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ABSTRACT
In this work, we study the fair resource sharing problem, where a set

of resources needs to be shared by a set of agents. Each agent is unit-

demand and each resource can serve a limited number of agents.

The agents have (heterogeneous) preferences for the resources, and

preferences for other agents with whom they share the resources.

Our definition of fairness is mainly captured by envy-freeness. Due
to the fact that an envy-free assignment may not exist even in

simple settings, we propose a way to relax the definition: Pareto
envy-freeness, where an assignment is Pareto envy-free if for any

two agents i and j, agent i does not envy agent j for her received
resource or the set of agents she shares the resource with. We study

to what extent Pareto envy-free assignments exist. Particularly, we

are interested in a typical model, dorm assignment problem, where

a number of students need to be accommodated to the dorms with

the same capacity and the students’ preferences for dorm-mates

are binary. We show that when the capacities of the dorms are 2,

a Pareto envy-free assignment always exists and can be found in

polynomial time; however, if the capacities increase to 3, Pareto

envy-freeness cannot be guaranteed any more.
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1 INTRODUCTION
We consider a general resource sharing framework in this work,

where a set of heterogeneous resources needs to be fairly shared

among a set of unit-demand agents. Besides the preferences that

each agent has for the resources, the preferences for other agents

with whom she shares the resource are also taken into consider-

ation. Each resource has a fixed capacity, which is the maximum

number of agents it can serve simultaneously. The fairness concept

we focus on in this work is the envy-free assignments [23], where

every agent does not want to exchange with any other agent. Fair

resource sharing happens a lot in reality, such as dorm assignment,

project collaborating, public transportation, and more. Particularly,

dorm assignment is a canonical problem faced by many schools,
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where students need to be accommodated to different dorms. Dif-

ferent students may have different preferences for the dorms based

on each dorm’s size, location, furniture, cooking condition, and

others. Moreover, each student also prefers sharing a dorm with

her/his friends, lab mates, or someone with whom she/he has sim-

ilar timetable. Then our problem is to assign the students to the

dorms in an envy-free way.

Arguably, dorm assignment problem is originated from the stable
roommate problem [25, 31], where 2m students need to be assigned

to m rooms in a stable way. An assignment is stable if there is

no pair of agents who want to exchange their rooms. There exist

other characterizations of stability in various matching settings,

like exchange stability [15] and popular matchings [10]. In this line

of work, people do not consider the agents’ value for the rooms.

However, in real-word scenarios, due to the heterogeneity of the

rooms, the agents’ values toward rooms are non-negligible.

Dorm assignment problem has also been studied in the market

settings, such as [16, 29, 35]. In a market, the dorms have (different)

prices (or rent) that needs to be shared between the agents assigned

to them. Here each agent’s utility (i.e., net value) for an assignment

is the difference between her value and her rent share. As shown by

[35], if each room has capacity 1, then there is an assignment and a

price profile, such that the matching between the agents and rooms

is envy-free. When the capacities of the dorms increase to 2, it is

shown in [16] that although individual envy-freeness cannot be

guaranteed, a direct application of the result in [35] ensures room
envy-freeness by treating every pair of dormmates as a whole. That

is, by moving the agents in a dorm together to another dorm, their

total utility cannot be increased.

Our work is different from these lines of researches in two per-

spectives. First, monetary transfers are not allowed in our model.

This is because discriminations are strictly prohibited in many set-

tings, like political elections, organ donations, as well as school

affairs (including dorm assignments). Accordingly, money cannot

be used as a medium of compensation. Second, different from [16],

we care about the utility of each individual, even when the capaci-

ties of the dorms are greater than one. Therefore, in this work, we

aim at characterizing to what extent the individual fairness can be

guaranteed when monetary transfers are not permitted.

1.1 Main Results
Our contributions are three-fold. First, we adapt envy-freeness,

as well as proportionality, to the resource sharing problem and

study their properties. Interestingly, unlike the classic fair resource

allocation domain, these two solution concepts in general are not

compatible in our model. Instead, an envy-free assignment can

guarantee a 2-approximation of proportionality if the capacity of

each resource is at least 2, and the bound is tight.
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Second, as envy-freeness is hard to be satisfied, we relax it to

Pareto envy-freeness (PEF). Informally, an assignment is called PEF

if for any two agents i and j , either i does not envy j with respect to

her resource, or with respect to the agents with whom j shares her
resource. Similarly, we also define Pareto proportionality (PPROP),
which ensures that for any agent i , either she is assigned to one of

her top 50% resources or shares a resource with at least a propor-

tional number of friends. We show that for the dorm assignment

problem with capacity 2, a PEF assignment must also be PPROP.

Finally, we move to study the existence of PEF assignments. We

show that for the dorm assignment problem with capacity 2, a PEF

assignment (thus PPROP) is guaranteed to exist and can be found in

polynomial time. However, if the capacity for the dorms is increased

to 3, PEF assignments cannot be guaranteed any more.

We regard our main technical contribution as the existence of

PEF assignments for the dorm sharing problem with capacity 2.

We first use Gallai-Edmonds Theorem [33] to identify a Tutte set

and decompose all maximum matchings. For the agents that can be

matched by any maximummatching excluding the ones in Tutte set,

we assign them to dorms such that they do not envy other agents’

dorm mates. For the other agents, by utilizing Hall’s Theorem [27],

we show that they can be paired such that either both agents have

similar preferences for dorms or they are friends with each other.

Thus all agents can be assigned to dorms in a PEF way.

