
Competitive Ratios for Online Multi-capacity Ridesharing
Meghna Lowalekar

School of Information Systems,

Singapore Management University

meghnal.2015@phdcs.smu.edu.sg

Pradeep Varakantham

School of Information Systems,

Singapore Management University

pradeepv@smu.edu.sg

Patrick Jaillet

Dept. of Electrical Engineering and

Computer Science, Massachusetts

Institute of Technology, USA

jaillet@mit.edu

ABSTRACT
In multi-capacity ridesharing, multiple requests (e.g., customers,

food items, parcels) with different origin and destination pairs travel

in one resource. In recent years, online multi-capacity ridesharing

services (i.e., where assignments are made online) like Uber-pool,

foodpanda, and on-demand shuttles have become hugely popular

in transportation, food delivery, logistics and other domains. This

is because multi-capacity ridesharing services benefit all parties

involved – the customers (due to lower costs), the drivers (due

to higher revenues) and the matching platforms (due to higher

revenues per vehicle/resource). Most importantly these services

can also help reduce carbon emissions (due to fewer vehicles on

roads).

Online multi-capacity ridesharing is extremely challenging as

the underlying matching graph is no longer bipartite (as in the

unit-capacity case) but a tripartite graph with resources (e.g., taxis,

cars), requests and request groups (combinations of requests that

can travel together). The desired matching between resources and

request groups is constrained by the edges between requests and

request groups in this tripartite graph (i.e., a request can be part

of at most one request group in the final assignment). While there

have been myopic heuristic approaches employed for solving the

online multi-capacity ridesharing problem, they do not provide any

guarantees on the solution quality.

To that end, this paper presents the first approachwith bounds on

the competitive ratio for online multi-capacity ridesharing (when

resources rejoin the system at their initial location/depot after serv-

ing a group of requests). The competitive ratio is : (i) 0.31767 for

capacity 2; and (ii)γ for any general capacityκ, whereγ is a solution

to the equation γ = (1 − γ)κ+1.

ACM Reference Format:
Meghna Lowalekar, Pradeep Varakantham, and Patrick Jaillet. 2020. Com-

petitive Ratios for Online Multi-capacity Ridesharing. In Proc. of the 19th
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), Auckland, New Zealand, May 9–13, 2020, IFAAMAS, 9 pages.

1 INTRODUCTION
Motivated by multiple online to offline services including point-to-

point transportation, food delivery, logistics, etc., online matching

problems have received tremendous interest in the recent years.

Specifically, on-demand unit-capacity (e.g., UberX, Lyft) and multi-

capacity (e.g., Uberpool, Lyftline, Deliveroo, Food Panda) rideshar-

ing services have become hugely popular in many cities around

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

the world. In these platforms, resources have to be matched on-

line (in real-time) to either one request (unit-capacity) or a group

of requests (multi-capacity) so as to maximize the weight of the

matching (e.g., revenue, number of requests served).

Given the win-win properties of multi-capacity ridesharing to

all the concerned parties (customers, drivers, matching platform)

and the environment (through reduced carbon emissions), we are

interested in developing a performance guaranteed approach for

multi-capacity ridesharing.

There are two major threads of relevant research. The first thread
is on online unit-capacity ridesharing where the underlying prob-

lem is an online bipartite matching problem. The standard online

bipartite matching problem involves matching known (i.e., available

offline) disposable resources
1
on one side to the online arriving

vertices/requests on the other side, over multiple timesteps. Many

approaches provide performance guarantees under different arrival

assumptions for incoming vertices [6, 11, 12]. Mehta [16] provides

a detailed survey of the same. One popular arrival assumption is

the known identical independent distribution (KIID) [11, 15], where

online vertices arrive over T rounds and their arrival distributions

are assumed to be identically distributed and independent over T
rounds. This distribution is also known to the online algorithm in

advance. The existing literature provide bounds of at least 1 − 1

e
on the expected competitive ratio (ratio of the expected value ob-

tained by the algorithm to the expected value obtained by an offline

optimal algorithm) for online bipartite matching problems under

KIID.

In case of unit-capacity ridesharing, the offline available re-

sources (i.e., vehicles) are reusable. Dickerson et.al. [8] were able
to provide a

1

2
bound for the unit-capacity ridesharing in which

resources are reusable and they join the system after serving the

requests at the same location. Instead of KIID, they consider that

arrival distributions of online vertices can change from time to

time (i.e., it is not iid) but this distribution is also known to the

algorithm. They refer to this distribution as the Known Adversarial

Distribution (KAD).

Unfortunately, this thread of work is only applicable for unit-

capacity resources and cannot be directly adapted to consider multi-

capacity resources because the underlying problem is no longer an

online bipartite matching problem (see below). Another limitation

is that the existing work for unit-capacity ridesharing has primarily

focused on requests arriving sequentially (i.e., one by one) and not

in batches which is a desirable property when considering multi-

capacity ridesharing problems (for instance, last mile services at

train stations need to consider that the large number of passengers

1
Once a resource is assigned, it can not be used by any other incoming vertex/request.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

771

will arrive and request for last mile transportation to their home at

the same time.).

The second thread of relevant research is on approaches to solve

online multi-capacity (capacity > 1) ridesharing problems. There

have been multiple heuristic approaches [2, 14] provided for solv-

ing the ridesharing problem for multi-capacity resources in batch

arrival model. However, none of these approaches provide any

bounds on the performance and are typically myopic (i.e., they do

not consider any future information) due to the challenging nature

of the problem.

The multi-capacity resources (capacity > 1) make the problem

challenging because resources have to be matched to groups of

requests and not just to individual requests. This results in a sig-

nificant change in the structure of the underlying matching graph.

