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ABSTRACT

Multi-agent reinforcement learning has generally been studied un-
der an assumption inherited from classical reinforcement learning:
that the reward function is the exclusive property of the environ-
ment, and is only altered by external factors. In this work, we break
free of this assumption and introduce peer rewarding, in which
agents can deliberately influence each others’ reward function. We
formalize this more general setting and discuss its properties in
depth. We also empirically study gifting, a peer rewarding mecha-
nism which allows agents to reward other agents as part of their
action space. We demonstrate that this approach can greatly im-
prove learning progression in a resource appropriation setting and
provide a preliminary analysis of the complex effects of gifting on
the learning dynamics.
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1 INTRODUCTION

Multi-agent reinforcement learning (MARL) extends standard rein-
forcement learning to the more realistic scenario where multiple
learning agents must explore and exploit a shared environment [3].
MARL tasks can vary from fully competitive to fully cooperative,
with many variations in terms of the set of allowable interactions
between agents [16].

As a more general setting, multi-agent reinforcement learning
violates one of the core assumption behind a majority of single-
agent methods: due to agents learning and changing their behaviour
throughout the training, MARL is intrinsically non-Markovian: the
distribution of future states and rewards no longer depends only
on the current state and action, but also on the entirety of the
training process for each of the other agents in the environment.
The Markov property could then only be maintained if the internal
state of every agent were made public — an infeasible requirement
in many cases, such as competitive settings. For that reason, MARL
tasks often require optimizing a policy for an ever-changing setting,
and come with their unique set of challenges, including possible
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feedback loops between agents that drive the system away from
optimal collective behaviour [2].

In order to prevent further complications, previous multi-agent
reinforcement learning studies have thus adhered to a simplifi-
cation inherited from classical RL - treating rewards as coming
exclusively from the environment. Although this function can be
non-stationary [1] or even controlled to create a learning curricu-
lum [15], it is assumed that its evolution from one training episode
to the next is only due to an exterior process, beyond the control
of the agents present within the environment itself. In other words,
agents must learn to optimize the assigned reward function of their
environment, but have no means of shaping it.

Whereas this assumption is natural in single-agent RL, it is an
artificial restriction in multi-agent settings and results in agents
learning to interact only insofar as it helps them maximize envi-
ronmental returns. It also greatly restricts the type of interactions
allowed between agents. For instance, it makes it impossible to
simulate negotiations, gifts and trade deals, all of which are at the
core of many interactions within our societies.

It is therefore natural to ask what dynamics arise when we relax
the above assumption and make the reward function perceived by
each agent no longer an exclusive attribute of the environment,
but also dependent on peer rewards: rewards which originate from
agents evolving in the same environment. As this introduces an
even greater agent inter-dependence than merely having them learn
in a common environment, we can reasonably expect many such
models to provide a challenge to current MARL methods. However,
just like non-stationarity can be used as a tool to design a learning
curriculum, we argue that peer rewards can also be beneficial in
accelerating the learning process and promoting stability in multi-
agent systems.

To the best of our knowledge, this work is the first to investigate
peer rewards in the multi-agent reinforcement learning setting. As
such, we seek to lay the groundwork for future progress in this
direction and thus define and analyse what is arguably the simplest
peer rewarding mechanism: deliberate reward passing, or, in short,
gifting.

The first motivation behind peer rewards is, as mentioned above,
to free multi-agent reinforcement learning from the artificial restric-
tion that rewards are exclusively sourced from the environment. In
doing so, we allow for broader and more general settings of interest.
Naturally, some of those settings will prove to be challenging but
interesting tasks, which are necessary in paving the way towards
a deeper understanding and broad application of reinforcement
learning in the real world.