1.2 Other Related Works
Fair allocation has been extensively studied in many settings, such

as cake cutting [7, 12, 20], indivisible goods allocation [13, 14, 32],

and indivisible chores allocation [6, 8, 28]. Although envy-free and

proportional allocations always exist in cake cutting problem, they

may not exist when the items are indivisible. Accordingly, people

study relaxed but more realistic fairness notions, such as envy-

freeness up to one item [32] where existence is guaranteed, and

maximin share fairness [13] where constant approximations are

guaranteed. Our work also falls under the domain of relaxing fair-

ness notions toward existence; however, in our model the resources

need to be shared instead of being partitioned among agents.

Our work is also related to fair rent division [1, 3, 4, 24], which

studies fair ways to assign rooms to agents and divide the rent

among them. With monetary transfers, an envy-free solution is

always guaranteed, thus works like [3, 24] focus on identifying and

finding the “best” envy-free solutions. Two major differences be-

tween our work and theirs are (1) in our model, monetary transfers

are not allowed, and (2) besides the values for the rooms, we also

consider each agent’s external values for her roommates.

Another related topic studied in the literature is the fair house
assignment problem initiated by [30, 34]. Some recent achievements

can be found in [2, 9, 26]. The models considered in those papers

are special cases of our paper where the capacities of the resources

are one and the external values between the agents are zero.

Some game theoretic models are also related to our work. For

example, in hedonic games [5, 11, 22] and group activity selection
problem [18, 19, 21], the agents form coalitions, and have pref-

erences over the coalitions they might join. The preference of a

coalition is determined by the members in the coalition or its size

for anonymous games. Clearly, hedonic games do not consider the

values of the coalitions (i.e., “resources”), and group activity se-

lection problem mainly studies the approval preferences. Another

fundamental difference to our model is that in these game-theoretic

settings, the agents always have an option to quit the game while

in our problems, all the agents need to be served. Moreover, in their

models, the results are mainly focused on the stable assignments,

while the fairness is largely overlooked.

2 RESOURCE SHARING FRAMEWORK
In the resource sharing problem, a set of resourcesM needs to be

assigned to a set of agents N . The number of agents is n and the

size of the resource ism, i.e., |N | = n and |M | =m. Each resource

j ∈ M has a capacity constraint c j ≥ 1, which means the maximum

number of agents resource j can serve simultaneously is at most

c j . Throughout the paper, we assume that the supply meets the

demand, that is, n =
∑
j ∈M c j . Each agent i ∈ N has a value vi j ≥ 0

for each resource j ∈ M and each agent is unit-demand; that is, for

any subset S ⊆ M of resources, agent i’s value for the subset is the
maximum value in the subset, i.e., vi (S) = maxj ∈S vi j . We abuse

the notions a bit by using v = (v1, · · · ,vn ) to denote the valuation

profile of the agents, where vi = (vi1, . . . ,vim ).

A feasible assignment (or allocation) requires that every agent is

assigned one resource and each resource j is assigned to (at most) c j
agents. Formally, denoting an assignment by x = (xi j )i ∈N , j ∈M
where xi j ∈ {0, 1}, X is feasible if for all i ∈ N , j ∈ M ,

∑
i ∈N xi j ≤

c j and
∑
j ∈M xi j = 1. Given an assignmentX , letX j = {i ∈ N |xi j =

1} be the set of agents that are assigned to resource j. Finally, let
X = (X1, . . . ,Xm ).

Each agent i ∈ N has a preference over other agents N \ {i},
indicating her willingness for whom she shares a resource with,

which is called external values or externalities. Formally, agent i
gains external value eii′ ∈ R if agent i shares a resource with

agnet i ′. Except in Section 6, we assume eii′ ≥ 0. Let e = (ei )i ∈N
be the externality profile where ei = (eii′)i′,i . For convenience, we
also denote ei = (eii′)i′∈N where eii = 0. We use I = (N ,M,v, e)
to denote an instance of the resource sharing problem.

For any assignment X , let ji be the resource that is assigned to

agent i , i.e., xi ji = 1. Then agent i’s value for the resource given
assignment X is denoted by

vi (X ) =
∑
j ∈M

vi j · xi j = vi ji

and her external value is denoted by

ei (X ) =
∑
j ∈M

∑
i′,i

eii′ · xi′j · xi j =
∑

i′∈X ji \{i }

eii′ .

It is assumed that the agent’s utility is additive over the values for

the resources and the externalities. Thus the total utility of agent i
for assignment X is defined by the sum of the values, i.e.,

ui (X ) = vi (X ) + ei (X ) = vi ji +
∑

i′∈X ji \{i }

eii′ .

When it is clear that i ∈ X ji , we also denote vi (X ji ) = vi (X ),

ei (X ji ) = ei (X ), and ui (X ji ) = ui (X ).

A typical case of the resource sharing problem is called the

canonical model, when all the following requirements are satisfied.

(1) all dorms have the same capacity c ≥ 1;
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(2) the external values are binary, i.e., eii′ ∈ {0, 1} for any i, i ′;
(3) the external values are symmetric, i.e. eii′ = ei′i for any i, i

′
.

Thus in the canonical model, the externalities among the agents

can be described as an undirected and unweighted graphG = (N , E)
where each node represents an agent and every edge e = (i, i ′) ∈ E
between two agents i and i ′ means they are friends with each other

and would like to share a resource together. We refer such a graph

as the externality graph. Particularly, when capacity c = 2, the

model is referred as dorm assignment problem, wherem dorms need

to be shared among n = 2m students.

3 ENVY-FREENESS AND PROPORTIONALITY
Arguably, in fair allocation literature, the most widely studied fair-

ness criteria are envy-freeness and proportionality. In this section,

we first adapt these two definitions to our framework.

