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ABSTRACT
Drawing an inspiration from behavioral studies of human decision
making, we propose here a more general and� exible paramet-
ric framework for reinforcement learning that extends standard
Q-learning to a two-stream model for processing positive and neg-
ative rewards, and allows to incorporate a wide range of reward-
processing biases – an important component of human decision
making which can help us better understand a wide spectrum of
multi-agent interactions in complex real-world socioeconomic sys-
tems, as well as various neuropsychiatric conditions associated
with disruptions in normal reward processing. From the computa-
tional perspective, we observe that the proposed Split-QL model
and its clinically inspired variants consistently outperform stan-
dard Q-Learning and SARSA methods, as well as recently proposed
Double Q-Learning approaches, on simulated tasks with partic-
ular reward distributions, a real-world dataset capturing human
decision-making in gambling tasks, and the Pac-Man game in a
lifelong learning setting across di�erent reward stationarities. 1
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1 INTRODUCTION
In order to better model and understand human decision-making be-
havior, scientists usually investigate reward processingmechanisms
in healthy subjects [25]. However, neurodegenerative and psychi-
atric disorders, often associated with reward processing disruptions,
can provide an additional resource for deeper understanding of hu-
man decision making mechanisms. Furthermore, from the perspec-
tive of evolutionary psychiatry, various mental disorders, including
depression, anxiety, ADHD, addiction and even schizophrenia can
be considered as “extreme points” in a continuous spectrum of be-
haviors and traits developed for various purposes during evolution,
1The codes to reproduce all the experimental results can be accessed at https://github.
com/doerlbh/mentalRL. Full text can be accessed at https://arxiv.org/abs/1906.11286.
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and somewhat less extreme versions of those traits can be actually
bene�cial in speci�c environments (e.g., ADHD-like fast-switching
attention can be life-saving in certain environments, etc.). Thus,
modeling decision-making biases and disorder-relevant traits may
enrich the existing computational decision-making models, leading
to potentially more� exible and better-performing algorithms.

In this paper, we build upon the standard Q-Learning (QL), a
state-of-art RL approach, and extend it to a parametric family of
models, called Split-QL, where the reward information is split into
two streams, positive and negative. The model puts di�erent weight
parameters on the incoming positive and negative rewards, and
imposes di�erent discounting factors on positive and negative re-
ward accumulated in the past. This simple but powerful extension
of QL allows to capture a variety of reward-processing biases ob-
served in human behavior. In particular, our model was loosely
inspired by a several well-known reward processing imbalances
associated with certain neuropsychiatric conditions 2 and our at-
tempt to capture at least certain aspects of such imbalances within
a single computational model. Our empirical evaluation involved a
range of Split-QL models with a variety of parameter combinations
re�ecting di�erent biases, as well as baseline approaches including
QL and SARSA [27], as well as a closely related to our work Double
Q-learning (DQL) [14]. We show that the split models competitively
outperform the QL, SARSA, as well as DQL, on the arti�cial data
simulated from a known Markov Decision Process (MDP), and on
the Iowa Gambling Task (IGT) [31] – a real-life dataset re�ecting
human decision-making on a gambling task. In the experiment of
the PacMan game in a lifelong learning setting where the reward
distributions changes in a stochastic process over multiple stages
of learning, the Split-QL models demonstrated a clear advantage
over baselines with respect to the performance and adaptation to
the new environments. While further and more extensive empirical
evaluation may be required in order to identify the conditions when
the proposed approach is likely to outperform state-of-art, we hope
that our preliminary empirical results already indicate the promise
of the proposed approach – a simple yet more powerful and adap-
tive extension of QL based on inspirations from neuropsychology
and in-depth studies of human reward processing biases.

2For example, it was shown that (unmedicated) patients with Parkinson’s disease learn
better from negative rewards rather than from positive ones [11], and that addictive
behaviors may be associated with an inability to forget strong stimulus-response
associations from the past (unable to properly discount the past rewards) [26].
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2 BACKGROUND AND RELATEDWORK
Cellular computation of reward and reward violation.Decades
of evidence has linked dopamine function to reinforcement learning
via neurons in the midbrain and its connections in the basal ganglia,
limbic regions, and cortex. Firing rates of dopamine neurons compu-
tationally represent reward magnitude, expectancy, and violations
(prediction error) and other value-based signals [28]. This allows an
animal to update and maintain value expectations associated with
particular states and actions. When functioning properly, this helps
an animal develop a policy to maximize outcomes by approach-
ing/choosing cues with higher expected value and avoiding cues
associated with loss or punishment. The mechanism is conceptually
similar to reinforcement learning widely used in computing and
robotics [33], suggesting mechanistic overlap in humans and AI.
Evidence of Q-learning and actor-critic models have been observed
in spiking activity in midbrain dopamine neurons in primates [1]
and in the human striatum using the BOLD signal [24].

