirement of
artificial general intelligence. The goal-oriented policy has drawn
numerous efforts to settle down problems in various scenarios, such
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as learning to grasp objects [17, 26] through imitation learning,
and constructing lower-level controller which receives goals sent
from higher level policies in hierarchical RL [14, 16]. In the field of
learning goal-oriented policy, the reward is extended to condition
on goals. The sparse reward is always the natural choice to set up
a learning procedure. HER was introduced to deal with the sample
inefficiency caused by sparse reward signal. The issue that remains
unsettled in HER method has been stated above.

Up to now, there emerge several works to reduce the sample
complexity caused by distribution mismatch of goals in HER. Zhao
et al. [33] use the prior knowledge of physics systems to prioritize
high-energy trajectories in the phase of experience replay, requiring
adjustment of energy equations or the weights assigned to mul-
tiple kinds of energies for different tasks. Ren et al. [21]generate
intermediate task goals from visited states based on the distance
between those states and original task goals, working in a curricu-
lum learning way. Note that the distance metric in this method
actually works like a kind of dense reward function, which often
leads to local optimal. Liu et al. [10] introduce competitive agents
to encourage random exploration, lacking informative guidance to
realize original goals.

Hierarchical Reinforcement Learning(HRL), in which multiple
layers of policies are trained to perform decision-making or control
to construct multiple levels of behavioral abstraction, has long held
the promise to learn difficult tasks. By having a hierarchy of policies,
of which only the lowest one conducts actions to the environment,
one is able to train the higher levels to plan over a longer time
scale [8]. The difficulties lie in the semantic definition of actions of
each policy layer, the joint training without incurring an inordinate
amount of experience collection. Previous work has attempted
to tackle these difficulties in a variety of ways [3-5, 14, 31]. [7]
proposed Hierarchical Actor-Critic(HAC) with hindsight, which
also applies the idea of hindsight to train the policy for each level.
Our planner is much like the upper-level policy in HRL. However,
our method decouples planner and actor more clearly, with the
low level only cares about achieving the given goal and the high
level only needs to capture the structure of feasible goal space. Free
of joint training avoids the inordinate collection of interactions.
Besides, the supervised learning paradigm also provides a good
property of fast convergence.

(a) U-maze (b) G-maze (c) Restricted Pushing

Figure 3: Customized Environments

5 EXPERIMENTS

This section is organized as follows. In Sec 5.1 we introduce the
environments we test our algorithm on and the experiment setup.
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In Sec 5.2, we check whether HP can generate legal subgoals for
agents. In Sec 5.3 we check whether HP helps to accelerate explo-
ration towards goals of original tasks. In Sec 5.4 we compare the
performance of our algorithm with vanilla HER, as well as another
baseline proposed by [33]. In Sec 5.5 we analyze the impact of the
number of subgoals on the performance.

We upload the video of our experiments on here !, and the code
on here. 2

5.1 Environments

We use the standard multi-goal environments provided by OpenAl
Gym [2, 18]. In addition, we create two ant locomotion environ-
ments that have non-linear feasible goal space to test the capability
to handle this kind of goal space. We list them out in three cate-
gories:

(1) Fetch Environment. Including Reach, Pushing, Sliding, Pick-
and-place. In these tasks, the agent has to control the 7-DOF
robotic arm to reach someplace, move or pick one object to
the designated spot. For experiments in Sec 5.3, we restrict
the Pushing by fixed initial state and strip goal distribution,
as shown in Figure 3(c).

Hand-Manipulate Environment. These tasks require the
agent to control a 24-DOF robotic hand to rotate and/or move
Block, Egg to given orientation and/or position.

AntMaze Environment. Including U-maze, G-maze which
has the maze of shape liking letters "U’ and ’G’, respectively.
We built them based on the open-sourced Gym Environment
and MuJoCo [29] physics engine. In these tasks, the 8-DOF
quadrupedal ant is initialized at fixed point in the maze, and
has to move to goal spot (the purple sphere in Figure 3)
sampled randomly at the beginning of each episode.

5.1.1 Experiment Setup. For the hyperparameters used in the
actor and critic networks, as well as the training process, we keep
consistent with Plappert et al.[18] except that we use 3 MPI workers
for Fetch tasks and 6 for Hand and Ant tasks. For planner neural
network, we use the hidden size of 64 for LSTM cells, batch size of
128 and adam optimizer with 1073 learning rate for training. Buffer
size for planner is le4 episodes. The §, in Eq. 1 is set to 0.05 for
Fetch tasks and 0.2 for AntMaze tasks. The distance and rotation
04 for Hand tasks are 0.01 and 0.1(rad), respectively. In addition,
we loose the §y to 26, for subgoals, since rigorous alignment is
unnecessary on midway subgoals.