3.1 Definitions
Roughly, an envy-free assignment guarantees each agent does not

want to exchange her assignment with any other agent.

Definition 3.1. An assignmentX is called envy-free (EF) ifui (X ) ≥

ui (X
ii′) for every pair of agents i and i ′, where X ii′

is the resulting

assignment by exchanging the resources assigned to agents i and i ′.

Next we adapt proportionality to the resource sharing problem.

Intuitively, we can view the proportional value as the expected

value of the agents if we randomly assign them to the resources.

This concept coincides with the traditional definition of proportion-

ality in the classical fair allocation setting. In the resource sharing

problem, an agent i’s average value for the resources is 1

m
∑
j ∈M vi j .

For the average external value, note that the average externality

for a single agent is
1

n−1

∑
i′∈N \{i } eii′ , and the average number of

agents sharing a resource is c̄ = 1

m
∑
j c j − 1. Accordingly, agent i’s

proportional value in our model is defined as

PROPi =
1

m

∑
j ∈M

vi j +
c̄ − 1

n − 1

∑
i′∈N \{i }

eii′ .

Definition 3.2. An assignment X is called α-approximate propor-
tional (α -PROP) ifui (X ) ≥ α ·PROPi for every agent i ∈ N . If α = 1,

X is called proportional (PROP).

3.2 The Relationship between EF and PROP
It is well known that in the classic resource allocation setting, envy-

freeness implies proportionality. But an interesting observation for

the resource sharing problem is that they are not compatible.

First it is not hard to see that a PROP assignment does not have

guarantee for EFness as PROPness only cares the average utility

instead of the exact assignment of the others.

Next we note that if there is a resource with capacity 1, an

EF assignment does not have any guarantee for PROPness either.

Consider the following instance with 2 resources and 4 agents. Let

the capacities of the two resources be c1 = 1, c2 = 3. Suppose agent

1 has value 0 for both resources, and external value 0 for agents 2

and 3, and external valueT ≫ 0 for agent 4. Accordingly, allocating

agent 4 to resource 1 and agents 1, 2, 3 to resource 2 is envy-free for

agent 1. To see this, note that the utility of agent 1 under such an

assignment is 0 and by exchanging with agent 4, agent 1’s utility

cannot be increased. However,

PROP1 =
c̄ − 1

n − 1

∑
i′∈N \{i }

eii′ =
T

3

≫ 0.

Thus we conclude that an EF assignment cannot guarantee any

approximation of PROPness if some resource’s capacity is 1.

Fortunately, if all resources have capacities at least 2, we are

able to show that envy-freeness implies (1 − 1

cmin

)-approximate

proportionality, where cmin = minj c j and 1 − 1

cmin

≥ 1

2
.

Theorem 3.3. When c j ≥ 2 for all j, any EF assignment is (1 −
1

cmin

)-approximate PROP.

Proof. LetX be an arbitrary EF assignment and i be an arbitrary
agent, where ji is the resource that is assigned to i . Then

ui (X ) = vi ji +
∑

i′∈X ji \{i }

eii′ (1)

First, for any j , ji and any i ′ ∈ X j ,

ui (X ) ≥ ui (X
ii ) = vi j +

∑
l ∈X j \{i′ }

eil . (2)

Sum Inequality 2 for all i ′ ∈ X j and divide by c j ,

ui (X ) ≥ vi j +
∑
l ∈X j

eik −
1

c j
·
∑
l ∈X j

eil

≥ vi j +
c j − 1

c j

∑
l ∈X j

eil ≥ vi j +
cmin − 1

cmin

∑
l ∈X j

eil , (3)

where the last inequality is because c j ≥ cmin for all j. Next, sum
all Inequalities 1 and 3 for each resource j and divide bym,

ui (X ) ≥
1

m

∑
j
vi j +

cmin − 1

m · cmin

∑
j

∑
l ∈X j

eil . (4)

On the other hand, by the definition of proportionality,

PROPi =
1

m

∑
j ∈M

vi j +
c̄ − 1

n − 1

∑
i′∈N \{i }

eii′

=
1

m

∑
j ∈M

vi j +
1

m

∑
j (c j − 1)

n − 1

∑
i′∈N \{i }

eii′

≤
1

m

∑
j ∈M

vi j +
1

m

∑
i′∈N \{i }

eii′

≤
cmin

cmin − 1

· ui (X ),

where the first inequality is because

∑
j (c j − 1) ≤ n − 1.

Finally, since the above analysis holds for every agent i , X is

(1 − 1

cmin

)-approximate PROP. □

Actually, the analysis in Theorem 3.3 is asymptotically tight

using the following example.

Example 3.4. Let c ≥ 2 be any integer andm ≫ c be a sufficiently

large integer. Consider the following instance, wherem resources

need to be assigned to n = (c−1)m2+cm−c+1 agents. The capacity

of the first resource is c1 = (c − 1)m2 + 1 and the capacity of any

resource j > 1 is c j = c . Note that
∑m
j=1

c j = (c−1)m2+1+c(m−1) =
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n. Let X = (X1, · · · ,Xm ) be an allocation where agent 1 is assigned

to resource 1, i.e., 1 ∈ X1. Let agent 1’s external values be e1k = 1

if k ∈ X1; and e1k =m
2
otherwise. Assume agent 1 does not have

values for the resources.

As u1(X ) =
∑
k ∈X1\{1}

e
1k = (c − 1)m2

, which means that by

exchanging agent 1 with any agent in resource j > 1, agent 1’s

utility cannot be increased. Hence allocation X is envy-free. Then

we compute agent 1’s proportional utility. By the design of the

instance,

c̄ =
1

m

∑
j
c j − 1 =

(c − 1)m2 + 1 + c(m − 1)

m
− 1

=
(c − 1)m2 + (c − 1)m − c + 1

m
,

and ∑
k ∈N \{1}

e
1k = (c − 1)m2 + cm2 · (m − 1) = (cm − 1)m2.

