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ABSTRACT

Crowdsourcing harnesses human effort to solve computer-hard

problems. Such tasks often have different levels of difficulty and

workers have varying levels of skill at completing them. With a

limited budget, it is important to wisely allocate the spend among

the tasks and workers such that the overall outcome is as good

as possible. Most existing work addresses this budget allocation

problem by assuming that workers have a single level of ability for

all tasks. However, this neglects the fact that tasks can belong to a

variety of diverse categories and workers may have varying abil-

ities across them. To incorporating such category-awareness, we

model the interaction between the crowdsource campaign initiator

and the workers as a procurement auction and propose a compu-

tationally efficient mechanism, INCARE, to achieve high-quality

outcomes given a limited budget. We prove that INCARE is budget

feasible, incentive compatible and individually rational. Finally, our

experiments on a standard real-world data set show that, compared

to the state of the art, INCARE: (i) can improve the accuracy by up

to 40%, given a limited budget; and (ii) is significantly more robust

to inaccuracies in prior information about each task’s difficulty.
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1 INTRODUCTION

Crowdsourcing often involves a large number of workers with

different backgrounds completing tasks such as item comparison,

image labelling and entity resolution. In crowdsourcing platforms,

such as Amazon Mechanical Turk and CrowdFlower, a crowdsource

campaign initiator (“initiator" hereafter) can recruit hundreds of

workers through the Internet to accomplish tasks and the workers

are often rewarded for their efforts [10].

However, in many cases, the answers provided by workers are

of low quality, as tasks are tedious and workers are non-experts

[20]. To increase accuracy, most initiators collect multiple answers

from different workers for each task. Although crowdsourcing is

often viewed as a cheap source for accomplishing tasks, it is still

important to use the initiator’s limited budget wisely, especially

when the budget is tight compared with the size of the task pool.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May

9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

Moreover, as workers have different levels of expertise and tasks

may vary in difficulty, some workers will provide better answers

than others. Hence, with a tight budget, the major challenge for

an initiator is to design an effective allocation scheme. Specifically,

the initiator needs to decide how many answers to collect for each

task and how to assign the tasks to appropriate workers.

To address these problems, researchers have adopted several ap-

proaches (see Section 2 for details). However, a common drawback

of these methods is that they often assume a single level of worker

ability for all activities. This is usually incorrect [3]. For example,

consider two workers (A, a car enthusiast, and B, an NBA fan) and

tasks 1 (which asks workers to select a more fuel efficient car) and

2 (which asks workers to identify a more competitive basketball

team). Intuitively, worker A is likely to do better than worker B

when performing tasks belonging to category auto, while worker

B should perform better in tasks related to NBA. Thus, an initiator

should assign task 1 to worker A and task 2 to worker B. However,

most existing approaches do not consider workers’ varying abilities

across different activities and so may assign task 1 to worker B and

task 2 to worker A.

The issues of incorporating such category-awareness in the crowd-

sourcing process have recently been studied in [3, 22]. However,

this work neglects the budget limitation problem. Hence, their al-

gorithms cannot operate within a tight budget to collect as many

high quality answers as possible for each task. Furthermore, they

do not consider the problem of incentivization and merely price

each task with an equal monetary reward. As workers have diverse

expertise and different costs for performing a task, determining

the correct reward for each worker is crucial: low rewards may not

attract sufficient workers, causing insufficient answers for a task,

while high rewards quickly deplete the budget without progressing

much on the task at hand.

There are several works devoted to designing incentive mech-

anisms in crowdsourcing systems (see Section 2). However, these

methods typically assume that workers report their costs truthfully

and focus on pricing tasks given a budget. As a worker’s cost is

his private information, he may misreport it in order to obtain a

higher reward. Moreover, this line of work does not consider the

designed mechanism’s robustness to the inevitable inaccuracies

that are likely to exist in prior information about each task’s diffi-

culty level. Such robustness is central to the practical success of the

mechanism. Specifically, unlike the workers’ quality information

where the initiator can use golden tasks or workers’ historical per-

formance, the prior information about each task’s difficulty level

cannot easily be estimated by the initiator. This is particularly true

for new tasks where there are no historical results. Thus, the initia-

tor will often have to run the mechanism based on inaccurate prior
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information. Without robustness to this uncertainty, the mecha-

nism will not progress much on the task at hand, even if it spends

a significant amount of the budget [2].

Designing an incentive mechanism that explores workers’ di-

verse abilities across different categories given limited budgets is

non-trivial and has not been done before. It is complex because

the rewards for workers are related to an initiator’s budget alloca-

tion scheme and the workers’ costs (that are private information).

Moreover, the tasks’ difficulty levels and workers’ abilities across

different tasks (both of which are unknown to the initiator) also

affect the initiator’s allocation scheme. Existing studies do not con-

sider these relationships.

Against this background, this paper designs a truthful mecha-

nism that satisfies a budget limit to incentivizeworkers to undertake

tasks with binary answers
1
(i.e., the answer is either 0 or 1). Our

mechanism is called INCARE (INcentivize CAtegory-awaRE crowd-

sourcing system). In our model, each worker has various qualities

in different categories and incurs different costs for accomplish-

ing a task. To elicit workers’ truthful costs and design appropriate

rewards to incentivize workers to undertake different tasks, we

use a procurement auction, which is commonly used in this field

(e.g., [1, 13, 20]), to model the interaction between an initiator and

workers. In more detail, the initiator publishes a set of tasks, after

which workers can submit bids for a subset of tasks according to

their preferences. For performing a task, each worker has a private

cost and claims it publicly in the bids. The initiator then determines

the set of winning bids by which the tasks are allocated to the

workers. The initiator pays each winning bid an amount of money

based on all submitted bids in exchange for the answer.