Beyond the challenge, we conjecture that peer rewards will also
prove useful in training MARL systems to develop behaviours that
would otherwise be difficult or nearly impossible to obtain.
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The most obvious effect of enabling agents to reward each other
is that the reward signal becomes more dense, which is known to
generally facilitate learning [17]. In fact, this could lead to agents de-
veloping skills without any form of environment reward; something
that is hinted at in the experiments which we will present later.
Then, if agents successfully learn that the rewards they provide
can influence other agents, they can use them to obtain a desired
collective behaviour. In cooperative settings, peer rewards could
for instance be used to encourage collaboration, or to decrease the
cost of an agent self-sacrificing (i.e. incurring an individual penalty
in favor of a collective gain). In competitive settings, peer rewards
can be used to "buy" information from another agent or to strike
a compromise. In either case, using peer rewards draws strong
analogies to behaviour shaping, as introduced by Skinner in the
field of experimental psychology, where an animal can be drawn to
behave unnaturally by incrementally rewarding behaviours close
to a target one.

Note that we also expect peer rewards to help with the explo-
ration problem that is the crux of reinforcement learning. For in-
stance, assuming agents can observe each other, an agent could
reward others for visiting a state of which it is particularly uncer-
tain, or that it suspects may be unsafe.

Finally, we hope that studying peer rewards in reinforcement
learning will eventually help modelling and understanding social
animals, in particular those with swarming behaviours, such as
bees or ants.

2 BACKGROUND AND RELATED WORK

There exists a vast body of research on multi-agent reinforcement
learning, with each work addressing one of the many challenges of
the field [16].

One such challenge tackled by MARL studies is how to enable
agents to learn to coordinate to solve a task. This has often been
achieved by having all agents maximize a common shared reward
[6, 12, 13]. However, this method is limited to the fully cooperative
setting, where agents have no opposing interests. As a result a
lot of effort in recent years has been dedicated towards proposing
more complex coordination methods, often by enabling agents with
additional capabilities. For instance, in emergent communication
studies, agents are allowed to share information, and must learn a
common language to do so effectively [7]. In opponent modelling,
agents are no longer treated as simple parts of the environment, but
recognized as capable of learning and agency [8], which enables
reasoning about other agents’ behaviour and therefore can lead to
more complex interactions.

Our paper utilises the Harvest environment introduced by Per-
olat et al., and we refer to their work throughout the paper since
many of our findings naturally relate to theirs. Others have also
sought to encourage coordination in the Harvest environment, but
have done so through providing agents with intrinsic motivation
based on their social influence, rather than a direct reward transfer
mechanism between agents [11].

Part of our approach and discussion can be related back to cur-
riculum learning, where an RL agent is training through a sequence
of tasks that are selected to be progressively harder, with the goal
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of ultimately maximizing reward in a complex target task [15]. Al-
though curriculum learning has typically been reserved to classical
RL settings, it has also been successfully used for multi-agent ones
[9].

Finally, we also draw parallels with works from the evolutionary
biology field, in particular those concerned with reciprocal altruism
between organisms [21, 22].

3 OUR APPROACH

As this is the first work to study peer rewarding, we strive for
simplicity of design throughout our approach.

First, we avoid any form of agent modelling or inter-agent com-
munication and enable agents to perceive each other only through
observations from the environment. This allows us to isolate the
effects that peer rewards have on the learning progression of the
system, without interference from other methods that can alter
behaviour (for instance, by actively promoting cooperation).

Second, simplicity was also behind the choice of peer reward-
ing mechanism to analyse in this work. We focus exclusively on
deliberate reward passing, or gifting in short. We define a gift to be
areward given to an agent a; as a direct and immediate effect of a
deliberate action of an another agent a;. In particular, the rewards
that agent a; obtains from receiving a gift are independent from
those it receives by acting upon the environment. Note that, like
any other action, gifting is mediated by the environment and so
may be subject to limitations. For instance, agents may be able to
gift only to agents within a given range or gift values might be
restricted.

Finally, we are interested in emergent behaviour and in evaluat-
ing whether standard reinforcement learning methods can naturally
learn to employ reward gifting. As a result, we do not prescribe
when an agent should gift and instead elect to simply modify the
capabilities of the agents by extending their action space A with a
reward gifting action. The onus is therefore on the RL algorithm at
hand to correctly explore and learn to utilize gifting.

3.1 Gifting Mechanics

Naturally, gifting must be actuated by the environment. Therefore,
designing any gifting mechanic (or, more broadly, any peer reward-
ing mechanic) necessarily makes assumptions about the structure
of the environment. For instance, if a gift is to be distributed to all
agents within range, as is the case for the mechanics that are of
concern here, it is implied that the environment has a notion of
agent positioning.