Thus,

lim

m→∞

PROPi
u1(X )

= lim

m→∞

c̄ − 1

(n − 1)(c − 1)m2

∑
i′∈N \{i }

eii′

= lim

m→∞

((c − 1)m2 + (c − 1)m − c + 1) · (cm − 1)m2

m · ((c − 1)m2 + cm − c) · (c − 1)m2

=
c

c − 1

.

We further note that the an EF assignment may not be PROP

even if all the resources have the same capacity. Due to space limit,

we omit such an example here, but in the following we show that

the approximation ratio for PROPness can be improved.

Corollary 3.5. When all agents have the same capacity c ≥ 2

for all j, any EF assignment is (1 − 1

n )-approximate PROP.

Proof. Essentially, the proof shares the same idea with Lemma

3.3 and we only mention the differences in the following. Let X
be an arbitrary envy-free allocation, and i be an arbitrary agent.

Similar to Inequality 3, we have

ui (X ) ≥ vi j +
∑
l ∈X j

eik −
1

c
·
∑
l ∈X j

eil ≥ vi j +
c − 1

c

∑
l ∈X j

eil .

Summing over above inequalities for each resource j and divide by

m, we have

ui (X ) ≥
1

m

∑
j
vi j +

1

m
·
c − 1

c

∑
j

∑
i′∈X j

eii′

=
1

m

∑
j
vi j +

1

m
·
c − 1

c

∑
i′∈N \{i }

eii′

=
1

m

∑
j
vi j +

c − 1

n

∑
i′∈N \{i }

eii′

≥
n − 1

n

©« 1

m

∑
j
vi j +

c − 1

n − 1

∑
i′∈N \{i }

eii′
ª®¬

=
n − 1

n
PROPi .

Hence assignment X is (1 − 1

n )-approximate PROP. □

At the end of this section, we observe that envy-freeness and

proportionality are very strong fairness requirements such that

there exist a number of instances where every assignment is neither

proportional nor envy-free. A simple example is when there are

two resources both with capacities 1 which need to be assigned

to two agents. Assume both agents have value 1 for resource 1

and value 0 for resource 2, and all the external values are 0. In this

instance, any agent assigned to resource 2 is not proportional and

significantly envies the other agent.

4 PARETO ENVY-FREENESS AND
PROPORTIONALITY

As the we have discussed that envy-freeness, as well as propor-

tionality, is a strong fairness notion, in this section, we give up the

additivity of the utilities and view it as a two-dimensional vector.

Roughly, we relax the requirement to be there is one dimension

that is satisfied.

4.1 Pareto Envy-freeness
Definition 4.1. An assignment X is called Pareto-envy-free (PEF)

if for every pair of agents i and i ′, at least one of the following two

inequalities holds

(1) vi (X ) ≥ vi (X
ii′); or

(2) ei (X ) ≥ ei (X
ii′),

where X ii′
represents the assignment by exchanging the resources

assigned to agents i and i ′.

From the definition, it is not hard to see that envy-freeness

implies Pareto-envy-freeness. Intuitively, a PEF assignment requires

that for any two agents, one cannot be worse off than the other

agent with respect to both the values for the resources assigned to

them and the external values for agents sharing the same resources

with them. This definition of PEF also makes sense when the agents

only have ordinal preference for the resources or when the values

for the resources and the externalities are not comparable.

We also note that if some agent i does not have any friends,

i.e.,

∑
i′∈X ji \{i }

eii′ = 0, then requirement (2) of PEF is trivially

satisfied.

As we will see in the later sections, PEF assignments cannot

always be guaranteed. Then one may consider to further relax the

requirement (2) as

ei (X ) ≥ ei ((X
ii′
ji′ \ S,X

ii′
−ji′ ))

for some S ⊆ X ii′
ji′
\{i}with cardinality at mostk . This is often called

envy-free up to k items in the literature [13]. However, including PEF
itself, all such relaxations are still very demanding requirements.

Consider the following instance with 2 resources and n agents

where n is sufficiently large. All agents have identical values: 2 for

resource 1 and 1 for resource 2; and identical external values: every

agent has external value 1 for any other agent. The capacities of

resources 1 and 2 are n − 1 and 1 respectively. Thus for an arbitrary

assignmentX , one of the agents, say i , has to be assigned to resource
2, such thatvi (X ) = 1 and ei (X ) = 0. However, by exchanging with

any agent i ′ , i that is assigned to resource 1 and letting X ii′
be

the resulting assignment, ei (X
ii′) = n−2, which means that agent i

always has lower external value for her assigned resource than the
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other one even after all but one agents are removed from the other

resource. One reason for the above impossibility is the unbalanced

capacities. Thus in the future sections, we will mainly consider the

canonical model, where all the resources have the same capacity,

and study to what extent a PEF assignment exists.

4.2 Pareto Proportionality
Next, we provide a similar approach to relax the requirements of

proportionality for the canonical model.

Definition 4.2. An assignmentX for a canonical instance is called

Pareto-proportional (PPROP) if for every agent i , at least one of the
following two inequalities holds

(1) µi (X ) ≥ 1

2
m; or

(2) ei (X ) ≥ ⌊ c−1

n−1

∑
i′∈N \{i } eii′⌉,

where µi (X ) = |{j ∈ M | vi ji ≥ vi j }| represents the number of

resources that are worse off for agent i comparing to her assigned

resource ji , and ⌊x⌉ represents rounding x to the nearest integer,

i.e. ⌊x⌉ = ⌈x⌉ if x ≥ ⌊x⌋ + 1

2
and ⌊x⌉ = ⌊x⌋ otherwise.