Unlike unit-capacity ridesharing, where the underlying graph is

bipartite, the multi-capacity ridesharing has a tripartite graph [5]

with reusable resources (vehicles), request groups (i.e., combina-

tions of passenger requests) and online vertices (corresponding to

passenger requests). The desired matching between the resources

and request groups (combination of requests) is constrained by

the edges between requests and request groups (i.e., a request can

be part of at most one request group in final assignment) in this

tripartite graph. It should be noted that this matching problem in tri-

partite graph is not equivalent to any variant of bipartite matching

problem [1, 9, 10, 13] studied in the literature. This is because the

weight of a match and the time after which resource becomes avail-

able again is dependent on the requests which are paired together

in the group assigned to the resource.

To the best of our knowledge, there has been no research on

providing performance guaranteed algorithms for such tripartite

graphs. There has been some work on solving a part of this match-

ing problem which focused on finding the requests which can be

grouped together over time by considering the sequential arrival of

requests [3, 4] in the adversarial and random order arrival. However,

these works ignore the main component of matching the resources

to the request groups.

1.1 Contributions
Our first contribution is in designing a performance guaranteed

online algorithm that provides a competitive ratio of
1

2
for the unit-

capacity ridesharing problem that considers batch arrival of online

vertices
2
under the known arrival distribution. Due to the change

in the value obtained by optimal algorithm (more details in Section

3), it is not obvious whether the competitive ratio will increase or

decrease or remain the same as compared to the sequential arrival

case [8]. Therefore, this is an important result where in we are able

to show that the same competitive ratio can be achieved even when

the vertices arrive in batches.

Our second and the main contribution is to provide a performance

guaranteed online algorithm that provides a non-zero competitive

ratio for the onlinemulti-capacity ridesharing problems considering

batch arrival of online vertices under the known arrival distribution.

The competitive ratio is:

• 0.31767 for capacity 2

2
The online arriving vertices correspond to the requests. Throughout the paper we

use vertices and requests interchangeably.

• γ for any arbitrary capacity κ, where γ is solution to the the

expression (1 − γ)κ+1 = γ .

Even though we require groups of vertices in this online algorithm,
these groups can be generated offline and hence does not add to the
run-time complexity. These general bounds for arbitrary capacity

ridesharing are applicable under the assumption that the type of the

resources/vehicles (i.e., their location) rejoining the system (after

serving a group of vertices) does not change [8].

Finally, we provide simple heuristics (based on the offline optimal

LP) which work well in practice (as demonstrated in our experi-

mental results).

Due to space constraints, we are unable to include complete proofs in
the paper. Omitted proofs and other specific details with regards to
algorithms can be found at this link: https://tinyurl.com/rjs524p

2 BACKGROUND
In this section, we provide the formal definition of expected com-

petitive ratio and the research relevant [8] to the work in this paper.

2.1 Expected Competitive Ratio
The performance of any online algorithm is measured using a met-

ric called competitive ratio. An online algorithm with a competitive

ratio of γ is called γ -competitive algorithm. In case of known dis-

tribution models, the expected value of the competitive ratio is

employed. The expected competitive ratio of any algorithm ALG

is defined [16] as minI,D
E[ALG (I,D)]
E[OPT (I)] , where I denotes the input

and D denotes the arrival distribution and E[OPT (I)] denotes the
expected value of the offline optimal algorithm. In general, an upper

bound on the value of E[OPT (I)] is provided by using a benchmark

linear program. This results in providing a valid lower bound on

the resulting competitive ratio.

Since we only employ expected competitive ratio in this paper, we
henceforth just refer to it as competitive ratio.

2.2 OM-RR-KAD
We now describe the Online Matching with (Offline) Reusable Re-

sources under Known Adversarial Distributions (OM-RR-KAD)

model [8] for ridesharing in which the vehicle capacity is restricted

to 1. OM-RR-KAD is a bipartite matching problem between offline

reusable resources (e.g., vehicles),U , and vertices that arrive on-

line,V (e.g., user requests), over T rounds
3
. Online vertices arrive

according to a Known Adversarial Distribution (KAD) represented
by a set of arrival probabilities, {ptv } (

∑
v ptv = 1,∀t). Once an on-

line vertex of type v arrives (i.e., sampled from ptv), an irrevocable

decision needs to be taken immediately to match it to one of the

offline resources, for which a weight,wt
u,v is received, or to reject

it. The offline resource becomes unavailable for a few rounds after

it is matched and the number of rounds of unavailability, ctu,v , is

characterized by an integral distribution, ctu,v ∈ {1, 2, . . . ,T }. The

offline resource rejoins the system after ctu,v rounds. The goal is to

design an online assignment policy that will maximize the weight.

There are two key steps in obtaining a performance guaranteed

online assignment policy:

3
We use round and timestep interchangeably in the paper

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

772

LPSequential:

max

T∑
t=0

∑
u ∈U

∑
v ∈V

wt
u,v · x

t
u,v

s .t .
∑
u ∈U

xtu,v ≤ ptv ::: ∀v ∈ V, 0 ≤ t < T (1)

t∑
t ′=0

∑
v ′∈V

xt
′

u,v ′ · Pr [c
t ′
u,v ′ > t − t ′] +

∑
v ∈V

xtu,v ≤ 1

::: ∀u ∈ U , 0 ≤ t < T (2)

0 ≤ xtu,v ≤ 1 ::: ∀u ∈ U ,v ∈ V, 0 ≤ t < T (3)

Table 1: Unit Capacity Sequential Arrival

First, an upper bound on the offline optimal, x∗ is computed using

the linear program (LP) of Table 1. x∗,tu,v denotes the probability of

assigning resourceu to online vertex of typev in round t . Constraint
(1) ensures that the expected number of times a vertex of type v
is matched is less than or equal to the expected number of times

the vertex is available. Constraint (2) ensures that the resource u is

assigned in round t if and only if it is available in round t . It should
be noted that this LP provides a solution over all realizations of

online vertices and hence that solution may not be applicable to a

specific instantiation of online vertex (as the corresponding u may

not be available).