This paper advances the state of the art in the following ways.

First, INCARE is the first budget-limited mechanism for category-

aware crowdsourcing applications. INCARE includes a budget allo-

cation scheme that not only considers the difficulty levels of tasks,

but also workers’ diverse qualities in different categories. Second,

INCARE’s payment scheme is Incentive Compatible (i.e., a worker

will disclose his cost truthfully to maximize his utility which is

the difference between the reward received from the initiator and

the cost of accomplishing a task) and Individually Rational (i.e., the

utility of a worker is non-negative if he is selected to accomplish a

task). Furthermore, INCARE guarantees budget feasibility, i.e., the

initiator’s total payment to workers accomplishing tasks is guaran-

teed to be less than the budget. Finally, our empirical studies show

that considering the workers’ qualities in different categories and

eliciting the costs of workers can significantly improve the accuracy

of outcomes given a limited budget by up to 40%. Moreover, com-

pared to the state of the art mechanisms, INCARE is significantly

more robust to inaccuracies in the prior information about each

task’s difficulty level.

2 RELATEDWORK

Research topics that consider quality in crowdsourcing tasks in-

clude how to aggregate crowd answers [23], how to select which

workers should work on a task [12], and how to better design the

crowdsourcing tasks to improve the accuracy of workers’ answers

1
We focus on binary answers for analytical convenience but the revision required to

the general case are straightforward.

[11]. By selecting informed workers, an initiator can require fewer

answers for each task so that the total cost of the initiator is reduced.

However, these methods do not consider differing worker abilities

across different categories. Zheng et al. [22] do exploit workers’

diverse qualities in different categories by designing an algorithm

called DOCS. However, they do not consider budget constraints

and different costs across diverse tasks. Thus, as shown by our

numerical results in Section 5, DOCS will fail to attract high-quality

workers and progresses less on the task at hand.

Motivated by the task cost concern, the budget allocation prob-

lem in crowdsourcing has attracted considerable attention [1, 14].

However, this work typically assumes that workers can always

provide answers without appropriate incentives. The best example

of this line of work is by Chen et al. [1] who propose an algo-

rithm, called Opt-KG, to address the budget allocation problem

with imperfect workers by assuming that the costs of workers are

the same. In practice, however, different workers often incur differ-

ent costs even when they accomplish the same tasks [20]. Without

carefully designing rewards that cover workers’ costs, this method

may fail to incentivize workers to accomplish tasks, which would

decrease the outcome quality of the overall task. Furthermore, they

do not consider the impact of inaccuracies in prior information

about each task’s difficulty level. Without considering this com-

monly occurring situation [2], the performance of Opt-KG degrades

significantly when the prior information is less accurate (see our

numerical results in Section 5).

There are also several works devoted to incentive mechanism

design in crowdsourcing [6, 17, 21]. However, these methods of-

ten assume that workers report their costs truthfully and focus

on pricing tasks given a budget. As a worker’s cost is his private

information, he may misreport it in order to obtain a high reward.

The state of the art in this area is by Zhang et al. [20] who do study

the problem of eliciting truthful costs in the budget allocation prob-

lem. Their solution is called DI-Greedy-MUL. However, they ignore

workers’ quality differences in accomplishing tasks in different cat-

egories. Thus, they cannot help the initiator to obtain high quality

outcomes with a limited budget (as we show in Section 5).

3 PROBLEM FORMULATION

We begin with a formal description of the interaction between the

initiator and the workers. Then we will set up notations to capture

the behaviors of the workers, the objective of the initiator and the

mechanism design problem. Table 1 lists the key notation.

3.1 System Model

We consider a setting where an initiator collects answers for a set

N = {1, 2, . . . ,N } of N tasks from a set K = {1, 2, . . . ,K } of K
workers under a limited budget B2. For ease of presentation, each
task is binary with only two choices. To incentivize workers to

perform tasks assigned by the initiator, we model the interaction

between them as a procurement auction [13], where the initiator

publicizes a task set N and each worker k ∈ K replies with a set

Φk = {ϕ
1

k ,ϕ
2

k , . . . ,ϕ
mk
k } ofmk bids. Each submitted bid is a task-

price pair ϕmk = (nmk ,b
m
k ), where nmk ∈ N denotes the task selected

2
For convenience, we refer to the initiator as “she" and workers as “he".
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Table 1: Key Notation

N = {1, . . . ,n, . . . ,N } index set of tasks

K = {1, . . . ,k, . . . ,K } index set of workers

L = {1, . . . , l , . . . ,L} index set of task categories

rn =
[rn,1, . . . , rn,l , . . . , rn,L]

rn = {rn,l }l ∈L

the distribution that task n ∈ N is

related to each category l ∈ L

θn difficulty level of the n-th task

δk,l
quality of worker k for the l-th cate-

gory

yn,k worker k’s answer to task n

Φk = {ϕ
1

k ,ϕ
2

k , . . . ,ϕ
mk
k }

a set of worker k’s submitted bids

with total number ofmk bids

ϕmk (nmk ,b
m
k )

worker k’sm-th bid that denotes the

task he can perform and the charge

ωt = {nt ,kt } selected task-worker pair in round t

p (ϕmk )
worker k’s payment based on his bid

ϕmk

R̂ (ϕ, t )
marginal contributions of bid ϕ in

winning bid selection round t

Û (Φw)
aggregated marginal contributions

determined by the winning bid se-

quence Φw

by worker k in hism-th bid and bmk is the price worker k claims for

accomplishing task nmk .