Intuitively, a PPROP assignment requires that for any agent,

either she is assigned to one of her top 50% resources or shares

a resource with a number of her friends that is no fewer than

the rounded proportionality, i.e., ⌊ c−1

n−1

∑
i′∈N \{i } eii′⌉. Note that

for the first requirement, we do not use the cardinal definition of

proportionality for the value of the resources. This is to balance

some extreme situations such as when there is exactly one resource

that is super valuable for all agents, then the cardinal version of the

definition cannot be satisfied. Accordingly, PROP does not imply

PPROP anymore. In the following theorem,we show the connection

between PEF and PPROP in the special case of c = 2 orm = 2.

Theorem 4.3. For any canonical instance with c = 2 orm = 2, a
PEF assignment is also PPROP.

Proof. Let X = (X1, · · · ,Xm ) be an arbitrary PEF assignment.

We show that for an arbitrarily agent i , X is also PPROP for her.

We first consider the situation when c = 2 (but arbitrarym) and

distinguish between the following two cases.

Case 1. If

∑
i′∈N \{i } eii′ < m =

n
2
, then

⌊
c − 1

n − 1

∑
i′∈N \{i }

eii′⌉ ≤ ⌊
1

n − 1

· (
n

2

− 1)⌉ = 0.

Thus the second requirement of PPROP always holds with respect

to agent i .
Case 2. If

n
2
=m ≤

∑
i′∈N \{i } eii′ ≤ 2m − 1, then

⌊
c − 1

n − 1

∑
i′∈N \{i }

eii′⌉ = 1.

Hence, as long as agent i shares a resource with a friend,X is PPROP

to her. If agent i does not have a friend in X ji , then all her friends

would occupy at least ⌈m
2
⌉ resources. Since assignment X is PEF

to agent i , X ji should be better than those ⌈m
2
⌉ resources for her.

That is the first requirement of PPROP is satisfied with respect to i .
Next we turn to the situation whenm = 2 (but arbitrary c) by

considering the following three cases.

Case 1. If agent i gets her preferred resource, the first requirement

of PPROP is satisfied with respect to i .

Case 2. If all
n
2
agents in X3−ji are the friends of agent i , then

all the other
n
2
− 1 agents in X ji except i must also be the friends

of agent i as allocation X is PEF. That is (recall that n is even),∑
i′∈N \{i } eii′ = n − 1,

ei (X ) =
n

2

− 1,

and 
n
2
− 1

n − 1

∑
i′∈N \{i }

eii′

 =
n

2

− 1.

Thus the second requirement of PPROP is satisfied.

Case 3. If there is at least one agent inX3−ji that is not the friend

of agent i , then the number of friends for agent i in resource ji must

be at least the number of friends in resource 3 − ji . That is

ei (X ) ≥


1

2

∑
i′∈N \{i }

eii′

 ≥


n
2
− 1

n − 1

∑
i′∈N \{i }

eii′

 ,
and the second requirement of PPROP is satisfied.

In conclusion, as i is an arbitrary agent, assignment X must also

be PPROP. □

Note that Theorem 4.3 does not hold when c ≥ 3 and m ≥ 3.

Consider the following instance withm = 3 and c = 3. Suppose

four agents {1, 2, 3, 4} are friends with each other, two agents {5, 6}

are friends with each other, and three agents {7, 8, 9} are friends

with each other. But none in {1, 2, 3, 4} or {5, 6} or {7, 8, 9} is friend

with any agent that is not in her set. Suppose all nine agents have

identical resource preference with resource 1 being the best, re-

source 2 the second and resource 3 the worst. We claim that as-

signment X = (X1,X2,X3) with X1 = {7, 8, 9}, X2 = {4, 5, 6} and

X3 = {1, 2, 3} is PEF. Since every agent in {7, 8, 9} gets her best

resource, X is PEF to them. Since every agent in {5, 6} shares a

resource with her unique friend, X is PEF to them. Since every

agent in {1, 2, 3} shares a resource with two of her three friends, X
is PEF to them. Since agent 4 gets a better resource than any of her

friends in {1, 2, 3}, X is PEF to her. However, assignment X is not

PPROP to agent 4: she does not get her top 1 resource or share a

resource with at least 1 of her friends.

5 FAIR DORM ASSIGNMENT PROBLEM
In this section, we study to what extent PEF assignments can be

guaranteed to exist for canonical models. As we will see, for dorm

assignment problem (where every dorm has capacity 2), a PEF

assignment (and of course PPROP) always exists and can be found

in polynomial time; however, if the dorm capacity is increased to 3,

PEF assignments cannot be guaranteed.

5.1 More Notations
Before introducing our main result, we provide additional notations

to describe our algorithm. LetG = (V , E) be an arbitrary externality

graph. A matching of G is called perfect if it covers all nodes of G,
and nearly perfect if it covers all but one nodes. Graph G is called

factor-critical if after removing any node ofG , the remaining graph

contains a perfect matching.

For any set of nodesA ⊆ V , denote byG\A the induced subgraph

of V \ A in G. G \ A may be composed of one or more connected
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Figure 1: An illustration of Gallai-Edmonds decomposition.

components (or components for short). A component of G \ A is

called even (or odd) if it contains even (or odd) number of nodes.