Positive vs. negative learning signals. Phasic dopamine sig-
naling represents bidirectional (positive and negative) coding for
prediction error signals [13], but underlying mechanisms show
di�erentiation for reward relative to punishment learning [30].
Though representation of cellular-level aversive error signaling
has been debated [6], it is widely thought that rewarding, salient
information is represented by phasic dopamine signals, whereas
reward omission or punishment signals are represented by dips or
pauses in baseline dopamine� ring [28]. These mechanisms have
downstream e�ects on motivation, approach behavior, and action
selection. Reward signaling in a direct pathway links striatum to
cortex via dopamine neurons that disinhibit the thalamus via the
internal segment of the globus pallidus and facilitate action and
approach behavior. Alternatively, aversive signals may have an
opposite e�ect in the indirect pathway mediated by D2 neurons
inhibiting thalamic function and ultimately action, as well [10].
Manipulating these circuits through pharmacological measures has
demonstrated computationally-predictable e�ects that bias learn-
ing from positive or negative prediction error in humans [11], and
contribute to our understanding of perceptible di�erences in human
decision making when di�erentially motivated by loss or gain [35].

Clinical Implications. Highlighting the importance of using
computational models to understand predict disease outcomes,
many symptoms of neurological and psychiatric disease are re-
lated to biases in learning from positive and negative feedback [23].
Human studies have shown that over-expressed reward signaling
in the direct pathway may enhance the value associated with a state
and incur pathological reward-seeking behavior, like gambling or
substance use. Conversely, enhanced aversive error signals results
in dampening of reward experience and increased motor inhibi-
tion, causing symptoms that decrease motivation, such as apathy,
social withdrawal, fatigue, and depression. Further, exposure to
a particular distribution of experiences during critical periods of
development can biologically predispose an individual to learn from
positive or negative outcomes, making them more or less suscep-
tible to risk for brain-based illnesses [17]. These points distinctly
highlight the need for a greater understanding of how intelligent
systems di�erentially learn from rewards or punishments, and how
experience sampling may impact RL during in�uential training.

Abnormal Processing in Psychiatric andNeurological Dis-
orders. The literature on the reward processing abnormalities in
particular neurological and psychiatric disorders is quite extensive;
below we summarize some of the recent developments in this fast-
growing� eld. It is well-known that the neuromodulator dopamine
plays a key role in reinforcement learning processes. Parkinson’s
disease (PD) patients, who have depleted dopamine in the basal
ganglia, tend to have impaired performance on tasks that require
learning from trial and error. For example, [11] demonstrate that
o�-medication PD patients are better at learning to avoid choices
that lead to negative outcomes than they are at learning from posi-
tive outcomes, while dopamine medication typically used to treat
PD symptoms reverses this bias. Other psychiatric and neurolog-
ical conditions may present with reinforcement de�cits related
to non-dopaminergic mechanisms. For instance, Alzheimer’s dis-
ease (AD) is the most common cause of dementia in the elderly
and, besides memory impairment, it is associated with a variable
degree of executive function impairment and visuospatial impair-
ment. As discussed in [25], AD patients have decreased pursuit
of rewarding behaviors, including loss of appetite; these changes
are often secondary to apathy, associated with diminished reward
system activity. Furthermore, poor performance on certain tasks is
correlated with memory impairments. Frontotemporal dementia
(bvFTD) typically involves a progressive change in personality and
behavior including disinhibition, apathy, eating changes, repetitive
or compulsive behaviors, and loss of empathy [25], and it is hy-
pothesized that those changes are associated with abnormalities
in reward processing. For example, changes in eating habits with
a preference for sweet, carbohydrate rich foods and overeating
in bvFTD patients can be associated with abnormally increased
reward representation for food, or impairment in the negative
(punishment) signal associated with fullness. Authors in [22] sug-
gest that the strength of the association between a stimulus and
the corresponding response is more susceptible to degradation in
Attention-de�cit/hyperactivity disorder (ADHD) patients, which
suggests problems with storing the stimulus-response associations.
Among other functions, storing the associations requires working
memory capacity, which is often impaired in ADHD patients. In
[26], it is demonstrated that patients su�ering from addictive be-
havior have heightened stimulus-response associations, resulting
in enhanced reward-seeking behavior for the stimulus which gen-
erated such association. Decreased reward response may underlie
a key system mediating the anhedonia and depression, which are
common in chronic pain [34]. A variety of computational models
was proposed for studying the disorders of reward processing in
speci�c disorders, including, among others [7, 11, 15, 16, 26, 29].
However, none of the above studies is proposing a unifying model
that can represent a wide range of reward processing disorders.