The initiator sequentially determines the winning bid set Φw ⊆

Φ =
⋃
k ∈K Φk from all submitted bids until the budget or the

available bids are exhausted
3
. In each winning bid selection round

t , the initiator selects a bid ϕmk into the current winning bid set

based on the collected answers up to round t − 1. This selected bid

reveals a task-worker pair, i.e.,ωt (ϕmk ) = {nt ,kt }, that indicates the
task that needs to be finished and the worker who should perform

it. To simplify notation, we use ωt
instead of ωt (ϕmk ) to denote

the selected task-worker pair based on the selected winning bid in

round t . Once the initiator receives the answer from the selected

worker, i.e.,ynt ,k t , she updates the information about the tasks and

workers based on a Bayesian method (details in Section 4.1) before

selecting the new bid in the next winning bid selection round
4
.

After the winning bid set Φw
is determined, the initiator pays

each winning bid ϕmk ∈ Φ
w
an amount of money p (ϕmk ).

Worker’s Cost and Utility: If worker k’s bid ϕmk is selected by

the initiator, the cost incurred by worker k when performing task

nmk is c (nmk ), which is the private information of worker k . Note

that the charge bmk claimed by worker k in his submitted bid ϕmk
could be different from worker k’s actual cost c (nmk ). Each worker

k ∈ K strategically determines bmk to maximize his payoff which

is defined as the difference between the total payment he receives

3
The reason we select winning bids in a sequential fashion is that the initiator does

not know the tasks’ difficulty or workers’ qualities at the beginning of the budget

allocation process. Thus, she needs to update this information based on the stream

of collected answers in a sequential fashion so that she can adjust the task-worker

assignment promptly given a budget limit.

4
The benefits of using Bayesian modeling are discussed in [1].

from the initiator and his total cost. Specifically, for worker k ∈ K ,

his payoff is

U ue (Φk ,Φ−k ) =
∑

ϕmk ∈Φ
w

[
p (ϕmk ) − c (nmk )

]
, (1)

where Φ−k =
⋃
j ∈K , j,k Φj is the set of all workers’ bids except

worker k . Note that a worker’s payoff is calculated based on this

worker’s bids that are selected into the winning bid set ΦW which

is a function of all workers’ submitted bids, i.e., Φk and Φ−k . AsU
ue

is a cumulative function based on Φw
and whether a worker’s bid

is selected depends not only on the bid this worker submitted but

also on other workers’ submitted bids, we write U ue
as a function

of Φk and Φ−k .
TaskDifficulty Level: LetZn be the true answer for taskn ∈ N

with value either 0 or 1. We model Zn as a random variable and

use θn = Pr (Zn = 1) to denote the difficulty level of task n5. As
is common in the literature (e.g., [1, 20]), we assume that θn is

consistent with the true label in the sense that Zn = 1 (or Zn = 0)

if and only if θn ≥ 0.5 (or θn < 0.5). In such cases, the initiator can

infer the true answer for each task n by estimating the value of θn .
Category Vector: We assume there is a setD = {d1,d2, . . . ,dL }

of L categories. An example is D = { f ood,NBA,auto, country}.
The initiator can obtain this category set by existing knowledge

based on question answering systems such as categories in Yahoo

Answers, domains in Freebased, and main topics in Wikipedia. The

reason for using general topics is that they can interpret a task in a

fine-grained manner [22].

Task Category Vector: Let rn = [rn,1, rn,2, . . . , rn,L] represent
the distribution that task n ∈ N is related to each category in D,

where rn,l ∈ [0, 1], l ∈ L = {1, 2, . . . ,L} and
∑L
l=1 rn,l = 1. A

higher value of rn,l represents the fact that task n is more related

to category l . Let on denote task n’s true category, and we have

Pr (on = l ) = rn,l . For example, considering a task n: “which coun-

try produces more cars, China or Japan?" that is related to categories

auto and country in D. This is probably more relevant to auto, so

a reasonable category vector of task n is rn = [0, 0, 0.8, 0.2]. We

assume the initiator knows this category vector for all tasks, as com-

putation of a task’s category vector is orthogonal to our mechanism

design problem and an initiator can calculate all tasks’ category

vectors based on the methods proposed in [3, 22] before determin-

ing the budget allocation scheme. Let ηn,l = Pr (Zn = 1|on = l )
represent the value of task difficulty for the l-th category. Based on

the definition of rn , we have θn =
∑L
l=1 rn,l · ηn,l .

Worker Quality Vector: Let δk = [δk,1,δk,2, . . . ,δk,L] model

the quality vector of worker k ∈ K , where δk,l ∈ [0, 1], l ∈
{1, 2, . . . ,L} indicates the expertise (accuracy) of worker k in an-

swering tasks in categorydl . A higher value δk,l means that worker

k has more expertise in category dl . For example, if worker k is a

geographer and an NBA fan, while pays no attention to food and

auto, then a suitable quality vector is δk = [0.2, 0.8, 0.3, 0.9] for per-

forming tasks belonging to the setD = { f ood,NBA,auto, country}.

5
We interpret θn as the relative frequency that 1 appears when the number of perfectly

reliable workers approaches infinity. Hence, when θn is close to 0.5, it implies that

task n is difficult as the number of perfectly reliable workers whose answers are 1

is the same as that of perfectly reliable workers whose answers are 0 even though

the initiator asks a large number of perfectly reliable workers. When θn is close to 1

or 0, task n is relatively more easy as the initiator can obtain the answer by asking

sufficient numbers of perfectly reliable workers.
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The initiator does not perfectly know the workers’ qualities at the

beginning of the budget allocation process and can learn workers’

quality vectors together with the tasks’ difficulty level based on

workers’ answers (details in Section 4.1).