Second, an assignment rule is provided to compute the online prob-

ability of assigning a resourceu for a specific instantiation of online

vertex (of type v in round t) and is given by:

x∗,tu,v · γ

ptv · β
t
u

(4)

where x∗,tu,v is a solution to the LP in Table 1 and γ is the desired

competitive ratio of the online assignment; and βtu is the probability

that resource u is safe for assignment in round t . By simulating the

current strategy up to t , βtu can be estimated with a small error.

The following theorem characterizes the
1

2
bound on the ex-

pected competitive ratio.

Theorem 1. Dickerson et.al.[[8]] The optimal value of LPSequen-
tial in Table 1 provides a valid upper bound on the offline optimal
value for OM-RR-KAD. The online assignment rule of Equation 4
based on the LP achieves an online competitive ratio of 1

2
− ϵ for any

given ϵ > 0.

The ϵ factor comes in the competitive ratio due to the error in

the estimation of βtu . For a clean presentation, throughout the paper,
we assume that these values can be estimated correctly and ignore

the estimation error.

3 BATCH ARRIVAL OF VERTICES
In ridesharing problems, user requests typically arrive in batches

instead of arriving sequentially (e.g., users coming out of a train,

theatre or mall looking for shared rides). So, we extend the OM-

RR-KAD model to consider batch arrival of online vertices and also

provide an online algorithm that achieves the same competitive

ratio of
1

2
as in the sequential arrival case. Batch arrival is differ-

ent from sequential arrival because multiple online vertices (more

information at each step) have to be matched to multiple offline

resources at each round.

Since there are more vertices available in each round, online

algorithms can potentially make better assignments in the batch

case as compared to the sequential case. Due to this, it seems that

the competitive ratio in the batch arrival case will be higher than

the sequential arrival case. However,

• As the assignment for any vertex should be made in the same

round of its arrival, in batch case where each round has multiple

vertices, optimal algorithm (denominator of competitive ratio)

also considers a greater number of vertices in each round and

hence optimal value can also improve (as compared to the optimal

value for sequential case).

• Compared to the sequential case, more time is spent deliberating

(since we must wait until end of batch to make assignments)

and during that time no assignment will happen and hence the

number of vertices assigned by the optimal algorithm can be

lower.

Therefore, the relationship between the competitive ratio for the

sequential and batch cases is non trivial. We now provide an algo-

rithm which ensures that the competitive ratio in batch arrival case

is equal to the sequential arrival case.

We first mention the changes required in OM-RR-KADmodel for

the batch arrival case and then provide the performance guaranteed

online algorithm for the unit-capacity case.

Changes to OM-RR-KAD for Batch Case: In the OM-RR-KAD

model, at each round t , a single vertex is sampled using the prob-

ability {ptv }. However, in the batch extension, bt vertices arrive

at each round and each of these bt vertices is sampled using the

same probabilities {ptv }. The expected number of vertices of type v
arriving in round t is qtv and is given by:

qtv = b
t · ptv

LP for Upper Bound on Offline Batch Optimal, LPBatch: The
optimization formulation for the batch case is same as the LP in

Table 1, except for the constraint in Equation (1). Given that there

are qtv (and not ptv) expected arrivals of vertex of type v at each

round, the modified constraint is:∑
u ∈U

xtu,v ≤ qtv ::: ∀v ∈ V, 0 ≤ t < T (5)

We will refer to the modified LP as LPBatch.

Proposition 1. The optimal value of LPBatch provides a valid
upper bound on the offline optimal value 4.

ADAPBatch The online algorithm presented in Algorithm 1 is

used to make an online assignment of the resources to the incoming

vertices that are arriving in batches. We use an adaptive algorithm
5

4
Proof is omitted due to space constraints.

5
For an LP-based algorithm, we say that the algorithm is adaptive if for a given LP

solution, the computation of strategy in each round t depends on the strategies in the

previous rounds [7].

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

773

Figure 1: The Figure depicts the difference in the processing of algorithms in unit-capacity sequential, unit-capacity batch andmulti-capacity
share case. The online component in each of the algorithms corresponds to the processing in round t for a single instance of arrival of vertices.
We only show the detailed flow diagram in the first block for each of the algorithms, rest of the blocks will have similar flow.

Algorithm 1: ADAPBatch(γ)

1: for t < T do
2: Generate a random shuffling of the incoming bt vertices.

Label the vertices from 1 to bt .
3: for i = 1 to bt do
4: v = type of vertex with label i
5: If Et

∗,v,i = ϕ, then reject the vertex with label i;

6: Else choose u ∈ Et
∗,v,i with probability

x ∗,tu,v ·γ
qtv ·β tu,i

7: Update the sets Et
∗,v, j for all j > i based on the

assignment.

that employs the probability of a resource being safe (available for

assignment) while making assignments. The assignment rule to

compute the online probability of assigning a resource u for the

vertex of type v with label i in round t is:

x∗,tu,v · γ

bt · ptv · β
t
u,i

where βtu,i denotes the probability that resource u is safe in round

t when the vertex with label i is being considered; and Et
∗,v,i ⊂ U

is used to denote the set of safe neighbours for a vertex of type v
in round t when the vertex with label i is being considered.

In the algorithm, we process the vertices that have arrived in

a batch one by one by considering a uniform random shuffling of

incoming vertices. The intuition behind the assignment rule is to

divide the optimal assignment for round t uniformly into bt steps

(

x ∗,tu,v
bt) and then to make sure that the vertex of type v is matched

to resource u at any step with probability

x ∗,tu,v ·γ
bt unconditionally.