Computational Models of Reward Processing in Mental
Disorders. A wide range of models was proposed for studying the
disorders of reward processing. [11] presented some evidence for a
mechanistic account of how the human brain implicitly learns to
make choices leading to good outcomes, while avoiding those lead-
ing to bad ones. Consistent results across two tasks (a probabilistic
one and a deterministic one), in both medicated and non-medicated
Parkinson’s patients, provide substantial support for a dynamic
dopamine model of cognitive reinforcement learning. In [29], the
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authors review the evolving bvFTD literature and propose a simple,
testable network-based working model for understanding bvFTD.
Using a computational multilevel approach, a study presented in
[15] suggests that ADHD is associated with impaired gain modula-
tion in systems that generate increased behavioral variability. This
computational, multilevel approach to ADHD provides a framework
for bridging gaps between descriptions of neuronal activity and
behavior, and provides testable predictions about impaired mecha-
nisms. Based on the dopamine hypotheses of cocaine addiction and
the assumption of decreased brain reward system sensitivity after
long-term drug exposure, the work by [7] proposes a computational
model for cocaine addiction. By utilizing average reward temporal
di�erence reinforcement learning, this work incorporates the el-
evation of basal reward threshold after long-term drug exposure
into the model of drug addiction proposed by [26]. The proposed
model is consistent with the animal models of drug seeking under
punishment. In the case of non-drug reward, the model explains
increased impulsivity after long-term drug exposure.

In the study by [16], a simple heuristic model is developed to
simulate individuals’ choice behavior by varying the level of deci-
sion randomness and the importance given to gains and losses. The
�ndings revealed that risky decision-making seems to be markedly
disrupted in patients with chronic pain, probably due to the high
cost that pain and negative mood impose on executive control
functions. Patients’ behavioral performance in decision-making
tasks, such as the Iowa Gambling Task (IGT), is characterized by
selecting cards more frequently from disadvantageous than from ad-
vantageous decks, and by switching more often between competing
responses, as compared with healthy controls.

Under a similar high-level motivation and inspiration to our
approach, MaxPain (MP) is another related algorithm introduced
in [8] proposing a parallel reward processing mechanism upon
Q-Learning, stemming from neuroscienti�c studies suggesting sep-
arate reward and punishment processing systems. However, apart
from this common motivation, there is a crucial di�erence be-
tween [8]’s approach and ours: our temporal di�erence (TD) errors
are computed entirely separately for the two streams and their
corresponding Q+ and Q� values, modeling two independent au-
tonomous policies (i.e. entirely “split”), while [8]’s approach still
uses the common Q value in the corresponding argmax and argmin
operations for the rewards and punishments. Furthermore, we intro-
duce discount parameters (weights) on both immediate and historic
rewards and punishments, a feature not present in [8]. In the em-
pirical evaluation, we introduced MP as a baseline and con�rmed
this algorithmic di�erence by observing that its behavior di�ers
signi�cantly from our SQL in both tasks and performed poorly in
the reinforcement learning game playing problem.

Overall Perspective. To the best of our knowledge, this work
is the� rst one to propose a generalized version of Reinforcement
Learning algorithm which incorporates a range of reward process-
ing biases associated with various mental disorders and shows how
di�erent parameter settings of the proposed model lead to behavior
mimicking a wide range of impairments in multiple neurological
and psychiatric disorders. Most importantly, our reinforcement
learning algorithm based on generalization of Q-Learning outper-
forms the baseline method on multiple arti�cial scenarios.

To put our results in perspective, we mention that this paper
is the third in a series of agents modeling mental disorders. The
entry point is [5], where we introduced the split mechanism to the
multi-armed bandit (MAB) problem [4] where the state and context
are unavailable. We demonstrated in that work, that certain types of
reward bias, despite their inspirations from mental “disorders”, can
be bene�cial in online learning tasks. In [21], we further extended
the two-stream reward processing to the contextual bandit (CB)
problem where a context is available to the agents, and demon-
strated how agents with di�erent clinically-inspired reward bias
learn from contexts in distinct ways. In this work, we extended
these behavioral agents into the full reinforcement learning prob-
lem, in which we assume that the agents need to learn a policy
given both the state and the context, with the algorithm initially
proposed in [20]. In summary, we aim to unify all three levels as a
parametric family of models, where the reward information is split
into two streams, positive and negative.

3 PROBLEM SETTING
3.1 Reinforcement Learning
Reinforcement learning de�nes a class of algorithms for solving
problems modeled as Markov decision processes (MDP) [33]. An
MDP is de�ned by the tuple (S,A,T ,R,� ), where S is a set of
possible states, A is a set of actions, T is a transition function
de�ned as T(s,a, s 0) = Pr(s 0 |s,a), where s, s 0 2 S and a 2 A, and
R : S ⇥A ⇥S7! R is a reward function, � is a discount factor that
decreases the impact of the past reward on current action choice.