5.2 Does HP generate feasible subgoals?

In order to check whether HP is able to generate legal and feasible
subgoals to break down ultimate goals, we visualized subgoals gen-
erated in tasks mentioned above using the time-sample strategy of
picking waypoints. It is shown in Figure 4 that the subgoals gener-
ated by our planner gradually make sense as the learning progresses.
HP still works well at planning subgoals for 3d-rotations and com-
plex nonlinear feasible goal space of maze. Note that the planner
does not receive any prior knowledge about the goal space (except
the normalization of quaternion for getting a valid quaternion).

!https://youtu.be/0hL3JRUtyOk
2https://github.com/aamas20-984/HindsightPlanner
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(a) Epoch 0

(b) Epoch 10

(c) Epoch 20 (d) Epoch 30

Figure 4: Visualization of subgoals generated by HP on FetchPickAndPlace(top row), HandManipulateRotateXYZ(middle row),
AntMazU(bottom row). Subgoals are shown by spheres ordered in brown, yellow, green, blue in Fetch and AntMazeU, and by
side blocks arranged from right to left(the right-most one is the initial state and the left-most one is ultimate goal orientation)

in HandManipulateRotateXYZ.

For the visibility of generated subgoals, we set the transparency
of walls in the maze environment to 20%. The subgoals in Figure 4
are visualized using checkpoints of planner at epoch 0, 10, 20, 30 of
the training stage. We could see that subgoals snapshot at epoch
0 are quite meaningless even wrong, while the subgoals snapshot
around epoch 30 already become instructive. In our experiments,
each epoch consists of 50 episodes, which means the planner could
capture the feasible goal space rapidly from the early exploration
of the agent and then help the agent to explore towards broader
goal space in turn.

5.3 Does HP improve exploration for task with
restricted goal distribution?

For the purpose of checking whether our method does help the
exploration move towards the goals of original task under the
condition that all goals are sampled from an area far away from its
initial state, we took the restricted FetchPushtask for experiment,
where the initial states are fixed to one spot and the goals are
sampled from line-segment several units away from the initial spot,
just as shown in Figure 3(c). This environment setting avoids the
effect that uniformly sampled goals could promote the exploration
of agents.

We draw the curves of task success rate of our method (using
time-sample) and original HER across 4 runs with random seeds in
Figure 5. Note that we also plot the averaged success rate curves of
these two methods in the unrestricted task, i.e. the curves in Figure
6(b). We can see that our method solved the restricted task at a
similar speed as that in the unrestricted version, while HER often
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—— HER-unrestricted
~—— HP-unrestricted
—— HP-restricted
—— HER-restricted

0 1000 2000 3000 4000 5000 6000

Figure 5: Learning curves in restricted FetchPush task. The
y-axis is the success rate and the x-axis is the number of
episodes used for training with 3 mpi workers.

get stuck for a long time without goals sampling uniformly around
the initial spot. We can conclude that the subgoals generated by our
planner guide the exploration with higher intentionality towards
goal distribution of task.

5.4 Does HP improve performance on general
tasks?

We then check whether HP improves performance on mentioned
tasks against vanilla HER. Moreover, we compared against HER
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06

0.4

— HER

—— HER+EBP
HER-+HP(route)

—— HER+HP(time)

02 f

0.0

300 400 500 600 0 1000 2000 3000 4000 5000 6000 7000 8000

(a) FetchReach (b) FetchPush

0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

(c) FetchSlide (d) FetchPickAndPlace

Figure 6: Learning Curves for Fetch environments. The results are averaged across 5 random seeds and shaded areas represent
one standard deviation. The red and orange curves correspond to the time-sample and route-sample strategy. The y-axis is
success rate and x-axis is the number of episodes used for training with 3 mpi workers.
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Figure 7: Learning Curves for Hand and Ant environments. The results are averaged across 5 random seeds and shaded ar-
eas represent one standard deviation. The red and orange curves correspond to the time-sample and route-sample strategy,
respectively. The y-axis is the success rate and x-axis is the number of episodes used for training with 6 mpi workers.

with Energy-Based Prioritization (HER+EBP)[33]. We tested both
of the two strategies proposed in 3.2.2, but without prioritizing
trajectories since we want to verify the effectiveness of the strategy
with minimal domain knowledge. For both of them, we empirically
set the number of subgoals to 4 for all Fetch and Ant tasks, and 2 for
Hand tasks. Since FetchReach and AntMaze do not contain an object
to be manipulated, we did not include the HER+EBP versions for
them.