Now we detail the three gifting mechanics which are analyzed
in this paper.

Zero-Sum. This mechanic imposes no restriction on the number
of times an agent can pick the gifting action within an episode.
However, each time it elects to send a gift of value g, it incurs an
immediate penalty of —g.

This type of gifting incorporates the principle that "what I give
is what I lose", which is the essence of most of our daily monetary
transaction. It also corresponds to reciprocal altruism observed in
the animal kingdom, defined as a "behaviour that benefits another
organism [...] while being apparently detrimental to the organism
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performing the behaviour", with the expectation of reciprocity from
the receiving organism at a later time [22].

This mechanic is of particular interest because it assumes that
both the gifting and the receiving agent value the gift equally, which
makes the the transaction zero-sum from a game theoretic perspec-
tive. This also implies that no net reward is added to the total reward
pool, and so the average obtainable return per agent remains un-
changed regardless of the number of gifts being exchanged. Finally,
the constant penalty means that the action is discouraged unless it
indirectly provides an advantage.

Fixed Budget. In this case, agents are allocated a fixed "budget”
of size B at the start of each episode, which is decremented by g each
time the agent chooses to gift. Once the budget is depleted, gifting
is no longer available as an action until the end of the episode. Note
that in this case, agents cannot themselves draw rewards from their
own gift budget and they are not penalized for gifting.

This draws direct inspiration from economic incentives that a
government might give a company to encourage a specific corporate
behaviour (such as to perform the switch to green technology).

In this case, the action of gifting increases the total reward pool.
Thus, if agents select it with sufficient frequency and if B is large
enough, the rewards obtained through gifting could potentially
shift the focus of the system away from optimizing environmental
rewards.

Replenishable Budget. This mechanic is similar to the above,
but relies on the added assumption that environment rewards can
be obtained throughout the episode, and not only at the end (upon
reaching a goal). Each agent now starts with an initial budget B = 0,
which is incremented as a function of the rewards it can collect
from the environment. In this paper, we increment the budget
by a fixed fraction of the environment rewards collected, albeit
a stochastic scheme can also be easily implemented. Note that to
prevent undesired feedback loops, we only increment an agent’s
budget if it collects a reward from the environment, not if it receives
a gift.

Gifting with this mechanic also increases the total reward pool
and so many intuitions are the same as for the fixed budget. How-
ever, it adds a dependence between rewards that agents collect from
the environment and their capacity of gifting, which can potentially
model scenarios where individuals become more influential as their
fitness or possessions increase.

4 EXPERIMENTS
4.1 Setting

As a setting for the empirical study of deliberate reward passing,
we choose the problem of common pool resource appropriation
(CPR), where agents exploit a shared resource to their individual
benefit, while being careful not to over-exploit and deplete the pool,
thus hurting everyone’s return. This problem was first studied in
the reinforcement learning community through the Harvest envi-
ronment introduced in Perolat et al. [18]. We re-implement this
environment for the purpose of the paper, building on top of the
MiniGrid repository [5].

In Harvest, seen in Fig. 1, there are 10 agents competing for
collecting apples, each of which gives an immediate reward of 1
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Figure 1: Our implementation of the Harvest environment.
Apples are in green, agents in red. Agents employ embodied
vision, meaning they only observe a limited are in front of
them at any given time.

when eaten. Apples do regenerate, but at a rate dependent upon the
number of remaining apples in the immediate vicinity. This means
that if a region becomes entirely depleted at any given point, no
more apples will grow there until the end of the episode. Therefore,
in order to maximize their return, agents must learn to collect
apples sustainably, without depleting the environment altogether.
In addition, agents are equipped with a "laser beam", with which
they can tag other agents. Once tagged, an agent is removed of the
environment for 25 frames before being brought back in. Tagging
another agent provides no reward to the agent that fired the beam,
but momentarily reduces the competition it faces for collecting
apples. Similarly, an agent receives no negative reward for being
tagged, but cannot gather apples or receive any gifts until it returns
to the game.