Typically, the objective is to maximize the discounted long-term
reward, assuming an in�nite-horizon decision process, i.e. to� nd a
policy function � : S 7!A which speci�es the action to take in a
given state, so that the cumulative reward is maximized:

max
�

1’
t=0

� tR(st ,at , st+1). (1)

One way to solve this problem is by using the Q-learning approach
with function approximation [3]. The Q-value of a state-action pair,
Q(s,a), is the expected future discounted reward for taking action
a 2 A in state s 2 S. A common method to handle very large state
spaces is to approximate the Q function as a linear function of some
features. Let�(s,a) denote relevant features of the state-action pair
hs,ai. Then, we assume Q(s,a) = � ·�(s,a), where � is an unknown
vector to be learned by interacting with the environment. Every
time the reinforcement learning agent takes action a from state s ,
obtains immediate reward r and reaches new state s 0, the parameter
� is updated using

di�erence =

r + � max

a0
Q(s 0,a0)

�
� Q(s,a)

�i  �i + � · di�erence ·�i (s,a),
(2)

where � is the learning rate. A common approach to the exploration
vs. exploitation trade-o� is to use the �-greedy strategy; namely,
during the training phase, a random action is chosen with the prob-
ability � , while the optimal action maximizing Q-value is chosen
with the probability 1 � � . The agent executes this strategy, updat-
ing its � parameter according to Equation (2), until the Q-value
converges, or some maximal number of time-steps is reached.
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4 SPLIT Q-LEARNING: TWO-STREAM
APPROACH TO RL

We now extend Q-learning to a more� exible framework, inspired
by a wide range of reward-processing biases discussed above. The
proposed Split Q-Learning (Algorithm 1) treats positive and neg-
ative rewards in two separate streams. It introduces four hyper-
parameters which represent, for both positive and negative streams,
the reward processing weights (biases), as well as discount factors
for the past rewards: �+ and �� are the discount factors applied
to the previously accumulated positive and negative rewards, re-
spectively, whilew+ andw� represent the weights on the positive
and negative rewards at the current iteration. Q+, Q� and Q are
the Q-value tables recording positive, negative and total feedbacks,
respectively. We assume that at each step, an agent receives both
positive and negative rewards, denote r+ and r�, respectively (ei-
ther one of them can be zero, of course).3

Algorithm 1 Split Q-Learning

1: Initialize: Q , Q+, Q� tables (e.g., to all zeros)
2: For each episode e do
3: Initialize state s
4: Repeat for each step t of the episode e
5: Q(s,a0) := Q+(s,a0) +Q�(s,a0),8a0 2 At
6: Take action a = argmaxa0 Q(s,a0), and
7: Observe s 0 2 S , r+ and r� 2 R(s)
8: s  s 0

9: Q+(s,a) := �+Q̂+(s,a)+
�t (w+r+ + � maxa0 Q̂+(s 0,a0) � Q̂+(s,a))

10: Q�(s,a) := ��Q̂�(s,a)+
�t (w�r� + � maxa0 Q̂�(s 0,a0) � Q̂�(s,a))

11: until s is the terminal state
12: End for

4.1 Biases in Reward Processing Models
In this section we describe how speci�c constraints on the model
parameters in the proposed algorithm can generate a range of
reward processing biases, and introduce several instances of the
split-QL model associated with those biases; the corresponding
parameter settings are presented in Table 1. Aswe demonstrate later,
speci�c biases may be actually bene�cial in some settings, and our
parameteric approach often outperforms the standard Q-learning
due to increased generality and� exibility of our two-stream, multi-
parametric formulation.

Note that the standard split-QL (SQL) approach correspond to
setting the four (hyper)parameters used in our model to 1. We also
introduce two variants which only learn from one of the two reward
streams: negative Q-Learning (NQL) and positive Q-Learning (PQL),
by setting to zero �+ andw+, or �� andw�, respectively. Next, we
introduce the model which incorporates some mild forgetting of
the past rewards or losses (0.5 weights) and calibrating the other
models with respect to this one; we refer to this model as M for
“moderate” forgetting.
3A di�erent formulation under the same motivation is explored and included in as the
algorithm 2 in Appendix A, with a similar numerical results.

Table 1: Parameter settings for di�erent types of reward bi-
ases in the Split-QL model.

�+ w+ �� w�
“Addiction” (ADD) 1 ± 0.1 1 ± 0.1 0.5 ± 0.1 1 ± 0.1
“ADHD” 0.2 ± 0.1 1 ± 0.1 0.2 ± 0.1 1 ± 0.1
“Alzheimer’s” (AD) 0.1 ± 0.1 1 ± 0.1 0.1 ± 0.1 1 ± 0.1
“Chronic pain” (CP) 0.5 ± 0.1 0.5 ± 0.1 1 ± 0.1 1 ± 0.1
“bvFTD” 0.5 ± 0.1 100 ± 10 0.5 ± 0.1 1 ± 0.1
“Parkinson’s” (PD) 0.5 ± 0.1 1 ± 0.1 0.5 ± 0.1 100 ± 10
“moderate” (M) 0.5 ± 0.1 1 ± 0.1 0.5 ± 0.1 1 ± 0.1
Standard Split-QL (SQL) 1 1 1 1
Positive Split-QL (PQL) 1 1 0 0
Negative Split-QL (NQL) 0 0 1 1

For each agent, we set the four parameters: �+ and �� as the
weights of the previously accumulated positive and negative
rewards, respectively,w+ andw� as the weights on the posi-
tive and negative rewards at the current iteration.