From Figure 6 and Figure 7, we can see that the time-sample
planner and route-sample planner have minor differences in terms
of converged performance, as well as learning speed in some tasks.
However, there is one thing need to notice that the route-sampled
waypoints may be contorted to segments that have a large span in
goal space, which may caused by occasional overaction. Comparing
with HER and HER+EBP, the two types of planner exhibit better
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sample efficiency and higher success rate among most of the 12
tasks. In terms of sample efficiency, our method reduced the number
of episodes needed to converge by 50% in FetchPush(1500/3000), 60%
in HandManipulateBlockRotateParallel(5000/12500) against both
of HER and HER+EBP. In terms of converged performance, our
method lift the success rate by 10% in HandManipulateBlockFull, by
20% in HandManipulateEggFull against vanilla HER. In FetchReach,
the task is too easy for HER, while our planner needs some time to
accommodate the environment. The only exception is FetchSlide,
which has to be completed by final strike with proper force in cor-
rect direction. HP indeed is not suitable for solving this kind of
problem that has to be done at one stroke. The reason why EBP
does not improve performance on many rotation tasks might be
that the trajectories with higher energy waste too much energy on
unnecessary rotations, which instead reduces the agility of agents.
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Figure 8: Ablation study of the number of subgoals HP planned for breaking down ultimate goal. (a)-(d) shows the averaged
test success rate across all training episodes in four tasks. The x-axis is the number of subgoals, where 0 means no subgoal, i.e.

vanilla HER.

5.5 What’s the impact of the number of
subgoals?

In this section, we experimentally investigated the impact of the
number of subgoals. See Figure 8 for the averaged test performance
across all training episodes with different number of subgoals in
FetchPickAndPlace, HandManipulateBlockRotateZ, HandManipula-
teEggRotate, AntMazeU.

The numbers of training episodes in this section are 9k, 5k, 6k,
20k for PickAndPlace, BlockRotateZ, EggRotate, and AntMazeU,
respectively. These numbers are determinated to ensure agents
would converged when training ends. 6 mpi workers were used for
this section’s experiments.

From the plots, we could see that an appropriate number of sub-
goals leads to the optimal performance, since overmuch subgoals
confine the route strictly while the route depicted by subgoals might
not be good enough to complete within given timesteps. This is
not unexpected since we use the nonprioritized learning objective
(Eq.5), therefore the training waypoints sampled from tortuous ex-
ploring trajectories let the planner produces winding path. Smarter
waypoints sampling strategy may also provide a way to solve this
problem, which we intend to explore in future work. Apart from
that, we could also see that the greater leap of success rate from
k = 0 to 1 comparing the successive changes due to the increase
of subgoals, which also indicates the great benefit of decomposed
goals on the acceleration of learning process. Ideally, comparing
to inputting the ultimate goal, inputting a median subgoal can cut
down the distance from starting point to the goal by half, thus the
promoting effect is most obvious.

6 CONCLUSIONS

For the mismatch between the distribution of hindsight goals and
that of original goals in HER, we propose a novel framework called
Hindsight Planner to promote the exploration intentionality to-
wards ultimate goal. Our framework exploits collected trajectories
to extract the information about feasible goal space, and then do the
planning job of decomposing faraway goals into easy-to-achieve
subgoals. We formulate this idea as a supervised learning paradigm
with selected waypoints as labels of subgoals leading to hindsight
achieved goal. For the part of selecting waypoints in the framework,
we provide two simple but effective strategies to pick out waypoints
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from collected trajectories. Extensive experiments demonstrated
better sample efficiency and better completion of our framework
over vanilla HER and HER+EBP on a collection of robotic tasks.
Since our framework does not take extra assumption about the goal
space, it provides high generalization ability to many domains. Be-
sides, due to its independence on the trajectory collecting method,
it could be combined with most of RL methods, including off-policy
and on-policy ones. A future direction would be to enhance the
planner power to provide the ability to produce dynamic number
of subgoals according to the difficulty of specific tasks.
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