The agents in the work of Perolat et al. do ultimately converge
to a collectively sustainable behaviour by tagging each other in
order to reduce the effective population to the carrying capacity
of the environment. However, they only do so after traversing a
period of greedy behaviour for all agents, which is marked by a
quick depletion of the resource pool and a very small return per
agent. This period is called the "tragedy of the commons", and is a
well known problem in economy [10].

Because artificial agents traversing a tragedy of the commons
could have potentially disastrous consequences if deployed in a real
resource exploitation scenario, and because CPR as a task presents
a non-trivial mix of competition and cooperation, we consider the
Harvest environment to constitute an excellent test case for the
benefit of reward gifting in multi-agent reinforcement learning.

In addition to the laser beam, we also equip agents with a "gifting
beam". Then, when an agent chooses the gift action, a gift of value
g = 1 is equally split among all other agents within the beam
range. Both beams have the same range, and the gifting is regulated
according to one of the three mechanics described in section 3.1.
Note that the gifting beam does not tag agents. Thus, if the laser
beam consists of an indirect punitive action, the gifting beam is
a direct rewarding action. For agents with a fixed budget, we set
B = 40 and for those with a replenishable budget, we increased the
budget by 1 for every 2 apples collected.
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Agents perceive the environment through a first-person partial
observation in the RGB domain (see [18] for details). For agents
with a budget, their current budget is also provided through the
observation array. Additionally, we choose to let actions be private
and agents be indistinguishable of each other. This is done for
scalability reasons, as keeping a different firing and gifting policy
for each different agent becomes intractable.

Finally, for both simplicity and scalability to systems with a large
number of agents, we steer away from agent modelling and let each
agent be controlled by a Deep Q Network [14] — one of the simplest
and best understood RL algorithms, and also the one previously
used on Harvest by Perolat et al..

We intend on releasing the full code-base, including trained
models, for open access in the upcoming months.

4.2 Evaluation Metrics

We use the same social metrics! to evaluate our agents as those used
in Perolat et al. [18]. Let fl.t and git be the environmental rewards and
the peer rewards obtained by agent i on step t respectively, and let
rl.t = Fl.t +gf. Define R; := Zthl rl.t to be the return of the agent over
an episode, where T is the horizon, set to 1000 in our experiments.
Finally, let N be the number of agents in the environment (N = 10
in our case).

The four metrics are: the average return (R) per agent, Sustain-
ability (S), measuring the average time at which environmental
rewards are collected, Peace (P) measuring the average number of
agents that are untagged at any given point, and Equality (E), given
by 1 minus the Gini inequality index. Formally?:

1 & 1
~t
R= N ;:1 Ri, S= N izgl ti, where t; := B[t|F] > 0],

Zf\il Z]]\il |Rl _R]|
:NYN R

s

N N
1 o
P=N- 7 ; ; I{agent i timed-out on step t}.

4.3 Results

We study the behaviour of agents equipped with one of the three
gifting mechanics described in section 3.1. We also reproduced the
behaviour of agents devoid of gifting, matching closely the results
reported in Perolat et al. [18], to serve as a comparison baseline.
All curves are averaged over 4 sets of hyper-parameters, each eval-
uated over 10 episodes with randomized agent starting positions.
The shaded area around each curve represents the maximum and
minimum values observed.

Figures 2 and 3 respectively show the average return and sustain-
ability obtained by each model. Both metrics are highly correlated,
which is to be expected. All models have a very similar performance
in the early stages of training (<1000 episodes). Past that mark, sus-
tainability and return drop, with both the baseline and the two
budgeted gifting models falling into a tragedy of the commons of

1We replace Efficiency by the average return, but both are equivalent up to a constant
factor.
2] represents the indicator function.
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Figure 2: Average return per agent for the three gifting me-
chanics and baseline, plotted throughout training. Agents
employing zero-sum gifting are the only ones suffering no
return drop from the tragedy of the commons.
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Figure 3: Sustainability for the three gifting mechanics and
baseline, plotted throughout training. The zero-sum models
see a small dip in performance before quickly recovering
and converging to the final performance. The baseline and
budgeted models only do so after suffering a great tragedy.

equal magnitude and duration, lasting roughly between episodes
1500 and 3500. Agents equipped with zero-sum gifting also see
a small performance decrease, most visible on Fig. 3, but recover
almost immediately, avoiding the tragedy and converging to their
optimal performance around the 2500 episode mark, nearly 2000
episodes earlier than the other models.