Worker Answer: Let yn,k ∈ {0, 1} denote an answer from

worker k ∈ K to task n. The initiator considers yn,k as a random

variable Yn,k before she asks worker k .

We use vt−1k,l to store the aggregated weight of category l ∈ L

for those tasks answered by worker k ∈ K before the winning bid

selection round t , i.e., vt−1k,l =
∑
j ∈N t−1

k
r j,l , where N

t−1
k records

the tasks that are answered by worker k up to round t − 1. Let St

be a state space in round t that consists of all possible posterior
task difficulty level parameters and worker quality parameters, i.e.,

St = {{ηtj,l }j ∈N ,l ∈L , {θ
t
j }j ∈N , {δ

t
i,l }i ∈K ,l ∈L , {v

t
i,l }i ∈K ,l ∈L }}.

If the initiator chooses the winning bid ϕmk in the current round

t , we can have a task-worker pair ωt = {nt ,kt } and calculate the

posterior probability Pr (ynt ,k t |S
t ,nt ,kt ) that we are in the next

state St+1, as follows:

Pr (ynt ,k t = 1|St ,nt ,kt )

=

L∑
l=1

rn,l ·
[
δ tk,l · η

t
n,l + (1 − δ tk,l ) · (1 − η

t
n,l )

]
(2)

Pr (ynt ,k t = 0|St ,nt ,kt )

=

L∑
l=1

rn,l ·
[
δ tk,l · (1 − η

t
n,l ) + (1 − δ tk,l ) · η

t
n,l

]
(3)

The Initiator’s Utility: When the budget or the available bids

are exhausted, the initiator needs to infer the true answers {Zn }n∈N
for all tasks based on all collected answers from the workers deter-

mined by the winning bid Φw
. According to the definition of task

difficulty level θn in Section 3.1, this is equivalent to inferring the

true value of θn ,∀n ∈ N .

Intuitively, if the value of θn is real 0.5, the correct answer of task

n is difficult for the initiator to infer as both answers (0 or 1) are

likely to be given by the same number of workers. If the value of

θn is close to 1 or 0, the initiator has more confidence to derive the

correct answer. By capturing this idea, we apply entropy, which is

common in the literature (e.g., [16, 21, 22]), to define the ambiguity

of θn , i.e.,

H (θn ) = −θn · lnθn − (1 − θn ) · ln(1 − θn ). (4)

According to the definition of entropy, the higher the value of

H (θn ), the more ambiguous θn is, thus the less accurate the answer

inferred by the initiator. Hence, the initiator’s objective is spending

her budget to collect answers that reduce the ambiguity of every

θn ,∀n ∈ N .

Let θ0n denote the prior information of task n’s difficulty level.

Let θn |F
w
denote the posterior information, where F w

is the σ -
algebra generated by the winning bid selection path that denotes

the collected information during the whole winning bid selection

process. The initiator’s utility is defined as how much ambiguity

can be reduced for every task n ∈ N ,

U in = E



N∑
n=1

[
H (θ0n ) −H (θn |F

w)
]
, (5)

where the expectation is taken over the winning bid selection paths

F w
.

3.2 Problem Formulation

Before explaining the problem, we begin by defining three standard

game-theoretic terms that are required for subsequent discussions.

Definition 3.1 (Incentive Compatibility). Let
ˆϕmk = (nmk , c (n

m
k )) be

worker k’s truthful bid that reveals his true cost andϕmk = (nmk ,b
m
k )

be the untruthful bid, where bmk , c (nmk ). A mechanism satisfies

the incentive compatibility (IC) condition if the worker’s payoff

when performing task nmk satisfies [5]

p ( ˆϕmk ) − c (nmk ) ≥ p (ϕmk ) − c (nmk ). (6)

IC means that for any worker k ∈ K , reporting his true cost will

maximize his payoff.

Definition 3.2 (Individual Rationality). A mechanism satisfies

individual rationality (IR) if the payoff of every worker k ∈ K
achieved by his winning bid is non-negative, given that he truthfully

reports his cost [5]

p ( ˆϕmk ) − c (nmk ) ≥ 0, (7)

where
ˆϕmk = (nmk , c (n

m
k )).

Assuming (without loss of generality) that the payoff of a worker

not performing any task equals zero, IR means that a worker will

perform tasks only if his payoff is at least as much as that of a

non-participating worker.

Definition 3.3 (Budget Feasibility). A mechanism satisfies budget

feasibility, if the initiator’s total payment to all winning bids is less

than or equal to her total budget B [5], i.e.,

∑
ϕ∈Φw p (ϕ) ≤ B.

Based on the revelation principle [9], the problem of finding a

mechanism that maximizes the initiator’s utility can be restricted

to the set of mechanisms where workers are willing to reveal their

private information to the initiator. Moreover, the initiator cannot

force workers to accept the task. Given this, we use a procurement

auction to model the interaction between the initiator and workers

and focus on designing a mechanism that determines a winning bid

sequence Φw
given a strict budget constraint, while ensuring truth-

ful reports from workers and their participation. Mathematically,

the problem we want to solve is:

max E



N∑
n=1

[
H (θ0n ) −H (θn |F

w)
]

subject to

∑
ϕ∈Φw

p (ϕ) ≤ B and

IC and IR in equations (6) and (7), (8)

where the expectation is taken over the sample paths F w
.
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4 THE INCARE MECHANISM

We present our mechanism to solve the problem defined in (8). We

first show how an initiator updates the information about the tasks

and workers given a worker’s answer. Based on the information

update method, we then present INCARE including its winning

bid selection scheme and its payment scheme that incentivizes

workers to perform suitable tasks given a limited budget. Finally,

we formally prove the mechanism’s properties.