We will now introduced several models inspired by certain
reward-processing biases in a range of mental disorders-like be-
haviors in table 1 4. Recall that PD patients are typically better at
learning to avoid negative outcomes than at learning to achieve
positive outcomes [11]; one way to model this is to over-emphasize
negative rewards, by placing a high weight on them, as compared
to the reward processing in healthy individuals. Speci�cally, we
will assume the parameterw� for PD patients to be much higher
than normal w� (e.g., we use w� = 100 here), while the rest of
the parameters will be in the same range for both healthy and PD
individuals. Patients with bvFTD are prone to overeating which
may represent increased reward representation. To model this im-
pairment in bvFTD patients, the parameter of the model could be
modi�ed as follow:wM

+ << w+ (e.g.,w+ = 100 as shown in Table
1), wherew+ is the parameter of the bvFTD model has, and the rest
of these parameters are equal to the normal one. To model apathy
in patients with Alzheimer’s, including downplaying rewards and
losses, we will assume that the parameters �+ and �� are somewhat
smaller than normal, �+ < �M+ and �� < �M� (e.g, set to 0.1 in Table
1), which models the tendency to forget both positive and negative
rewards. Recall that ADHD may be involve impairments in storing
stimulus-response associations. In our ADHD model, the param-
eters �+ and �� are smaller than normal, �M+ > �+ and �M� > ��,
which models forgetting of both positive and negative rewards.
Note that while this model appears similar to Alzheimer’s model
described above, the forgetting factor will be less pronounced, i.e.
the �+ and �� parameters are larger than those of the Alzheimer’s
model (e.g., 0.2 instead of 0.1, as shown in Table 1). As mentioned
earlier, addiction is associated with inability to properly forget
(positive) stimulus-response associations; we model this by setting
the weight on previously accumulated positive reward (“memory” )
higher than normal, � > �M+ , e.g. �+ = 1, while �M+ = 0.5. We model
the reduced responsiveness to rewards in chronic pain by setting
w+ < wM

+ so there is a decrease in the reward representation, and
�� > �M� so the negative rewards are not forgotten (see table 1).
4DISCLAIMER: while we use disorder names for the models, we are not claiming that
the models accurately capture all aspects of the corresponding disorders.
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Table 2: Standard agents: MDPwith 100 randomly generated
scenarios of Bi-modal reward distributions

Baseline Variants of SQL
QL DQL SARSA SQL-alg1 SQL-alg2 MP PQL NQL

QL - 62:38 55:45 63:37 54:46 47:53 65:35 90:10
DQL 38:62 - 40:60 48:52 48:52 43:57 55:45 86:14
SARSA 45:55 60:40 - 63:37 51:49 52:48 64:36 88:12
SQL 37:63 52:48 37:63 - 42:58 26:74 55:45 72:28
SQL2 46:54 52:48 49:51 58:42 - 39:61 64:36 72:28
MP 53:47 57:43 48:52 74:26 61:39 - 66:34 82:18
PQL 35:65 45:55 36:64 45:55 36:64 34:66 - 68:32
NQL 10:90 14:86 12:88 28:72 28:72 18:82 32:68 -
avg wins (%) 55.05 45.20 53.41 40.53 47.98 55.68 37.75 17.93
avg ranking 3.64 4.30 3.78 4.81 4.32 3.66 5.21 6.28

For each cell of ith row and jth column, the� rst number in-
dicates the number of rounds the agent i beats agent j, and
the second number the number of rounds the agent j beats
agent i. The average wins of each agent is computed as the
mean of the win rates against other agents in the pool of
agents in the rows. The bold face indicates that the perfor-
mance of the agent in column j is the best among the agents,
or better between the pair.

Of course, the above models should be treated only as� rst ap-
proximations of the reward processing biases in mental disorders,
since the actual changes in reward processing are much more com-
plicated, and the parameteric setting must be learned from actual
patient data, which is a non-trivial direction for future work. Herein,
we simply consider those models as speci�c variations of our gen-
eral method, inspired by certain aspects of the corresponding dis-
eases, and focus primarily on the computational aspects of our
algorithm, demonstrating that the proposed parametric extension
of QL can learn better than the baselines due to added� exibility.

5 EMPIRICAL RESULTS
Empirically, we evaluated the algorithms in three settings: a Markov
Decision Process (MDP) gambling game, a real-life Iowa Gambling
Task (IGT) [31] and the PacMan game. There is considerable ran-
domness in the reward, and prede�ned multimodality in the reward
distributions of each state-action pairs, and as a result we will see
that indeed Q-learning performs poorly. In all experiments, the dis-
count factor � was set to be 0.95. The exploration is included with
�-greedy algorithm with � set to be 0.05. The learning rate was poly-
nomial �t (s,a) = 1/nt (s,a)0.8, which was shown in previous work
to be better in theory and in practice [9]. All experiments were per-
formed and averaged for at least 100 runs, and over 100 or 500 steps
of decision making actions from the initial state. To evaluate the
performances of the algorithms, we need a scenario-independent
measure which is not dependent on the speci�c selections of reward
distribution parameters and pool of algorithms being considered.
The� nal cumulative reward is subject to outliers because they are
scenario-speci�c. The ranking is subject to selection bias due to
di�erent pools of algorithms being considered. The pairwise com-
parison of the algorithms, however, is independent of the selection
of scenario parameters and selection of algorithms. For example, in
the 100 randomly generated scenarios, algorithm X beats Y for n
times while Y beats Xm times. We may compare the robustness of
each pairs of algorithms with the proportion n :m.