Perolat et al. found that agents devoid of gifting solve the tragedy
of the commons and increase sustainability by resorting to using
their tagging beam more often to reduce competition over apples.
The system then stabilizes once the average number of untagged
agents (the Peace) is brought down to the carrying capacity of the
environment. We observe the same effect in in Fig. 4 of our results.
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Figure 4: Peace metric for the three gifting mechanics
and baseline, plotted throughout training. Zero-sum agents
make active use of the firing beam much earlier in training,
but all models converge to the same final value.

The curves for the budgeted models match the baseline closely, but
the zero-sum exhibits greater conflict earlier in training, reaching a
plateau much faster — around the same time as the agents converge
to obtain their peak return. Also note that all models converge to
the same peace value, indicating that the different gifting mechanics
have little effect on the carrying capacity of the environment.

Finally, equality (Fig. 5) can be seen to be mostly unaffected by
reward gifting, whether it is governed by a budgeted or zero-sum
mechanic. The very low starting equality of agents with zero-sum
gifting is only a transient effect resulting from agents sharing more
gifts than the number of apples they collect. Once agents learn to
be better gatherers and the gifting rate drops, the effect is quickly
eliminated, as seen on the bottom plot of Fig. 5. Then, all systems
reach the same level of return equality between the agents. Note that
we do not expect perfect equality, since there can be a significant
advantage granted by an agents’ starting position.

5 DISCUSSION

The results in the previous section demonstrate the complex effects
that peer rewards can have on the agents’ learning progression and
speed of convergence to an optimal behaviour. The experiments
also demonstrate that careful consideration must be given to the
design of the rewarding mechanisms, as they can lead to drastically
different outcomes. In this section, we analyse the empirical results
obtained, and dissect the impact of gifting on the learned behaviour.

It is obvious from section 4.3 that only agents equipped with
the zero-sum gifting mechanism successfully avoided the tragedy
of the commons. Indeed, both the fixed budget and replenishable
budget gifting models were consistently subject to the same drop
in performance observed in the baseline.

We are able to distinguish at least two ways in which zero-sum
gifting differs from the other models, allowing the agents to avoid
the tragedy of the commons: an early appreciation of tagging and
a slowdown of the descent into a greedy behaviour.
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Figure 5: Top: Equality for the three gifting mechanics
and baseline, plotted throughout training. Bottom: Average
number of steps spend by zero-sum agents with a negative
cumulative return up to that step. The low equality of the
zero-sum model in early stages is due to agents gifting more
than they gather and observing the resulting negative re-
turn. This is just a transient effect, and quickly all models
converge to the same equality score.

Improved Tagging. As mentioned previously, systems of zero-
sum agents see their Peace metric — an inverse measure of conflict
— decrease significantly earlier than all other models. We believe
this is due to an interplay between firing and gifting, and to the ¢-
greedy training method. Indeed, since we randomize actions during
training, each agent will effectively be forced to gift at times, espe-
cially during the early training episodes (we start with ¢ = 1 and
decrease it linearly). If there are other agents present within range,
areward is transferred, and the gifting agent incurs an immediate
negative reward. Thus, because the tagging beam and the gifting
beam share the same range, zero-sum agents may learn much ear-
lier to tag each other, with the goal of removing agents in front of
them and ultimately avoiding the penalty of a forced gift action. In
other words, tagging for zero-sum agents is not only incentivized
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Figure 6: Firing rate for the three gifting mechanics and base-
line. All models increase their firing rate when they begin
encountering the tragedy of the commons. Firing rates then
decrease as agents become more accurate with the beam.
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Figure 7: Gifting rate for the three gifting mechanics and
baseline. All gifting rates ultimately approach zero as an ef-
fect of best-response dynamics.