4.1 Information Update Process

Once the initiator chooses the winning bid ϕmk that determines the

task-worker pair ωt
in the current winning bid selection round t ,

the elements in the state space St will be updated based on the

following equations [22], given the answer of worker k is ynt ,k t .

For task j ∈ N and j , nt , its difficulty level in St is

ηtj,l = η
t−1
j,l , θ

t
j = θ

t−1
j , (9)

which is independent of worker kt ’s answer.
For task nt , its difficulty level in St is

ηtn,l |ynt ,k t =




ηt−1n,l ·δ
t−1
k,l

ηt−1n,l ·δ
t−1
k,l +(1−η

t−1
n,l ) ·(1−δ

t−1
k,l )

if ynt ,k t = 1

ηt−1n,l ·(1−δ
t−1
k,l )

ηt−1n,l ·(1−δ
t−1
k,l )+(1−η

t−1
n,l ) ·δ

t−1
k,l

if ynt ,k t = 0

θ tn |ynt ,k t =
L∑
l=1

rn,l · (η
t
n,l |ynt ,k t ). (10)

The basic idea of (10) is to update the information of a task’s

difficulty for each category based on the selected worker’s provided

answer and this worker’s quality in the same category. High quality

means that this worker’s answer is more reliable in this category,

and the accumulated value added to this task’s difficulty level is

large.

Based on the result obtained in (10), we update the selected

worker’s quality in the following equation. In more detail, for

worker kt , his quality in St is

δ tk,l |ynt ,k t =




δ t−1k,l ·v
t−1
k,l +θ

t
n ·rn,l

v t−1k,l +rn,l
if ynt ,k t = 1

δ t−1k,l ·v
t−1
k,l +(1−θ

t
n ) ·rn,l

v t−1k,l +rn,l
if ynt ,k t = 0

vtk,l = v
t−1
k,l + rn,l , ∀l ∈ L. (11)

From (11), we can see that if the task’s updated result is consis-

tent with the worker’s provided answer, the worker’s quality value

increases.

Similar to (11), we replace the old information about this task’s

answer with the latest information in (12) and update the quality

information of workers who have previously performed this task.

Specifically, let K nt
store the workers that perform task nt before

round t . For worker i ∈ K nt
his quality in St is

δ ti,l |ynt ,k t

=




δ t−1i,l ·v
t−1
i,l −θ

t−1
n ·rn,l+θ tn ·rn,l
v t−1i,l

if ynt ,i = 1

δ t−1i,l ·v
t−1
i,l −(1−θ

t−1
n ) ·rn,l+(1−θ tn ) ·rn,l
v t−1i,l

if ynt ,i = 0

vti,l = v
t−1
i,l . (12)

For other workers i ∈ K \ K nt , i , kt who have not answered

task nt before, their quality in St is

δ ti,l = δ t−1i,l , v
t
i,l = v

t−1
i,l , ∀l ∈ L. (13)

4.2 Winning Bid Selection and Payments

Based on the information update method presented in Section 4.1,

the initiator can update information about the workers’ quality

vectors together with the tasks’ difficulty levels based on workers’

answers in each winning bid selection round. Then we can turn to

address the problem defined in (8), i.e., how to select the task-worker

pair in each winning bid selection round based on the initiator’s

learnt information and a limited budget, while satisfying the IC and

IR conditions defined in equations (6) and (7).

Note that the problem defined in (8) is NP-hard [20]. There-

fore, we adopt a randomized knowledge gradient (KG) scheme
6
[4],

which is essentially a single-step look-ahead approach, to solve the

problem. In more detail, randomized KG greedily selects the next

winning bid that generates the largest expected reward:

ϕmk = (nmk ,b
m
k ) = argmax

ϕ∈Φ

(
R̂ (ϕ) = H (θ t−1n ) − ˆH (θ tn )

)
. (14)

When there is a tie in (14), we randomly break it instead of selecting

the one with the smallest index during the winning bid selection.

We calculate the value of
ˆH (θ tn ) as follows:

ˆH (θ tn ) =Pr (ynt ,k t = 1|nt ,kt ) · H (θ tn |ynt ,k t = 1)

+ Pr (ynt ,k t = 0|nt ,kt ) · H (θ tn |ynt ,k t = 0), (15)

where the value of θ tn |ynt ,k t is calculated by (10). Note that R̂ (ϕ)
calculates bid ϕ’s marginal contribution between two successive

rounds.

By applying randomized KG, the objective function of (8) be-

comes equivalent to designing a mechanism that determines a

winning bid sequence Φw∗
that maximizes the aggregated marginal

contributions, i.e.,

max Û (Φw) =
∑
ϕ∈Φw

R̂ (ϕ),

subject to

∑
ϕ∈Φw

p (ϕ) ≤ B and

IC and IR in equations (6) and (7). (16)

As the randomized KG scheme involves a single look-ahead step,

we do not need to take the expectation over the whole sample paths

as in (8). To solve the above problem, we first need to check whether

the function Û (Φw) falls in the family of monotone submodular

functions. If so, then we can revise the greedy allocation scheme in

[15] to tackle the problem.