Denote by B = B(A) and D = D(A) the set of all even and odd

components in G \A, respectively. We use V (B) and V (D) to rep-

resent the set of nodes in B and D. A set A ⊆ V is called a Tutte
set if each maximum matching M of G can be decomposed as

M =MB ∪MD ∪MA,D,

whereMB is the set of perfect matchings for each even component

B ∈ B, MD is the set of nearly perfect matchings in each odd

component D ∈ D, andMA,D is a matching which matches every

node in A to a node in some odd component in D.

Lemma 5.1 (Gallai-Edmonds Decomposition [17, 33]). Given
G = (V , E), a Tutte set A can be constructed in O(n3) time such that

(1) all odd components D ∈ D are factor-critical;
(2) for any odd component D ∈ D, there is a maximum matching

M of G which does not completely cover D.

Denote by tuple (A,B,D) a Gallai-Edmonds decomposition,

which is illustrated in Figure 1. By Lemma 5.1, |A| ≤ |D| and

if D , ∅, |A| < |D|.

Given any graph G = (V , E), for each subset S ⊆ V , let N(S)
denote the neighbours of S in V , i.e.,

N(S) = {i ∈ V \ S | (i, i ′) ∈ E for some i ′ ∈ S}.

Lemma 5.2 (Hall’s Theorem [27]). For any bipartite graph G =
(L,R;E) with node sets L and R, and edge set E such that |L| ≤ |R |,
there exists a matching with size at least |L| if and only if for any
subset S ⊆ L, |S | ≤ |N(S)|.

5.2 The Algorithm
Before we formally describe the algorithm, let us first discuss some

intuitions. For any agent i ∈ N in a dorm assignment problem

(with capacity 2), PEFness essentially requires at least one of the

following two situations: (1) agent i obtains a (weakly) better dorm
with respect to i’s preference than any of her friends; or (2) agent i
shares an arbitrary dorm with one of her friends. Thus, one possible

approach is to find a maximum matching in the externality graph.

If all agents are covered by this matching, then we are free to

arbitrarily assign each pair of matched agents to a dorm and the

second situation could be guaranteed for all agents.

If the maximum matching does not cover all agents, we are

able to assign the covered pairs of agents to some dorms only if

the remaining dorms can guarantee that every uncovered agent

gets a better dorm than all her friends. This is not easy to satisfy

Algorithm 1Algorithm CapTwo

Input: Any dorm assignment instance I = (N ,M,v, e).
1: Let G = (N , E) be the externality graph of I.

2: Compute a Gallai-Edmonds decomposition (A,B,D) ofG , and
a maximum matching M =MB ∪MA,D ∪MD .

3: if D = ∅ then
4: Arbitrarily assign each pair of matched agents in M to one

dorm and go to Output.
5: else
6: Arbitrarily assign each pair of matched agents in MB to an

unassigned dorm.

7: Let L1 = {i ∈ V (D) | i is covered by MA,D }, L2 = {i ∈

V (D) | i is not covered by M} and L = L1 ∪ L2. Construct

a bipartite graph G ′ = (A, L;E ′) where for any a ∈ A and

l ∈ L, (a, l) ∈ E ′ if and only if (a, l) ∈ E.
8: For each agent i ∈ L, let Di be the odd component that i

belongs to. Each i ∈ L takes turns to select her least preferred
|Di |−1

2
dorms from all unassigned ones to accommodate each

pair of matched agents (by MD ) in Di .

9: while there is no perfect matching between A and L in G ′

do
10: Case 1. If there is a pair of nodes {i, i ′} ⊆ L that are not

connected with A, assign them to an arbitrary unassigned

dorm. Remove all such paired nodes from L.
11: Case 2. If there exists a set of nodes A′ ⊆ A such that

|A′ | = |N(A′)|, find such a set A′
and a perfect matching

M ′
between A′

and N(A′). Assign each pair of matched

agents (by M ′
) to an arbitrary unassigned dorm. Remove

all agents in A′ ∪N(A′) from A and L, and their adjacent

edges from G ′
.

12: Case 3. If there exists a set of nodes A′ ⊆ A such that

|A′ | = |N(A′)| − 1, find such a set A′
and a nearly perfect

matching M ′
between A′

and N(A′). Let the unmatched

agent i ∈ N(A′) assign these pairs of matched agents (by

M ′
) to i’s least preferred |A′ | dorms. Remove all agents

in A′
from L,N(A′) \ {i} from L, and their adjacent edges

from G ′
.

13: Case 4. If for every set of nodesA′ ⊆ A, |A′ | ≤ |N(A′)|−2,

let i and i ′ be a pair of agents in L who have the same

most preferred dorm among all remaining ones. Assign

both of them to their most preferred dorm. Remove {i, i ′}
from L, and their adjacent edges from G ′

.

14: end while
15: Find a perfect matching between A and L, and assign each

pair of matched agents to an arbitrary remaining dorm.

16: end if
Output: An assignment of agents in N to dorms inM .

because the agents can have arbitrary preferences over the dorms.

Fortunately, the idea of Gallai-Edmonds Decomposition comes to

the rescue. By leveraging the structure of a matching and carefully

assigning some matched pairs to “bad” dorms for the others, we

manage to obtain a PEF assignment. Our Algorithm CapTwo is

described in Algorithm 1.
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L2

L1

D

Figure 2: An illustration of the bipartite graphG ′ in CapTwo.
The solid lines represent the edges appear in matching M

and the dashed lines represent the edges in the original
graph that do not appear in M.

Theorem 5.3. For any dorm assignment instance I = (N ,M,v, e)
with capacity 2, Algorithm CapTwo returns a PEF assignment.

Proof. As we have discussed, if D = ∅ and M is a perfect

matching, by arbitrarily assigning each pair of matched agents to

an arbitrary available dorm, the requirement (2) of PEF is satisfied

for every agent and the resulting assignment is PEF. Thus in the

following, we assume D , ∅.