as a way of reducing competition for apples, but also of avoiding
negative rewards induced by forced gifting during training.
However, zero-sum gifting does not in fact render the agents
more aggressive towards each other, despite what the Peace metric
could indicate. Looking at Fig. 6 reveals that agents enabled with the
zero-sum mechanic generally have a much lower firing rate than
the other models. In fact, for a majority of the time corresponding to
the tragedy period, the frequency at which zero-sum agents select
the tagging action on average is approximately a quarter that of
the baseline, and less than a half that of the two budgeted gifting
models. Reconciliation between the firing frequency and the much
lower Peace score of zero-sum agents can only be obtained if the
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latter are effectively more accurate when aiming. Thus, the zero-
sum gifting mechanic enables agents to quickly learn to master
the tagging beam by further incentivizing its use during the early
stages of training. Consequently, agents become skilled with the
tagging beam before it even becomes necessary to regulate the
exploitation of the resource pool. This is therefore solid evidence
that peer rewards can greatly allow for improved skill acquisition,
possibly without even the need for environmental rewards.

An early mastery of the tagging beam is then one of the key
phenomena that allow zero-sum agents to avoid the tragedy of
the commons. Indeed, with this skill already acquired, zero-sum
agents merely have to learn to use it more often once the return
begins to drop as a result of greedier gathering. That knowledge
is easily acquired, judging by the fact that, in Fig. 6, all models see
a rise in their firing rate almost immediately after a decrease in
returns. By contrast, the budgeted models and the baseline not only
have to learn that tagging is necessary, but also how the tagging
beam works (i.e. what its range is). That is the reason why those
models see their firing rate spiking much higher after hitting the
tragedy of the commons. Then, as learning progresses and returns
stabilize, they too learn to use the tagging beam accurately, leading
to a decrease in their firing rate, all while maintaining the effective
population at the carrying capacity.

Note however that models with budgeted gifting still require a
somewhat lower firing rate than the baseline to obtain the same
effective population. This is in spite of them not benefiting from
the same interplay between tagging and the gifting penalty, as
described for the zero-sum mechanic. We attribute that to the fact
that the tagging beam and the gifting beam share the same range.
Indeed, we conjecture that the range of both beams is learned by
the same part of the neural network controlling each agent, rather
than attempting to learn each range separately. Then, whenever an
agent elects the gifting action, it also simultaneously learns about
the tagging range, regardless of if the gifting was successful. This
provides a second piece of evidence in favor of considering peer
rewards as a tool to accelerate skill acquisition.

Reduced Greed. Given the complex relationship between fir-
ing and gifting, it would be easy to rule it as the only explanations
behind the usefulness of zero-sum gifting in avoiding the tragedy
of the commons. However, having a closer look at Fig. 3 and 4 to
simultaneously compare the sustainability and peace scores reveals
a richer picture. Indeed, observe that, for an equal peace level, the
return and sustainability of zero-sum systems can differ greatly
from those of the baseline or the budgeted systems. This can be
taken as a hint that zero-sum agents are not merely better at tag-
ging, but also better at gathering sustainably, at least during the
period of training where the Peace gap exists.

We can gain additional insight by evaluating the very agents
studied in section 4.3 in a setting where both tagging and gifting
are disabled. In doing so, we essentially remove all direct agent
interactions to disentangle the agents’ attitude regarding their own
exploitation of resources from their tendency to regulate others.
Because we did not build our networks to handle a variable number
of actions, we simply take the argmax over the output layer, exclud-
ing entries corresponding to the tagging and gifting actions. Note
that we do not retrain the models. We simply saved the models
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Figure 9: Sustainability when gifting and firing are disabled.

at regular interval during the initial experiments and re-evaluate
them here.

As we can see in figures 8 and 9, all agents suffer greatly from
not having access to the tagging and gifting beams, failing to re-
cover a sustainable use of the resource pool after adopting a greedy
behaviour. This is to be expected, since all systems overcome the
tragedy of the commons in great part by learning to reduce the
effective population to the carrying capacity of the environment.
From a game theoretic perspective, the outcome observed in the
no-interaction regime corresponds to the Nash equilibrium of the
setting. Indeed, if any one agent was to reduce its own gathering to
avoid depleting the resource pool, it would only be taken advantage
of by the other agents, and its return would be ultimately lower.
Thus, an aggressive exploitation of resources is a best response
when tagging is not an option.