Another key change in the algorithm from the sequential case is

the last step where the availability of offline resources is updated

based on assignments made in the same round. Figure 1 highlights

the difference in the way the algorithms process online information

in the sequential and batch case.

Proposition 2. The online algorithm ADAPBatch is 1

2
competi-

tive.

Proof Sketch: The maximum value of γ for which the algorithm

ADAPBatch is valid
6
is γ = 1

2
. The proof involves showing that the

minimum possible value of βtu,i is
1

2
, for which we usemathematical

induction. Finally, we show that ADAPBatch is γ competitive and

since the maximum value of γ for which the assignment rule is

valid is
1

2
, the algorithm is

1

2
competitive. ■

4 MULTI-CAPACITY REUSABLE RESOURCES
In this section, we provide a model, an online algorithm and com-

petitive ratio analysis for the online multi-capacity ridesharing

problem with reusable resources.

4.1 Model: OPERA
To address the challenges associated with multi-capacity resources,

we propose a new model called OPERA (Online matching with

offline multi-caPacity rEusable Resources in bAtch Arrival Model).

In OPERA, online vertices arrive in batches according to a Known
Adversarial Distribution (KAD). Once the online vertices arrive,

there has to be an irrevocable decision made immediately on match-

ing each offline resource u to a group of online vertices vд . The
groups chosen for all vehicles should be such that each online ver-

tex appears in at most one group. For each assignment of an offline

resource u to a group of online vertices of type vд in round t , a
weightwt

u,vд is received. After the assignment, the offline resource

u is unavailable for ctu,vд rounds before joining the system again
7
.

The goal is to design an online assignment policy for assigning

offline reusable resources to the groups of online vertices that will

maximize the weight received over all time steps.

6
Algorithm is valid when the assignment rule probability lies between 0 and 1.

7
In the context of last mile ridesharing – after serving the group of passengers, vehicle

comes back to its initial location

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

774

Figure 2: The Figure depicts the tripartite graph used in theOPERA
model. It is a combination of 2 bipartite graphs. The goal is to find
the matching in the first bipartite graph subject to the constraints
enforced due to the edges present in the second bipartite graph. The
blue numbers in V indicate the number of vertices of each type
available and blue numbers in Vд denote the number of groups of
each type which can be formed using available vertices in V . The
blue lines indicate a valid assignment of resources inU to groups in
Vд . Red lines indicate an invalid assignment as the vertex of type
v1 is used 3 times in this assignment but there are only 2 vertices of
type v1 available.

Unlike in OM-RR-KAD, the underlying problem in OPERA is no longer
a bipartite matching problem but a matching in a tripartite graph
containing offline resources, U groups of online vertices, Vд and
online vertices,V .Figure 2 shows the tripartite graph formed in the
case of OPERA.

Here are other key differences between OPERA and OM-RR-KAD:

U : Each offline resource, u ∈ U in OPERA has a fixed capacity κ.

Vд
: As κ > 1, unlike in OM-RR-KAD model, resources can be

assigned to more than one vertex at a round, i.e., resources can

be assigned to groups of vertices where group sizes vary from

1 to κ. For ease of analysis, we consider that all the vertices

can be paired together, and the constraints on the feasibility

of pairing of vertices are handled through the weights received.

Types of groups of vertices are obtained by generating all possible

combinations (with repetitions) of size 1 to κ of the setV8
. The

resulting set is denoted byVд
. Therefore,

|Vд | =

κ∑
k=1

((
|V |

k

))
=

κ∑
k=1

(
|V | + k − 1

k

)
For each group of type vд , nv,vд denotes the number of times

vertex of type v ∈ V is present in group of type vд (From the

example Figure 2, for vд = (v1,v1), nv1,vд will be 2 and for

vд = (v1,v2), nv1,vд will be 1.)

qtv : We consider batch arrival of vertices. Therefore, similar to the

extension in Section 3, bt vertices arrive at each round and each

of these bt vertices is sampled using the same probabilities {ptv }.
The expected number of vertices of type v arriving in round t is
qtv and is given by:

qtv = b
t · ptv

8

((
n
k

))
denotes the number of multisets of cardinality k , with elements taken from a

finite set of cardinality n.

wt
u,vд : Weight received is now based on the type of group assigned

to the resource.

ctu,vд : Rounds of unavailability after an assignment is now based

on the type of the group assigned to the resource.

Apart from the model differences, there are also differences with

respect to the online assignments that can be made. The irrevocable

assignment of resources inU toVд
should satisfy the following

constraints:

C1: Each resource u ∈ U is assigned at most once in each round.

C2: The total number of vertices of each type v ∈ V used in the

assigned groups is less than or equal to the number of vertices

available.

C3: The number of groups of type vд ∈ Vд
assigned in round t is

less than or equal to the number of available groups of type vд .

In order to enforce constraint [C3] above in expectation (i.e., over

all possible instantiations of arrivals), we need to compute qtvд —

the expected number of times group of type vд can be formed in

round t . It is given by
9
:

qtvд = h
t
vд

∏
v ∈vд

(ptv)
nv,vд where htvд =

i= |vд |∏
i=0

(bt − i)∏
v ∈V

(nv,vд)!
(6)

We make the following assumptions in the model: (1) Once a

resource u is assigned to a group of type vд at t it becomes unavail-

able for further matches for ctu,vд rounds irrespective of the size

of vд , i.e., insertion is not allowed. (2) The vertices can be grouped

together iff they are arriving in same round. (3) For ease of expla-

nation, we assume that bt > κ,∀t . However, this can be relaxed

easily.

4.2 Online Algorithm
We first provide an LP for computing the upper bound on the offline

optimal and then provide an adaptive assignment method based on

the offline optimal solution.