Definition 4.1 (Monotone Submodular Function). LetA be a finite

set. For any X ⊆ Y ⊆ A and x ∈ A and x < Y , a function

6
There are other possible approximate schemes such as the randomized scheme [8],

the Gittins index scheme [19] and the new labeling uncertainty scheme [7]. However,

none of them has better performance or lower computation complexity than KG [1].
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Algorithm 1 Winning Bid Selection Scheme

1: The initiator sets the prior value for tasks’ difficulties {θ 0

n }n∈N ,

{η0n,l }n∈N ,l∈L , workers’ qualities {δ 0

k,l }k∈K ,l∈L , the budget B and

the task category vectors {r n }n∈N ;
2: Initialize: t ← 0, Φw∗ ← ∅, Ω ← ∅
3: while Φ , ∅ do

4: Let ϕ∗ = {n∗k∗, b
∗
k∗ } ← argmaxϕmk ∈Φ

R̂ (ϕmk )

bmk

5: if b∗k∗ ≤
B
α

R̂ (ϕ∗ )
Û (Φw∪{ϕ∗ })

then

6: Ω ← Ω ∪ {n∗, k∗ }, Φw∗ ← Φw∗ ∪ {ϕ∗ };
7: Acquire the label yn∗,k∗ ∈ {0, 1};
8: Update ηtn∗,l , ∀l ∈ L and θ tn∗ based on (10);

9: Update δ tk∗,l , ∀l ∈ L and v tk∗,l based on (11);

10: for worker i ∈ K n∗, i , k∗ who has answered the task n∗

before do

11: Update δ ti,l , ∀l ∈ L and v ti,l based on (12);

12: end for

13: ηt+1j,l ← ηtj,l , θ
t+1
j ← θ tj , ∀j ∈ N , j , n∗;

14: δ t+1i,l ← δ ti,l , v
t+1
i,l ← v ti,l , ∀i ∈ K \ K

n∗, i , k∗, ∀l ∈ L, ;
15: t ← t + 1;
16: end if

17: Φ← Φ \ ϕ∗;
18: end while

f : 2
A → R is monotonic if and only if f (X ) ≤ f (Y ), and the

function f is submodular if and only if

f (X ∪ {x }) − f (X ) ≥ f (Y ∪ {x }) − f (Y ). (17)

Proposition 4.2. The aggregated marginal contributions of the

winning bid set Û (Φw) is monotone submodular.

Due to the space limit, we only sketch the proofs of all proposi-

tions and theorems.

Proof Sketch. As a sum of monotonic submodular functions

is still submodular, we only need to prove that function R̂ (ϕ) is
monotonically non-increasing with the number of collected an-

swers for every θn ,n ∈ N . Let Y and X represent the collected

answers from workers for task n after t rounds and j ≤ t rounds
of selection, respectively. Let x < Y be the collected answer from a

worker whose answer is not included in set Y in round t + 1. Then
we need to prove

−H (θn |X ∪ {x }) +H (θn |X )

≥ −H (θn |Y ∪ {x }) +H (θn |Y ). (18)

which is equivalent to proving

−
∑

θn,Y ,x

Pr (θn ,Y ,x ) log
Pr (θn |X )Pr (θn |Y ,x )

Pr (θn |X ,x )Pr (θn |Y )
≥ 0. (19)

Considering workers accomplish task n independently and the

value of Kullback-Leibler distance is always positive, we can prove

the result. □

With Proposition 4.2 in place, we can describe our mechanism.

INCARE first obtains the bids Φ from all workers, then runs the

winning bid selection scheme to select the winning bid and makes

observations. Finally, INCARE computes the payment for each

winning bid.

4.2.1 Winning Bid Selection Scheme. Algorithm 1 presents the

winning bid selection scheme. The main idea of this scheme is

to greedily select the winning bid ϕmk in round t that maximizes

the marginal value R̂ (ϕmk ),∀ϕmk ∈ Φ per unit cost. Similar to the

scheme proposed by [13], we use a proportional share rule on a

reduced budget B/α , α ≥ 1 to ensure budget feasibility
7
. Intuitively,

a larger α better guarantees the budget constraint, while a smaller α
better utilizes the budget. The choice of α that achieves the budget

feasibility will be shown in the proof of Theorem 4.5.

4.2.2 Payment Scheme. The payment scheme is based on the

characterization of threshold payments that is widely used in exist-

ing work (e.g., [13, 18]) to incentivize truthful reports from workers.

Specifically, given the winning set Φw∗ = {ϕ1, . . . ,ϕi , . . . ,ϕ |Φ
w∗ | }

that reflects the winning bid selection order, we analyze the thresh-

old payment for the i-th winning bid p (ϕi ) which is a maximum of

all the possible prices that the worker with this winning bid ϕi can
declare and still get selected.

Consider running the winning bid selection scheme on an al-

ternate bid set Φ̂ = Φ \ {ϕi } and getting the new winning set

Φ̂w∗ = { ˆϕ1, ˆϕ2, . . . , ˆϕ j , . . . , ˆϕ |Φ̂
w∗ | }. If the worker with bid {ϕi }

wants to be selected in Φ̂w∗
in round j , the maximum price that the

agent with bid {ϕi } can claim in his bid is bi (j ) = min{βi (j ) ,ηi (j ) },

where βi (j ) =
b ( ˆϕ j ) ·R̂i (j )

R̂ ( ˆϕ j )
, R̂i (j ) is the marginal contribution of

worker i in round j, and ηi (j ) =
B
α ·

R̂i (j )
Û
(
{ ˆϕt }j−1t=1∪{ϕ

i }
) . Based on

the intuition of threshold payments [15], we can see that the pay-

ment to the worker with winning bid {ϕi } in the winning set Φw∗

should be

p (ϕi ) = max

j ∈Φ̂w∗

bi (j ) , (20)

where the maximum value is taken over the possible |Φ̂w∗ | rounds

in Φ̂w∗
.

4.3 Analysis of INCARE

In this section, we will analyze the mechanism.

Theorem 4.3. INCARE satisfies the IC condition.