5.1 MDP example with bimodal rewards
In this simple MDP example, a player starts from initial state A,
choose between two actions: go left to reach state B, or go right
to reach state C. Both states B and C reveals a zero rewards. From
state B, the player has only one action to reach state D which
reveals n draws of rewards from a distribution RD . From state C,
the player has only one action to reach state E which reveals n
draws of rewards from a distribution RE . The reward distributions
of states D and E are both multimodal distributions (for instance,
the reward r can be drawn from a bi-modal distribution of two
normal distributions N (µ = 10,� = 5) with probability p = 0.3
and N (µ = �5,� = 1) with p = 0.7). In the simulations, n is
set to be 50. The left action (go to state B) by default is set to
have an expected payout lower than the right action. However, the
reward distributions can also be spread across both the positive
and negative domains (as in the example shown in Figure 1).

Figure 1 shows an example scenario where the reward distribu-
tions, percentage of choosing the better action (go right), cumula-
tive rewards and the changes of two Q-tables over the number of
iterations, drawn with standard errors over 100 runs. Each trial con-
sisted of a synchronous update of all 500 actions. With polynomial
learning rates, we see Split Q-learning (two versions) converges
the fastest and yields the highest� nal scores among all agents. We
further observe that this performance advantage is prevalent in
reward distributions with uneven bi-modes in two streams.

To better evaluate the robustness of the algorithms, we simulated
100 randomly generated scenarios of bi-modal distributions, where
the reward distributions can be drawn from two normal distribution
with means as random integers uniformly drawn from -100 to 100,
standard deviations as random integers uniformly drawn from 0
to 20, and sampling distribution p uniformly drawn from 0 to 1
(assigning p to one normal distribution and 1 � p to the other one).
Each scenario was repeated 100 times.

Table 2 summarizes the pairwise comparisons between the fol-
lowing algorithms: Q-Learning (QL), Double Q-Learning (DQL)
[14], State–action–reward–state–action (SARSA) [27], MaxPain
(MP) [8], Standard Split Q-Learning (SQL) with two numerical im-
plementation (algorithm 1 and algorithm 2 in Appendix A), Positive
Q-Learning (PQL) and Negative Q-Learning (NQL), with the row
labels as the algorithm X and column labels as algorithm Y giving
n :m in each cell denoting X beats Y n times and Y beats Xm times.
Among the� ve algorithms, RL variants with a split mechanism
never seems to fail catastrophically by maintaining an overall ad-
vantages over the other algorithms (with a comparative average
winning percentage). Split variants seems to bene�t from the sen-
sitivity to two streams of rewards instead of collapsing them into
estimating the means as in Q-Learning.

To explore the variants of Split-QL representing di�erent mental
disorders, we also performed the same experiments on the 7 disease
models proposed in section 4.1. Table 2 summarizes their pairwise
comparisons with SQL, SARSA, DQL and QL, where the average
wins are computed averaged against three standard baseline mod-
els. Overall, ADHD, PD (“Parkinson’s”), CP (“chronic pain”) and
M (“moderate”) performs relatively well. The variation of behav-
iors suggest the proposed framework can potentially cover a wide
spectrum of behavior by simply tuning the four hyperparameters.
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Table 3: “Mental” agents: MDP with 100 randomly generated scenarios of Bi-modal reward distributions

ADD ADHD AD CP bvFTD PD M avg wins (%)
QL 91:9 72:28 86:14 85:15 94:6 79:21 81:19 84.85
DQL 86:14 58:42 83:17 69:31 87:13 67:33 76:24 75.90

SARSA 90:10 73:27 86:14 80:20 91:9 75:25 80:20 82.97
SQL 93:7 67:33 91:9 72:28 75:25 76:24 68:32 78.21

avg wins (%) 10.10 32.83 13.64 23.74 13.38 26.01 23.99

As in table 2, for each cell of ith row and jth column, the numbers n : m indicates the number of rounds the two agents beats
each other. The average wins of QL, DQL, SARSA, and SQL are computed as the mean of the win rates against other agents in
the pool of agents in the columns.