LP for Upper Bound on Offline Batch Optimal with Multi-
Capacity Resources: The optimization formulation

10
is provided

in Table 2. We refer to this LP as LPShare. Since LP is for the of-

fline case over all possible instantiations on arrival vertices, the

constraints hold in expectation. Constraints (8), (9) and (10) refer

respectively to C1, C2 and C3 constraints (described in Section 4.1)

in expectation (i.e., over all possible instantiations of arrivals). Con-

straint (8) ensures that the resource u is assigned in round t iff u is

available in round t .

Proposition 3. The optimal value of LPShare provides a valid
upper bound on the offline optimal value 11.

ADAPShare-κ: For ease of explanation, we first present the online
algorithm and competitive analysis for κ = 2.

9
It corresponds to drawing nv,vд vertices of each type v ∈ vд out of total bt trials
for a multinomial distribution. Please refer to https://tinyurl.com/rjs524p for details

on deriving the expression.

10
LP is based on satisfying the flow constraints in the graph shown in Figure 2.

11
Proof is omitted due to space constraints.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

775

LPShare:

max

T∑
t=0

∑
u ∈U

∑
vд ∈Vд

wt
u,vд · x

t
u,vд (7)

s .t .
∑
t ′<t

∑
vд′ ∈Vд

xt
′

u,vд′
· Pr [ct

′

u,vд′
> t − t ′]+

+
∑

vд ∈Vд

xtu,vд ≤ 1 ::: ∀u ∈ U , 0 ≤ t < T (8)∑
vд ;v ∈vд

∑
u ∈U

nv,vд · x
t
u,vд ≤ qtv ::: ∀v ∈ V, 0 ≤ t < T

(9)∑
u ∈U

xtu,vд ≤ qtvд ::: ∀vд ∈ Vд , 0 ≤ t < T (10)

0 ≤ xtu,vд ≤ 1 ::: ∀u ∈ U ,vд ∈ Vд , 0 ≤ t < T (11)

Table 2: Optimization Formulation - Multi-capacity

Algorithm 2: ADAPShare-2(γ)

1: for t < T do
2: Generate a random shuffling of the incoming bt vertices.

Label the vertices from 1 to bt .
3: for i = 1 to bt do
4: for j = 1 to bt do
5: vд = type of group formed at step (i, j) based on the

labels assigned to the vertices.

6: if vд is available for assignment at step (i, j) then
7: If Et

∗,vд, (i, j) == ϕ, reject vд

8: Else choose (u,vд) ∈ Et
∗,vд, (i, j) with probability p

where p =
x ∗,t
u,vд

·γ

ht
vд
·P t
vд , (i, j)

·β tu, (i, j)
9: Update Et

∗,∗, (i, j) , available groups based on the

assignment.

Let x∗,tu,vд denotes the optimal probability of assigning a resource u

to a group of typevд in round t (computed from offline optimal LP).

We use Algorithm 2 to make online assignment of resources to the

groups of vertices based on {x∗,tu,vд } values from the offline optimal

LP. As shown in the algorithm, we perform a random shuffling

of the bt vertices (that arrive in a batch in round t) and label the

vertices from 1 to bt . The assignment of resources to groups is

performed across bt · bt steps (as we consider groups of size 2).
Step (i, j) corresponds to a step where we compute the probability

for assignment of a group formed by vertices with labels i and j. It
should be noted that when i = j, (i, j) corresponds to a group of

size 1 with only vertex with label i .
The assignment rule to compute the online assignment probability

of assigning resource u to a group of type vд at step (i, j) of the
algorithm is defined by

x∗,tu,vд · γ

htvд · P
t
vд, (i, j) · β

t
u, (i, j)

(12)

where βtu, (i, j) denotes the probability that resource u is available

for assignment in round t at step (i, j) over all arrival sequences.
Similarly P tvд, (i, j) denotes the probability that group of typev

д
can

be considered for assignment in round t at step (i, j) over all arrival
sequences. htvд was defined in Equation (6). We use Et

∗,vд, (i, j) ⊂ U

to denote the set of safe resources for group of typevд at step (i, j).

Similarities and Differences to ADAPBatch: The intuition behind

the assignment rule for a step is similar to the one in ADAPBatch.

Assignment for a group of type vд in a step is obtained by dividing

the optimal assignment of round t for group of type vд by the total

number of steps where group of type vд can be considered
12
.

The key differences in assignment rule of ADAPShare-κ and ADAP-

Batch:

• For κ = 2, since we can consider 2 vertices together (in a group)

for assignment, we process the groups inbt ·bt steps for ADAPShare-
2. This is in comparison to bt steps in ADAPBatch.

• In ADAPBatch, during online processing, vertex with label i in
the batch will be considered for assignment only at one of bt

steps. In ADAPShare-κ, a vertex is part of multiple groups, so

it will be considered at multiple steps. Therefore, at each step,

the probability of vertex being available (and as a result a group

being available) needs to be recomputed based on the groups

assigned at previous steps in the same round.

Figure 1 highlights the difference in the way the algorithms ADAP-

Batch and ADAPShare-κ process the online information.

Competitive Ratio for ADAPShare-2
In this section, we provide the analysis to compute the competi-

tive ratio for ADAPShare-2. We first find the value of γ for which

the assignment rule in Equation (12) is valid, i.e., it corresponds to

a valid probability value between 0 and 1.

Proposition 4. The maximum value of γ for which assignment
rule in Equation (12) is valid is 0.31767.