Proof Sketch. We first prove that the winning bid selection

scheme has the monotonicity property, i.e., if a bid ϕmk = (nmk ,b
m
k )

is selected, then a new bid
˜ϕmk = (nmk ,

˜bmk ) with ˜bmk ≤ bmk is also

selected. Then we show that the payment has a threshold nature.

According to the results of [9], we can get the result. □

Theorem 4.4. INCARE satisfies the IR condition.

Proof Sketch. Recall the payment to a winning bid ϕi ∈ Φw
is

calculated based on (20). We first show that bi (j ) ≥ bi for j ∈ Φ̂
w∗

.

Then, based on Theorem 4.3, each worker should reveal his true

cost in the submitted bid. Thus, we have p (ϕi ) ≥ bi = c (n
m
k ), from

which we can get the result. □

7
As shown by [13], standard incentive compatible mechanisms such as the VCG and

its variants are not applicable in a budget-limited setting.
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Theorem 4.5. INCARE is budget feasible if the budget fraction

ratio α = 2. Moreover, an initiator can compute a specific tighter

bound on α ≤ 2 to better utilize the budget.

Proof Sketch. We first show that the maximum price that

a worker with a winning bid ϕ can claim is upper bounded by

2B
R̂ (ϕ )
Û (Φw )

irrespective of the winning bid selection round. Then we

prove that the summation over these upper bounds is equal to B
when α = 2. □

Theorem 4.6. INCARE is computationally efficient, having com-

plexity O ( |Φ|2 log |Φ| + |Φw | · |Φ|2 log |Φ| + |Φ̂w∗ |).

Proof Sketch. As shown in Algorithm 1, the computation com-

plexity for winning bid selection is O ( |Φ|2 log |Φ|). INCARE needs

to run |Φw | times for every winning bid ϕi ∈ Φw
on a set Φ \ {ϕi }.

Then INCARE chooses the maximum value from a set Φ̂w∗
. Thus,

the computation complexity of payment calculation is O ( |Φw | ·

|Φ|2 log |Φ| + |Φ̂w∗ |). □

5 EMPIRICAL EVALUATION

We conduct an empirical study to evaluate the performance of

INCARE. This complements the theoretical analysis by showing

how eliciting workers’ true costs and learning their diverse abilities

across different categories can achieve a high quality outcome given

a limited budget. We compare INCARE to other state of the art

mechanisms that do not include these two actions.

(1) DOCS: As per Section 2, DOCS sequentially selects a task-

worker pair by exploiting workers’ diverse qualities in dif-

ferent categories. However, it does not consider the workers’

varying costs across diverse tasks, nor the expense of elicit-

ing the true costs from workers. Based on the IR condition

(Definition 3.2), a worker will perform tasks only if his payoff

is non-negative, i.e., the reward he received should at least

cover his cost. As DOCS does not know workers’ costs, we

assume the initiator pays each selected worker the average

value of all workers’ costs. We run DOCS until the budget is

depleted or the available workers are exhausted.

(2) Opt-KG: As per Section 2, Opt-KG tackles the budget allo-

cation problem without knowing the tasks’ difficulties and

workers’ qualities. Opt-KG treats a worker’s quality as a sin-

gle level and does not elicit workers’ true costs. Thus, similar

to DOCS, Opt-KG assumes the initiator pays each selected

worker the average cost of all workers and stops the bud-

get allocation process when the budget is depleted or the

available workers are exhausted.

(3) DI-Greedy-MUL: As per Section 2, DI-Greedy-MUL not only

addresses the budget allocation problem but also elicits the

true costs of workers. Similar to Opt-KG, it treats a worker’s

quality as a single level.

We compare the different schemes on a standard real-world

data set for comparing two items based on specified comparison

criteria [3]. We choose this item comparison data set because it

contains category information for each comparison task. There are

3665 instances with four categories: food, NBA, auto, and country,

where each instance is an item comparison pair. Each comparison

task asks workers to compare two items and give a binary choice.
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Figure 1: The accuracy vs. different budget.

For example, a task belonging to category food asks workers to

compare two food items, e.g., Chocolate and Honey, and say which

has more calories. There are 360 comparison tasks where each

category has 90 tasks and 126 different workers. We set a worker

k’s cost for performing a task based on his quality in answering

previous tasks in the same category (the results for other costs

functions are broadly similar). For example, if a quality vector for

worker k for performing tasks belonging to the category set D =

{ f ood,NBA,auto, country} is δk = [0.6, 0.9, 0.5, 0.2], his costs for

performing tasks belong to these four categories are c = 0.01+δk =
[0.61, 0.91, 0.5, 0.2]. Here, 0.01 makes sure that even if a worker’s

quality is 0 for performing tasks in a given category, performing

a task still incurs some cost to this worker as he spends time and

energy to finish a task. We use a linear function (i.e., 0.01 + δk,l )
to calculate a worker’ cost for illustrative purposes (the results for

other costs functions are broadly similar).

As Opt-KG and DI-Greedy-MUL require the prior distributions

of θn ,n ∈ N and δk ,k ∈ K to be a beta distribution, we assume

a Beta(1, 1) prior distribution for each θn and a Beta(4, 1) prior
distribution for each δk for illustrative purpose. Other priors lead

to similar results and are thus omitted here. For a fair comparison,

we let θ0n = 1/2 = 0.5 and δ0k,l = 4/5 = 0.8 as the prior information

in INCARE. We run each scheme 1000 times and report the mean

of the accuracy given a limited payment.

Figure 1 illustrates the achieved accuracy with different budgets.