Table 4: Schemes of Iowa Gambling Task

Decks win per card loss per card expected value scheme
A (bad) +100 Frequent: -150 (p=0.1), -200 (p=0.1), -250 (p=0.1), -300 (p=0.1), -350 (p=0.1) -25 1
B (bad) +100 Infrequent: -1250 (p=0.1) -25 1
C (good) +50 Frequent: -25 (p=0.1), -75 (p=0.1),-50 (p=0.3) +25 1
D (good) +50 Infrequent: -250 (p=0.1) +25 1
A (bad) +100 Frequent: -150 (p=0.1), -200 (p=0.1), -250 (p=0.1), -300 (p=0.1), -350 (p=0.1) -25 2
B (bad) +100 Infrequent: -1250 (p=0.1) -25 2
C (good) +50 Infrequent: -50 (p=0.5) +25 2
D (good) +50 Infrequent: -250 (p=0.1) +25 2

5.2 Iowa Gambling Task
The original Iowa Gambling Task (IGT) studies decision making
where the participant needs to choose one out of four card decks
(named A, B, C, and D), and can win or lose money with each card
when choosing a deck to draw from [2], over around 100 actions.
In each round, the participants receives feedback about the win
(the money he/she wins), the loss (the money he/she loses), and
the combined gain (win minus lose). In the MDP setup, from initial
state I, the player select one of the four deck to go to state A, B,
C, or D, and reveals positive reward r+ (the win), negative reward
r� (the loss) and combined reward r = r+ + r� simultaneously.
Decks A and B by default is set to have an expected payout (-25)
lower than the better decks, C and D (+25). For QL and DQL, the
combined reward r is used to update the agents. For Split-QL, PQL
and NQL, the positive and negative streams are fed and learned
independently given the r+ and r�. There are two major payo�
schemes in IGT. In scheme 1, the net outcome of every 10 cards
from the bad decks (decks A and B) is -250, and +250 in good decks
(decks C and D). There are two decks with frequent losses (decks A
and C), and two decks with infrequent losses (decks B and D). All
decks have consistent wins (A and B to have +100, while C and D
to have +50) and variable losses (see 4, where scheme 1 [12] has a
more variable losses for deck C than scheme 2 [18]). 5

We performed the each scheme for 200 times over 500 actions.
Among the variants of Split-QL and baselines QL and DQL, CP
(“chronic pain”) performs best in scheme 1 with an averaged�nal
cumulative rewards of 1145.59 over 500 draws of cards, followed by

5The raw data and descriptions of Iowa Gambling Task can be downloaded at [31].

PD (“Parkinson’s disease”, 1123.59). This is consistent to the clinical
implication of chronic pain patients which tend to forget about
positive reward information (as modeled by a smaller �+) and lack
of drive to pursue rewards (as modeled by a smallerw+). In scheme
2, PD performs best with the� nal score of 1129.30, followed by CP
(1127.66). These examples suggest that the proposed framework
has the� exibility to map out di�erent behavior trajectories in
real-life decision making (such as IGT). Figure 2 demonstrated the
short-term (in 100 actions) and long-term behaviors of di�erent
mental agents, which matches clinical discoveries. For instance,
ADD (“addiction”) quickly learns about the actual values of each
decks (as re�ected by the short-term curve) but in the long-term
sticks with the decks with a larger wins (despite also with even
larger losses). At around 20 actions, ADD performs signi�cantly
better than QL and DQL in learning about the decks with the better
gains. Figure 3 maps the behavioral trajectories of the mental agents
with real data collected from healthy human subjects playing IGT
scheme 1 over 95 draws ([12, 23, 37], denoted “Human”), where we
observe di�erent clusters emerging from di�erent reward bias.

5.3 Pacman game across various stationarities
We demonstrate the merits of the proposed algorithm using the
classic game of PacMan (Figure 4). The goal of the agent is to eat all
the dots in the maze, known as Pac-Dots, as soon as possible while
simultaneously avoiding collision with ghosts, which roam the
maze trying to kill PacMan. The rules for the environment (adopted
from Berkeley AI PacMan 6) are as follows. There are two types
of negative rewards: on collision with a ghost, PacMan loses the
6http://ai.berkeley.edu/project_overview.html
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Figure 1: Inside the two-stream learning: example scenario where Split-QL performs better than QL and DQL.

Figure 2: Short-term vs. long-term dynamics: learning curves of di�erent “mental” agents in IGT scheme 1.

Figure 3: The t-SNE visualization of the behavioral trajecto-
ries of mental agents and real human data ([12, 23, 37], de-
noted “Human”) playing IGT scheme 1 over 95 actions: (a)
the behavioral trajectories of wins, or positive reward; (b)
the behavioral trajectories of losses, or negative rewards.

game and gets a negative reward of �500; and at each time frame,
there is a constant time-penalty of �1 for every step taken. There
are three types of positive rewards. On eating a Pac-Dot, the agent

Figure 4: Layout of an ongoing PacMan game.

obtains a reward of +10. On successfully eating all the Pac-Dots,
the agent wins the game and obtains a reward of +500. The game
also has two special dots called Power Pellets in the corners of the
maze, which on consumption, give PacMan the temporary ability of
“eating” ghosts. During this phase, the ghosts are in a “scared” state
for 40 frames and move at half their speed. On eating a “scared”
ghost, the agent gets a reward of +200, the ghost returns to the
center box and returns to its normal “unscared” state. As a more
realistic scenarios as real-world agents, we de�ne the agents to
receive their rewards in positive and negative streams separately.
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Figure 5: Average� nal scores in Pacman game with di�erent stationarities: (a) stationary; (b) stochastic reward muting by
every 10 rounds; (c) stochastic reward scaling by every 10 rounds; (d) stochastic reward� ipping by every 10 rounds.