Proof: Since the assignment rule always generates a positive value,

the condition to be satisfied for the assignment rule to be valid is

x∗,tu,vд · γ

htvд · P
t
vд, (i, j) · β

t
u, (i, j)

≤ 1 (13)

Using Equation (6) in Constraint (10) of optimization formulation

in Table 2, we have∑
u

x ∗,tu,vд ≤ h
t
vд ·

∏
v∈vд

(ptv)
nv,vд =⇒ x ∗,tu,vд ≤ htvд ·

∏
v∈vд

(ptv)
nv,vд

12
Each group of type vд will be considered at ht

vд
steps out of the total bt · bt steps.

For κ = 2, from Equation (6)

ht
vд
=




bt , i f |vд | = 1,

bt · (bt − 1) i f |vд | = 2 and vд = (v, v ′),
bt ·(bt −1)

2
i f |vд | = 2 and vд = (v, v).

This is because when both vertices are of same type in the group, for example if

vд = (v, v), then vд considered at step (i, j) means that the vertex with label i
and the vertex with label j both are v and therefore steps (i, j) and (j, i) would be

identical. On the other hand when both vertices are of different type, for example

if vд = (v, v ′), then vд considered at step (i, j) means that the vertex with label

i is v and the vertex with label j is v ′ but vд considered at step (j, i) means the

opposite. Hence in this case the group of type vд will be considered at bt · (bt − 1)
steps across different online arrivals. Please refer to the example in the document at

https://tinyurl.com/rjs524p for more clarity.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

776

Substituting this in Equation (13) and rearranging terms, we get

βtu, (i, j) ≥

γ ·
∏

v ∈vд
(ptv)

nv,vд

P tvд, (i, j)
∀t , i, j,vд (14)

By considering the probabilities with which each of the vertex of

type v ∈ vд is available at step (i, j), we can show that
13
,∏

v ∈vд
(ptv)

nv,vд

P tvд, (i, j)
≤

1

(1 − γ)2
,∀t , i, j,vд (15)

Using Equations (14) and (15), for the assignment rule to be valid

it is sufficient to show that βtu, (i, j) ≥
γ

(1−γ)2 .

We can compute a lower bound on the value of βtu, (i, j) based on

assignments performed in previous steps and rounds. Specifically,

using mathematical induction, we can show that βtu, (i, j) ≥ 1 − γ .

So, to find the maximum value of γ for which the assignment rule

is valid, we take γ such that 1 − γ =
γ

(1−γ)2 Therefore, the possible

value of γ is the solution to the equation γ = (1 − γ)3, which is

γ = 0.31767.

Proposition 5. The online algorithm ADAPShare-2 is 0.31767
competitive.

Proof: The proof involves first showing that the ADAPShare-2 is
γ competitive. Now, as from Proposition 4, the maximum value

of γ for which assignment rule is valid is 0.31767, therefore the

algorithm is 0.31767 competitive.

To show that the ADAPShare-2 is γ competitive, we compute with

respect to the optimal, the fraction of times any resource u is as-

signed to any group of type vд . The probability that the resource u
is assigned to a group of typevд in round t in step (i, j) is given by

x∗,tu,vд · γ

htvд · P
t
vд, (i, j) · β

t
u, (i, j)

· βtu, (i, j) · P
t
vд, (i, j) =

x∗,tu,vд · γ

htvд

where first term in the product is the assignment rule, second

term is the probability that u is available and the last term is the

probability that vд is available in round t at step (i, j).
As mentioned before, each group of type vд will be considered for

assignment at a total of htvд steps. Therefore, the expected number

of times a resource u is assigned to a group of type vд in round t is

given by htvд ·
x ∗,t
u,vд

·γ

ht
vд

= x∗,tu,vд ·γ , i.e., in online case each resource

u is matched to group of type vд with probability equal to x∗,tu,vд ·γ .

Therefore, ADAPShare-2 is γ competitive. ■

Corollary 1. The online algorithm ADAPShare-κ (generalization
of ADAPShare-2 for any value of κ) is γ competitive where the value
of γ is the solution to the equation γ = (1 − γ)κ+1.

Proof Sketch: The proof is along the same lines as the proof for

Proposition 5. In the Equation (15), instead of (1−γ)2, we will have
(1 − γ)κ . Therefore, the value of γ for which assignment rule is

valid is the solution to the Equation γ = (1 − γ)κ+1. ■

Hardness Result for Non-Adaptive Algorithms:
13
Please refer to https://tinyurl.com/rjs524p for the detailed proof.

Dickerson et.al. [8] prove that no non-adaptive algorithm based on

LPSequential can achieve a competitive ratio of more than
1

2
+ o(1)

in OM-RR-KAD model. The analysis can be easily extended for

the batch arrival case when κ = 1. As unit-capacity batch ar-

rival is a special case of multi-capacity OPERA model with all

wt
u,vд = 0, i f |vд | ≥ 2, therefore, no non-adaptive algorithm

based on LPShare can achieve a competitive ratio of more than

1

2
+ o(1) for OPERA model.

Discussion:We now provide the justifications for the choices made

in themodelling and analysis in section 3 and 4.1. (1)We assume that

there arebt arrivals in round t andbt is known in advance. However,
this is not at all a strong assumption because by considering a null

type vertex in V and ptϕ as the probability of null vertex, bt can

be used to denote the maximum number of arrivals in round t .
(2) For theoretical analysis of the solution quality, we ignore the

computational complexity of generating exponential number of

groups in OPERA model. For practical purposes, the algorithms

provided in [2] can be used to heuristically prune the exponential

set and generate the feasible groups efficiently. The pruned set of

groups is used by both offline and online algorithms. This is because,

if the offline optimal algorithm can generate the groups, as the type

of vertices are known in advance (through the known distribution),

the online algorithm can also use those groups.

5 EXPERIMENTS
In this section, we compare the following five approaches on the

empirical competitive ratio metric:

• Greedy - Runs an integer optimization at each timestep (based

on the current information) to assign the requests/groups to the

available offline resources
14
.