However, it can again be seen that the zero-sum gifting me-
chanic results in a different behaviour progression, with the descent
towards greedy gathering being slowed down. Indeed, between
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episodes 1500 and 3000 of training, zero-sum agents have a more
sustainable behaviour, effectively refraining at times from collect-
ing isolated apples. Cross-checking with Fig. 7, we see that gifting
for the zero-sum models reaches a plateau that coincides with its
descent into greediness. We believe therefore that this slower de-
scent observed in the no-interaction regime is attributable to agents
using gifting during training to encourage restraint. As a result,
agents learn how to better avoid depleting the resource pool, even
though they ultimately do become greedy gatherers by following
best-response dynamics.

A natural question to ask is: if zero-sum agents can slow down
their descent into greediness, why couldn’t agents with a budgeted
gifting mechanic do the same? We believe the answer lies in how
easy it is to learn the range and mechanics of each type of gifting,
which is tightly linked to the feedback density for choosing the gift-
ing action. In the case of the zero-sum mechanism, the gifting agent
receives a negative reward if and only if there are others in range,
allowing to quickly learn the workings of the beam. For budgeted
gifting, there are no rewards (positive or negative) associated with
gifting. Instead, the budget is simply incremented or decremented
based on the actions taken. Additionally, if the budget is depleted,
a gifting action is unsuccessful even if there are agents in range,
further blurring the information received and making the range
even harder to learn.

The fact that agents with a budget-based mechanism receive no
reward whatsoever for gifting whereas those with zero-sum gift-
ing do also means that they experience a different reward density.
Since denser rewards — positive or negative — are known to facili-
tate reinforcement learning, this could also server as an additional
explanation as to why zero-sum agents perform generally better
and converge to their end behaviour much faster.

5.1 Links to Evolutionary Biology

We conclude this section by a discussion on the links between di-
rect reward passing and the reciprocal altruism observed in the
animal kingdom. Reciprocal altruism, as introduced by Trivers, en-
compasses any action by which an organism decreases its own
immediate fitness to increase the fitness of another, with the expec-
tation of reciprocity in the future [22]. The fitness is understood
here in broad terms, but for the purpose of reinforcement learn-
ing, can be thought of in terms of rewards. Thus, an agent can be
deemed altruistic if it voluntarily incurs a loss (or the risk of a loss)
to allow another agent to observe a gain. By that definition, agents
gifting with the zero-sum mechanism (and to a lesser extent with
the budgeted mechanisms) exhibit an altruistic behaviour.
Looking at Fig. 7, it is obvious that all models ultimately refrain
from gifting. Note that this holds for budgeted models as well, as
although their respective curves do not go to zero, it is only because
they occasionally use the gift action as a placeholder for waiting
(no-op) when their budget is depleted. Intuitions from game theory
can easily justify why agents stop gifting: it is a best response
for any one agent to instead selfishly take advantage of others’
generosity, all while focusing on gathering more apples. However,
this raises the following question: what would it take for agents to
not defect and instead converge to a common altruistic behaviour?
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The complete answer likely depends on the dynamics of each
environment, but Stephens [21] provides two key conditions that
are necessary for reciprocal altruism to emerge. Those conditions
were formulated in the context of the evolution of biological or-
ganisms, but translate naturally to reinforcement learning agents.
The first condition is that a very large number of opportunities for
altruism must exist, such as to have reasonable expectations of reci-
procity. This is of course easily satisfied by the number of frames
used in a typical RL experiment. The second condition, much less
trivial, is that there must exist a mechanism by which to identify
"cheaters" — agents reaping the benefits of others’ altruism without
reciprocating. This condition is necessary so that agents can learn
to avoid being exploited by such cheaters, or even punish them
to discourage selfish behaviours with regards to the peer rewards
shared.

In the Harvest environment, this could for instance translate
into each agent having an identifier that would distinguish it from
all others. Such an approach would not scale, however, because
it would then require to learn a different gifting policy for each
distinct agent lying in the range of the gifting beam. The design
of scalable mechanisms for detecting cheaters is therefore worth
studying in future works.