In Step 7 of Algorithm CapTwo, L1 is defined to be the set of

nodes in D that are covered by MA,D , and L2 to be the set of

uncovered nodes by the global maximum matching M in D. Thus

by Lemma 5.1, there is a one-to-one correspondence between L =
L1 ∪ L2 and D, and |A| = |L1 |. Moreover, as |A| < |D|, L2 , ∅,

i.e., there are at least two nodes in the odd components that are

not covered by M (recall that n is even). We illustrate one possible

structure of the bipartite graph G ′
in Figure 2.

In Step 6, by assigning all pairs of matched agents inMB to arbi-

trary dorms, the assignment is PEF to all agents inV (B). Moreover,

since Gallai-Edmonds decomposition guarantees that there is no

edges between any odd and even components, agents in V (D) do

not envy agents in V (B). Thus to guarantee the agents in Tutte set

A do not envy the agents in V (B) as well, it suffices to ensure that

every agent in A shares a dorm with her friend.

Claim 5.4. For any agent i ∈ A, she shares a dorm with one of her
friends in L after the While loop or Step 15.

We will prove Claim 5.4 and the following Claim 5.5 later.

In Step 8, for each agent i ∈ L, she selects her least preferred
available dorms for the pairs of matched agents in Di . Combining

the fact that every two odd components are disjoint, this step guar-

antees that the dorm assigned to agent i is more preferable for i
than the dorms assigned to all her friends in V (D). Thus it suffices

to prove that agents in L do not envy any agents in A either.

Claim 5.5. After theWhile loop or Step 15, for any agent i ∈ L,
either she shares a dorm with one agent inA∩N({i}) or gets assigned
a dorm that is better than any one assigned to agents in N({i}).

Combing Claims 5.4 and 5.5, the assignment returned by Algo-

rithm CapTwo is PEF for all agents and Theorem 5.3 holds. □

Next we prove Claims 5.4 and 5.5 together by going through all

the four cases in the While loop.

Proof of Claims 5.4 and 5.5. LetG ′ = (A, L;E ′) be the original
bipartite graph constructed in Step 7. By Lemma 5.1, the maximum

matching in G ′
covers all nodes in A. Combining Lemma 5.2,

|S | ≤ |N(S)|, for any S ⊆ A. (5)

Next we go through the four cases in theWhile loop of CapTwo.
Case 1 (in Step 10) only happens when both i’s and i ′’s com-

ponents in D are not connected with A in the externality graph.

Thus both i and i ′ do not envy any nodes in A, and Claim 5.5 holds

with respect to i and i ′. Moreover, removing them from G ′
does

not affect the fact that all nodes in A can still be perfectly matched

in G ′ \ {i, i ′} in the next round of the While loop.
Case 2 (in Step 11) happens when |A′ | = |N(A′)|. By Lemma

5.2 and Inequality 5, there exists a perfect matchingM ′
between

A′
and N(A′). Hence by assigning each pair of matched agents in

M ′
to an arbitrary unassigned dorm, Claims 5.4 and 5.5 hold with

respect to agents in A′
and N(A′), respectively.

Note that, for any possible maximum matching betweenA and L,
the agents in A′

can only be matched to N(A′). Thus all agents in

A \A′
can still be perfectly matched to L \ N(A′). Moreover, since

A′
is disjoint from L\N(A′), agents in L\N(A′) do not Pareto-envy

agents in A′ ∪N(A′). Thus this step does not affect Claim 5.5 with

respect to agents in L \ N(A′).

Case 3 (in Step 12) happens when Case 2 does not happen, i.e.,

|S | ≤ |N(S)| − 1 for any S ⊆ A (6)

and there is one A′ ⊆ A such that |A′ | = |N(A′)| − 1. Let M ′
be

the nearly perfect matching, which covers all nodes in A′
and all

but one agent i in N(A′). Using the same technique with Step 8,

agent i assigns her least favourite dorms to these pairs of matched

agents, and eventually, i will be assigned to a dorm that is better

than them. Thus both Claims 5.4 and 5.5 hold for A′ ∪ N(A′) \ {i},
and this step does not affect Claim 5.5 with respect to i .

Note that, by Inequality 6, for any S ⊆ A \A′
,

|S ∪A′ | ≤ |N(S ∪A′)| − 1 = |N(S ∪A′) \ N(A′)| + |N(A′)| − 1

= |N(S) ∩ (L \ N(A′))| + |A′ |,

where the last equality is due to A′
is disjoint from L \ N(A′). As

S ∩A′ = ∅, this implies |S | ≤ N(S) in the remaining graph. Thus all

agents in A \A′
can still be perfectly matched to L \ N(A′). Finally,

similar to Case 2, this step does not affect Claim 5.5 with respect

to agents in L \ N(A′) either.

If none of Cases 1, 2, 3 happens, it means that for any S ⊆ A,
|S | ≤ |N(S)| − 2. Since the dorms do not have spare capacities, after

Step 8, there are exactly
1

2
(|A| + |L|) available dorms and

|L| ≥ |A| + 2 >
1

2

(|A| + |L|).