• Random - Shuffles available requests/groups randomly and then

assigns each request/group randomly to an available offline re-

source.

• Alg-OPERA-1 - Algorithm based on the offline optimal LP

where match for any available resource u to a vertex or group is

performed by looking at the value of

x ∗,t
u,vд

qt
vд

15
.

• Alg-OPERA-2 - Another algorithm based on the offline optimal

LP where match for any available resource u to a vertex or a

group is performed by looking at the value of

x ∗,t
u,vд∑

u x
∗,t
u,vд

.

• ϵ-Greedy - With probability ϵ , greedy algorithm is executed and

with probability 1 − ϵ , Alg-OPERA-1 algorithm is executed.

The goal of the experiments is to show that the algorithms which

use guidance from the offline optimal LP, outperform the myopic

approaches
16
, which do not consider future information. All the

values in the results are computed by taking an average over 10

instances and each instance is run 100 times.

14
Equivalent to the myopic approaches used in practice [2, 14]

15
We provide heuristics, which are close to ADAPShare-κ , as computing β exactly is

not always simple and may require large number of simulations. We observed that

even though these heuristics are non-adaptive, they can achieve empirical competitive

ratio higher than the theoretical competitive ratio of ADAPShare-κ .
16
Currently used in practice for multi-capacity resources [2, 14]

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

777

1 2 3

Capacity

0

2000

4000

6000

T
ot

al
R

ev
en

ue

Greedy

Random

ε-Greedy

Alg-OPERA-1

Alg-OPERA-2

Optimal

(a)

10 30 50

Batch Size

0.0

0.2

0.4

0.6

0.8

E
m

pi
ri

ca
l

C
om

pe
ti

ti
ve

R
at

io

Greedy

Random

ε-Greedy

Alg-OPERA-1

Alg-OPERA-2

(b)

Figure 3: |U | = 10 , |V | =10, T = 200 (a) Varying κ (b) κ = 2

Synthetic Dataset: We first present the results on a synthetic

dataset. We use 200 timesteps/rounds and generate the unavail-

ability (or time occupied serving requests) time (ctu,v or ctu,vд) for

each resource and vertex/group pair randomly between 1 and 60.

Weights received (revenue) are generated based on revenue model

used by taxi companies – base revenue + 0.5 · ctu,v or ctu,vд . The

probability of arrival of each vertex type at each round (ptv) is also
generated randomly. The test instances are generated by sampling

the online vertices from the generated ptv values. We vary the batch

size and capacity and present the representative results.

Figure 3a shows the total revenue obtained by different algorithms

for different values of capacity κ. The key observations are:

(1) Our online approaches (Alg-OPERA-1 and Alg-OPERA-2) out-

perform other algorithms, with Alg-OPERA-2 performing better

than Alg-OPERA-1 on all the instances.

(2) The performance of greedy algorithm decreases with the in-

crease in capacity. Higher capacity provides more opportunity to

serve requests at each timestep. Due to its myopic nature, greedy

algorithm serves more requests initially, keeping the resources oc-

cupied for a longer time. On the other hand Alg-OPERA-1 and

Alg-OPERA-2, based on the guidance provided by the offline op-

timal LP, ignore some requests/groups which have higher ctu,vд
value, to serve more requests at future timesteps.

(3) Figure 3b shows the empirical value of competitive ratio for

different batch sizes. For these experiments, we take the identi-

cal value of batch size for all the timesteps. Higher batch size for

multi-capacity resources provides an opportunity to group more

requests. Therefore, as the batch size increases Alg-OPERA-1 and

Alg-OPERA-2 show an improvement in performance.

RealWorld Dataset:We used the New York Yellow Taxi dataset

which contains the records of trips in Manhattan city. We divided

the map of the city into a grid of squares, each 4 by 4 km, which

resulted in a total of 11 squares. Therefore, there can be 121 different

types of requests, i.e., |V | = 121 (origin-destination pairs). We

experimented by taking real trips from the taxi dataset. We take

the data across 10 days to compute the ptv values and the average

number of requests at each round/timestep, i.e., average value of bt .
We run the offline optimal LP with these values and get a solution.

The online algorithms are tested on actual instances (10 days) which

are different from the ones we used for computing the parameter

values. Therefore, the actual batch size bt can be different from the

value used by an offline optimal solution. The taxis are initialized

at random locations and since we are testing the last mile scenario

1 2 3

Capacity

0

500

1000

1500

2000

2500

3000

3500

T
ot

al
R

ev
en

ue

Greedy

Random

ε-Greedy

Alg-OPERA-1

Alg-OPERA-2

Optimal

(a)

1 2

Capacity

0

500

1000

1500

2000

2500

3000

3500

T
ot

al
R

ev
en

ue

Greedy

Random

ε-Greedy

Alg-OPERA-1

Alg-OPERA-2

Optimal

(b)

Figure 4: |U | = 30 , |V | =121, T = 240, Real Dataset (a) 12am (b)
8am

after serving the trips, they come back to their starting location.

We observe a high variance in the performance of our algorithms

on this dataset during night time (Figure 4a). This is because the

distribution of requests during night have high variance across

days. During the day, the variance in distribution of requests is

low, and as a result our algorithms also show low variance. On

an average , Alg-OPERA-1 and Alg-OPERA-2 outperform other

algorithms on this dataset as well. These results indicate that the

algorithms which use the guidance from offline optimal solution

can consider the future effects of current matches and as a result

provide better performance.