6 CONCLUSION

In conclusion, this is the first work that studies the effects of peer
rewards in multi-agent reinforcement learning. Our empirical re-
sults show that multi-agent systems can undergo multiple phases
throughout their learning progression, corroborating the findings
of Perolat et al.. We also find that the behaviour can vary drastically
from one model to the next and that the characteristics of each
phase, such as if the agents traverse a performance drop or not,
is dependent upon the tools available and the level of mastery for
each of them.

In particular, we demonstrate that deliberate reward passing —
or gifting - can be a simple yet powerful way for both altering the
learning progression of multi-agent systems and for helping them
acquire skills that are a priori unrelated to the gifts. In particular,
the zero-sum gifting mechanism, where an agent incurs a negative
reward to distribute a positive reward of equal magnitude to nearby
agents, proved to be the most influential in driving the evolution of
the system’s behaviour. Indeed, in the experiments performed on
the common pool resource appropriation environment called Har-
vest, zero-sum gifting acted as both a facilitator for the acquisition
of the tagging skill and as a way for agents to incentivize each other
to maintain a sustainable gathering. Consequently, the agents suc-
cessfully avoided the tragedy of the commons that plagued all the
other models tested, and which constitutes a well known problem
in economy [10].

Since this is the first study enabling agents to participate in
each other’s reward function, we aimed to establish the empirical
groundwork for future research in this direction. For that reason,
we took many experimental decisions with simplicity and scala-
bility in mind. However, peer rewards allow for a vast range of
novel interactions in MARL, each with the potential of inducing
complex behaviours. Hence, we see three main directions in which
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future studies could push our understanding of peer rewards in
reinforcement learning.

The first is to treat peer rewards as a challenge, by designing
environments where learning when or how to share rewards is
a necessary step towards solving a task. Such settings could be
of particular interest for studying emergent communication and
automated negotiation between agents, or for testing all works
attempting opponent modelling.

The second, as mentioned in our discussion, is to leverage peer
rewards as a tool for training and stabilizing multi-agent systems.
Indeed, we demonstrated in our experiments that peer rewards can
help in promoting a collectively good behaviour even with entirely
self-interested agents. We also show that deliberate reward passing
— a direct form of peer rewards — can allow agents to acquire skills
much faster, likely without requiring any environmental rewards
at all. More so, suppose that the peer rewarding mechanic shares
characteristics with a target action that we wish our agents would
master, as was the case with the range of the gifting and tagging
beams in our experiments. If that is the case, one could perform
a type of curriculum learning by first allowing agents to interact
only through the peer rewarding mechanism, before introducing
the target action at a later stage of training. If done correctly, we
conjecture that in many cases the agents will learn much faster to
use the new action proficiently.

The projected benefit of peer rewards as a tool goes beyond
just skill acquisition however. As described at the beginning of
the paper, we can imagine agents using rewards as incentives to
guide each other towards states of which they are uncertain. They
may help coordination, for instance by allowing agents to place
incentives, akin to bids or contracts, on desired outcomes. This
would also have the added benefit of allowing cross-pollination
between multi-agent reinforcement learning and auction theory
[4], a subbranch of economics and game theory.

Finally, peer rewards enable us to perform more complex and
realistic simulations of real multi-agent systems, such as markets
or swarms of insects. In fact, as a side note, it may now be possible
to design environments devoid of environmental rewards that still
enable agents to learn. This is worth investigating because it im-
proves the applicability of reinforcement learning as a modelling
tool in other fields. Additionally, placing reinforcement learning al-
gorithms in novel settings and studying them like a biologist would
study an organism can provide insights that a more benchmark-
oriented approach would miss. This is in fact part of the approach
that we strive for in this paper, with loose inspiration from Perolat
et al. [18] and Rahwan et al. [19].

In this line of work, we personally wish to investigate in the
near future the effects of deliberate reward passing in settings were
"cheaters" are easily identifiable, such as to satisfy all necessary
conditions for the emergence of reciprocal altruism. We also aim to
study the emergent behaviour of multi-agent systems optimizing
exclusively for peer rewards.
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