Traditional agents will sum the two streams as a regular reward,
while Split-QL agents will use the two streams separately.

We created several types of stationarities using the PacMan
game as in [19]. In order to simulate a lifelong learning setting, we
assume that the environmental settings arrive in batches (or stages)
of episodes, and the speci�c rule of the games (i.e., the reward
distributions) may change across those batches, while remaining
stationary within each batch. The change is de�ned by a stochastic
process of the game settings that an event A is de�ned for the
positive stream and an event B is de�ned for the negative stream,
independent of each other (A ? B). In our experiment, the stochastic
process is resampled every 10 rounds (i.e. a batch size of 10).

Stochastic rewardmuting. To simulate the changes of turning
on or o� of a certain reward stream, we de�ne the eventA as turning
o� the positive reward stream (i.e. all the positive rewards are set to
be zero) and the event B as turning o� the negative reward stream
(i.e. all the penalties are set to be zero). We set P(A) = P(A) = 0.5.

Stochastic reward scaling. To simulate the changes of scaling
up a certain reward stream, we de�ne the event A as scaling up
the positive reward stream by 100 (i.e. all the positive rewards are
multiplied by 100) and the event B as scaling up the negative reward
stream (i.e. penalties multiplied by 100). We set P(A) = P(A) = 0.5.

Stochastic reward�ipping. To simulate the changes of�ip-
ping certain reward stream, we de�ne the event A as� ipping the
positive reward stream (i.e. all the positive rewards are multiplied
by -1 and considered penalties) and the event B as� ipping the
negative reward stream (i.e. all the penalties are multiplied by -1
and considered positive rewards). We set P(A) = P(A) = 0.5.

We ran the proposed agents across these di�erent stationarities
for 1000 episodes over multiple runs and plotted their average�nal
scores with their standard errors (Figure 5). In all four scenarios,
Split-QL is constantly outperforming QL and DQL. It is also worth
noting that in the reward� ipping scenario, several mental agents
are even more advantageous than the standard Split-QL as in Figure
5(d), which matches clinical discoveries and the theory of evolution-
ary psychiatry. For instance, ADHD-like fast-switching attention
seems to be especially bene�cial in this very non-stationary set-
ting of� ipping reward streams. Even in a full stationary setting,
the behaviors of these mental agents can have interesting clinical
implications. For instance, the video of a CP (“chronic pain”) agent
playing PacMan shows a clear avoidance behavior to penalties by
staying at a corner very distant from the ghosts and a comparatively

lack of interest to reward pursuit by not eating nearby Pac-Dots,
matching the clinical characters of chronic pain patients. From the
video, we observe that the agent ignored all the rewards in front of
it and spent its life hiding from the ghosts, trying to elongate its life
span at all costs, even if that implies a constant time penalty to a
very negative� nal score. (The videos of the mental agents playing
PacMan after training for 1000 episodes can be accessed here7).

6 CONCLUSIONS
This research proposes a novel parametric family of algorithms for
RL problem, extending the classical Q-Learning to model a wide
range of potential reward processing biases. Our approach draws an
inspiration from extensive literature on decision-making behavior
in neurological and psychiatric disorders stemming from distur-
bances of the reward processing system, and demonstrates high
�exibility of our multi-parameter model which allows to tune the
weights on incoming two-stream rewards and memories about the
prior reward history. Our preliminary results support multiple prior
observations about reward processing biases in a range of mental
disorders, thus indicating the potential of the proposed model and
its future extensions to capture reward-processing aspects across
various neurological and psychiatric conditions.

The contribution of this research is two-fold: from the machine-
learning perspective, we propose a simple yet powerful and more
adaptive approach to RL, outperforming state-of-art QL for certain
reward distributions; from the neuroscience perspective, this work
is the� rst attempt at a general, unifyingmodel of reward processing
and its disruptions across a wide population including both healthy
subjects and those with mental disorders, which has a potential to
become a useful computational tool for neuroscientists and psychi-
atrists studying such disorders. Among the directions for future
work, we plan to investigate the optimal parameters in a series of
computer games evaluated on di�erent criteria, for example, longest
survival time vs. highest� nal score. Further work includes explor-
ing the multi-agent interactions given di�erent reward processing
bias. These discoveries can help build more interpretable real-world
RL systems. On the neuroscience side, the next steps would include
further extending the proposed model to better capture observa-
tions in modern literature, as well as testing the model on both
healthy subjects and patients with speci�c mental conditions.

7https://github.com/doerlbh/mentalRL/tree/master/video
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