We would like to highlight that, to ensure that the theoretical bound

on the competitive ratio holds empirically, correct estimates of prob-

ability values (ptv , β) are required, which requires running multiple

simulations. It is possible to create scenarios, where a high number

of simulations are required to get the correct estimates (e.g., when

all the ptv values are very small andV is large.). In such cases, em-

pirical competitive ratio measured over low number of simulations,

will be a wrong indicator. We would also like to mention that, it is

possible to synthetically create unrealistic scenarios where Greedy

algorithm can achieve close to optimal value (essentially having a

revenue model such that the difference between one long trip and

multiple short trips is almost negligible, so myopic decisions do not

hurt) and can perform better than the LP based approaches.

6 CONCLUSION
In this paper, wemake a fundamental contribution of providing com-

petitive ratios for the challenging online multi-capacity ridesharing

problems – where resources or vehicles retain their type after serv-

ing the requests and rejoining the system – with batch arrival of

requests. We demonstrate empirically on real and synthetic datasets

that our online heuristics based on offline optimal LP perform well

in practice, as compared to the myopic approaches.

7 ACKNOWLEDGEMENTS
This work was partially supported by the Singapore National Re-

search Foundation through the Singapore-MIT Alliance for Re-

search and Technology (SMART) Centre for Future Urban Mobility

(FM). We thank Sanket Shah, Susobhan Ghosh and Tanvi Verma for

providing valuable comments which greatly improved the paper.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

778

REFERENCES
[1] Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. 2011.

Online vertex-weighted bipartite matching and single-bid budgeted allocations.

In Proceedings of the twenty-second annual ACM-SIAM symposium on Discrete
Algorithms. SIAM, 1253–1264.

[2] Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and

Daniela Rus. 2017. On-demand high-capacity ride-sharing via dynamic trip-

vehicle assignment. Proceedings of the National Academy of Sciences 114, 3 (2017),
462–467.

[3] Itai Ashlagi, Maximilien Burq, Chinmoy Dutta, Patrick Jaillet, Amin Saberi, and

Chris Sholley. 2018. Maximum Weight Online Matching with Deadlines. arXiv
preprint arXiv:1808.03526 (2018).

[4] Itai Ashlagi, Maximilien Burq, Chinmoy Dutta, Patrick Jaillet, Amin Saberi, and

Chris Sholley. 2019. Edge Weighted Online Windowed Matching. In Proceedings
of the 2019 ACM Conference on Economics and Computation. ACM, 729–742.

[5] Lowell W Beineke. 1980. The Four Color Problem: Assaults and Conquest

(Thomas Saaty and Paul Kainen). SIAM Rev. 22, 2 (1980), 241–243.
[6] Nikhil R Devanur, Kamal Jain, and Robert D Kleinberg. 2013. Randomized primal-

dual analysis of ranking for online bipartite matching. In Proceedings of the
twenty-fourth annual ACM-SIAM symposium on Discrete algorithms. Society for

Industrial and Applied Mathematics, 101–107.

[7] John P Dickerson, Karthik Abinav Sankararaman, Kanthi Kiran Sarpatwar, Ar-

avind Srinivasan, Kun-Lung Wu, and Pan Xu. 2019. Online Resource Allocation

with Matching Constraints. In Proceedings of the 18th International Conference
on Autonomous Agents and MultiAgent Systems. International Foundation for

Autonomous Agents and Multiagent Systems, 1681–1689.

[8] John P Dickerson, Karthik A Sankararaman, Aravind Srinivasan, and Pan Xu.

2017. Allocation Problems in Ride-Sharing Platforms: Online Matching with

Offline Reusable Resources. arXiv preprint arXiv:1711.08345 (2017).
[9] Jon Feldman, Nitish Korula, Vahab Mirrokni, S Muthukrishnan, and Martin Pál.

2009. Online ad assignment with free disposal. In International workshop on
internet and network economics. Springer, 374–385.

[10] Zhiyi Huang, Ning Kang, Zhihao Gavin Tang, Xiaowei Wu, Yuhao Zhang, and

Xue Zhu. 2018. How to match when all vertices arrive online. In Proceedings of
the 50th Annual ACM SIGACT Symposium on Theory of Computing. ACM, 17–29.

[11] Patrick Jaillet and Xin Lu. 2013. Online stochastic matching: New algorithms

with better bounds. Mathematics of Operations Research 39, 3 (2013), 624–646.

[12] Richard M Karp, Umesh V Vazirani, and Vijay V Vazirani. 1990. An optimal

algorithm for on-line bipartite matching. In Proceedings of the twenty-second
annual ACM symposium on Theory of computing. ACM, 352–358.

[13] Euiwoong Lee and Sahil Singla. 2017. Maximum matching in the online batch-

arrival model. In International Conference on Integer Programming and Combina-
torial Optimization. Springer, 355–367.

[14] Meghna Lowalekar, Pradeep Varakantham, and Patrick Jaillet. 2019. ZAC: A

Zone Path Construction Approach for Effective Real-Time Ridesharing. In Pro-
ceedings of the Twenty-Ninth International Conference on Automated Planning and
Scheduling, ICAPS 2018, Berkeley, CA, USA, July 11-15, 2019. 528–538.

[15] Vahideh H Manshadi, Shayan Oveis Gharan, and Amin Saberi. 2012. Online

stochastic matching: Online actions based on offline statistics. Mathematics of
Operations Research 37, 4 (2012), 559–573.

[16] Aranyak Mehta et al. 2013. Online matching and ad allocation. Foundations and
Trends® in Theoretical Computer Science 8, 4 (2013), 265–368.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

779

	Abstract
	1 Introduction
	1.1 Contributions

	2 Background
	2.1 Expected Competitive Ratio
	2.2 OM-RR-KAD

	3 Batch Arrival of vertices
	4 Multi-capacity Reusable Resources
	4.1 Model: OPERA
	4.2 Online Algorithm

	5 Experiments
	6 Conclusion
	7 Acknowledgements
	References