By pigeon hole principle, there must be a pair of agents i and i ′ in
L who have the same most preferred dorm among all remaining

dorms. Note that for each of them, by the design of Steps 6, 8, and

10 to 12, this dorm is the best among all the dorms assigned to

their friends. Thus, Claim 5.5 holds with respect to i and i ′. After
removing {i, i ′} from L, for any subset S ⊆ A, |N(S)| decreases at
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most 2. Accordingly, in G ′ \ {i, i ′}, Inequality 5 still holds and thus

A can be perfectly matched in G ′ \ {i, i ′}.
In conclusion, for each round of the While loop, at least one of

the above four cases happens. No matter which case happens, the

size of L is strictly decreased and after each round, the remaining

nodes in A can still be perfectly matched by the remaining nodes

in L. Eventually, Step 15 happens and there is a perfect matching

between A and L. By assigning each pair of matched agents to an

arbitrary remaining dorm, Claim 5.4 holds with respect to A and

Claim 5.5 holds with respect to L. □

Actually, Algorithm CapTwo can be implemented in polynomial

time. Due to space limit, we only include a proof sketch below.

Lemma 5.6. For any dorm assignment instance with capacity 2,
Algorithm CapTwo can be implemented in polynomial time.

Proof Sketch. It suffices to show that the While loop in Algo-

rithm CapTwo can be implemented efficiently. In each round, at

least 2 nodes are assigned to a dorm, thus there are at most O(n)
rounds. Case 1 is trivial by checking the adjacency matrix of the

graph. For the rest cases, by pigeon hole principle, there exists a

pair of agents {i, i ′} ⊆ L who share the same most preferred dorm.

If the agents inA can be fully matched to L \ {i, i ′}, we assign {i, i ′}
to their most preferred dorm by implementing Case 4. Otherwise,

we implement Cases 2 or 3 by showing that a subset A′ ⊆ A with

{i, i ′} ∩ N(A′) , ∅ and |A′ | ≥ |N(A′)| − 1 must exist and can be

found efficiently. Moreover, after assigning dorms to A′
and their

neighbors according to the maximum matching, the remaining

nodes in A \A′
can be matched perfectly in future rounds. □

Combing Theorems 4.3 and 5.3, we have the following corollary.

Corollary 5.7. For any dorm assignment problemwith capacity 2,
Algorithm CapTwo returns a PPROP assignment.

5.3 Impossibility for c ≥ 3

In this subsection, we show that if the capacity of the dorms in-

creases to 3, PEF assignments may not exist.

Theorem 5.8. There exists an instance of dorm assignment prob-
lem with capacity 3 such that no assignment is PEF.

Proof. Consider the following instance with 3 dorms and 9

agents. The agents’ external values are defined as for any i ∈

{1, 3, 5, 7}, agent i and i + 1 are friends with each other (and no

more friendship between them); agent 9 does not have any friends.

All agents’ values for dorm j ∈ {1, 2, 3} is 4 − j.
We prove by contradiction. Suppose there is a PEF assignment,

then for any agent i , 9 who is assigned to dorm 1, agent i’ friend
i ′ has to be assigned to dorm 1 as well; otherwise, agent i ′ will
Pareto-envy the other agents living in dorm 1. Since dorm 1 can

accommodate at most three agents, exactly one pair of friends can

be assigned to dorm 1 and agent 9 must be assigned to dorm 1.

Accordingly, all the other three pair of agents need to be assigned

to dorms 2 and 3. Thus, there must be a pair of friends i1, i2 such
that agent i1 is assigned to dorm 2 while agent i2 lives in dorm 3.

In this case, for agent i2, she does not share a dorm with her friend

and her friend i1 is assigned to a better dorm; thus, i2 Pareto-envies
the roommate of i1. □

6 CONCLUSION AND DISCUSSION
6.1 Conclusion
In this work, we initiate the study of fair (capacitated) resource shar-

ing problem. We propose envy-freeness and Pareto envy-freeness,

where the latter is a relaxation of the former definition. We show

that these two definitions can guarantee some degree of propor-

tional utilities. While the existence of envy-freeness is not guar-

anteed, we prove that for the dorm assignment problem with ca-

pacity 2, a Pareto envy-free assignment exists and can be found

in polynomial time. However, if the capacities of the dorms are

increased to 3, PEF assignments may not exist.

6.2 Extension: Non-positive Preferences
In this work, we mainly focused on the case of non-negative values

for the resources and non-negative externalities between the agents.

However, for both definitions of PEF and PPROP (see Definitions 4.1

and 4.2), their requirements (1) only depend on the agents’ ordinal

preferences over the resources. Therefore, all results in Section 5

can be directly applied to the cases when the agents have negative

values for the resources.

When the agents’ externalities are non-positive but binary (such

as enemy or non-enemy), our results for PEF apply here as well.

For example, with respect to Theorem 5.3, by Definition 4.1, PEF

here essentially requires for every agent i , one of the following

two situations happens: (1) i obtains a better resource than any

of her non-enemies; or (2) i does not share a resource with one

of her enemies. Thus if the externality graph is constructed by

adding an edge between a pair of agents if and only if they are

not enemies with each other, Algorithm CapTwo returns a PEF

assignment. Similarly, all the other results in Section 5 hold.

6.3 Future Directions
Firstly, in this work, we mainly focus on PEF assignments. As a

corollary, a PPROP assignment can be guaranteed for the dorm

assignment problem with capacity 2. It will be interesting to prove

or disprove the existence of PPROP assignments for general models.

For example, when the capacity of dorm assignment problem is 3,

it is still unknown whether PPROP assignments always exist.

Secondly, the computational issues about resource sharing prob-

lem has not been discussed in this paper. For example, is it compu-

tationally tractable to decide whether a resource sharing problem

admits an EF/PROP/PEF (and PPROP if it cannot be always guaran-

teed) assignment?

Finally, it is also interesting to adapt other fairness criteria to our

setting, such as the maximin share fairness defined in [13], which is

another widely studied notion in the resource allocation literature.

Arguably, an even more important question might be to investigate

what kind of fairness can be guaranteed for all possible instances.
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