Here, accuracy is defined as the percentage of tasks whose true

answers are inferred correctly by the mechanism. In this figure, the

error bars are too small to be visible. As we can see, the accuracy

achieved by INCARE is higher than that of other policies under the

same limited budget. Compared to DI-Greedy-MUL and Opt-KG

which both treat a worker’s quality as a single level, the improve-

ment regarding the accuracy is at least 15% when the initiator’s

budget is high (i.e., B = 1300) and 75% when the initiator has a

small amount of money (i.e., B = 300). This is because INCARE

chooses task-worker pairs more wisely by considering workers’

varying abilities for different tasks. As DI-Greedy-MUL elicits ev-

ery worker’s true cost and incentivizes workers to participate, it

performs better than Opt-KG which only pays the average cost for

every selected worker and fails to attract workers that perform the
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Figure 2: The accuracy vs. different percentages of incorrect

task prior information.

tasks to a high standard. Compared to DOCS which also exploits

workers’ diverse qualities, INCARE improves the outcome accu-

racy by up to 40%. Because INCARE can pay the selected worker

based on his real cost and incentivize all the selected workers to

participate, it utilizes the limited budget wisely to achieve higher

quality outcomes. Figure 1 also shows that DOCS outperforms

DI-Greedy-MUL only when the budget is small (B ≤ 500). This

is because with a limited budget, it is more important to exploit

workers’ diverse qualities so that appropriate workers can be re-

cruited for performing tasks across various categories. With the

increased budget, the initiator has sufficient money to learn in-

formation about tasks by recruiting more workers. In such cases,

incentivizing workers’ participation is more important. As DOCS

only pays selected worker the average cost, it fails to incentivize

high-quality workers to participate. Hence, the performance of

DOCS is worse than DI-Greedy-MUL.

Having shown INCARE is cost efficiency, we now investigate

how robust it is for different degrees of accuracy of prior informa-

tion about each task’s difficulty level θn ,n ∈ N .

In this simulation, we let the percentage of incorrect workers

prior information be 30% and fix the budget B = 1300 for illus-

trative purposes (other values give broadly similar results). Note

that in many practical crowdsourcing systems, the initiator can

know workers’ historical performance so that she can keep the

percentage of incorrect workers’ prior information at a relatively

low level. We compare the different mechanisms with different per-

centages of incorrect prior information about the tasks’ difficulty

level, where 0 represents the situation that the initiator knows each

task’s difficulty θn ,n ∈ N perfectly and 1 denotes totally incorrect

information
8
. We run the simulation 1000 times and calculate the

accuracy based on the average value in these 1000 runs.

Figure 2 illustrates the accuracy with different percentages of

incorrect prior information which ranges from 0 to 1. The error bars

8
When the task n’s true difficulty is θn , we set θ 0

n = 1 − θn as the incorrect prior

information about task n. As Opt-KG and DI-Greedy-MUL require the prior distribu-

tions to be a beta distribution, we let the value of θ 0

n be the mean of a Beta distribution

and select the corresponding parameters for this Beta distribution (e.g., θ 0

n = 0.8
corresponds to a Beta (4, 1) prior distribution).

are again too small to be visible. As we can see, INCARE is more

robust to inaccurate prior information about the task’s difficulty

level than the other mechanisms. Even with a totally incorrect prior

distribution, INCARE still achieves 58% accuracy. This is because

INCARE elicits every worker’s true cost and so can utilize its pay-

ments wisely to identify and incentivize the appropriate workers to

correctly update the information about the tasks’ difficulty levels.

As DOCS pays every selected worker the average cost, it fails to

recruit workers of high quality and so progresses less on the task

at hand. With the increased percentage of incorrect task prior in-

formation, DOCS does not have a sufficient number of high-quality

workers to correct the information about the task difficulty, which

results in the low accuracy outcome.

Figure 2 also shows that the performance of both DI-Greedy-

MUL and Opt-KG highly depend on the task prior information.

This is because they both use the variational approximation with a

moment matching technique to update the tasks’ and workers’ in-

formation simultaneously, where the first and second order moment

of tasks’ and workers’ prior information couple together. Recall

that 70% of prior information about workers’ qualities are in line

with workers’ true qualities. When the tasks’ prior information is

consistent with the actual situation, both mechanisms can update

information about tasks’ difficulty levels and workers’ qualities

correctly and the coupling relationship can improve the accuracy.

However, with less accurate prior information about tasks, these

two mechanisms update the first and second order moment of

workers’ information incorrectly based on the incorrect first and

second order moment of tasks’ information. Here, the coupling

relationship enlarges the impact of inaccurate prior information

and degrades the performance of both DI-Greedy-MUL and Opt-KG

significantly. Compared to Opt-KG, DI-Greedy-MUL incentivizes

workers’ participation and so the performance degradation of DI-

Greedy-MUL is lower than that of Opt-KG.

6 CONCLUSIONS

We present a new mechanism that can efficiently deal with crowd-

sourced task-worker allocations under budget constraints. By in-

centivizing workers to report their costs truthfully and considering

workers’ diverse abilities across different task categories, INCARE

produces significant savings for the initiator. We believe that only

by dealing with the interdependencies between workers, tasks,

budgets and incentives can we make steps towards developing prac-

tical, yet theoretically well-founded techniques for crowdsourcing

systems. INCARE is the first such mechanism. Our next step is

to extend the tasks to more complicated crowdsourced activities

such as text editing and semantic analysis, where workers need

to provide subjective information rather than just choosing one

answer from multiple choices. Exploring these complicated settings

will lead to a different formulation and method that will further

the scope of crowdsourcing systems that have strong theoretical

underpinning. Furthermore, we plan to extend INCARE to a highly

dynamic setting where workers can receive and perform tasks at

any time online. Due to the unpredicatable arrival of workers, de-

signing a budget allocation mechanism that anticipates unknown

workers requires further study.
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