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ABSTRACT
We tackle a fundamental problem in empirical game-theoretic anal-

ysis (EGTA), that of learning equilibria of simulation-based games.

Such games cannot be described in analytical form; instead, a black-

box simulator can be queried to obtain noisy samples of utilities. Our

first theorem establishes that uniform approximations of simulation-

based games are equilibrium preserving. We then design algorithms

that uniformly approximate simulation-based games with finite-

sample guarantees. Our first algorithm, global sampling (GS), ex-

tends previous work that constructs confidence intervals assuming

bounded utilities with confidence intervals that are sensitive to vari-

ance. The second, progressive sample with pruning (PSP), samples

progressively, ceasing the sampling process (i.e., pruning strate-

gies) as soon as it determines that the corresponding utilities have

been sufficiently well estimated for equilibrium computation. We

experiment with our algorithms using both GAMUT, a state-of-

the-art game generator, and Gambit, a state-of-the-art game solver.

For a broad swath of games, we show that GS using our variance-

sensitive bounds outperforms previous work, and that PSP can

significantly outperform GS. Here “outperform” means achieving

the same guarantees with far fewer samples.
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1 INTRODUCTION
Game theory is the de facto standard conceptual framework used to

analyze the strategic interactions among rational agents in multi-

agent systems. At the heart of this framework is the theoretical

notion of a game. In a game, each player (also referred to as an

agent) chooses a strategy and earns a utility that in general depends

on the profile (i.e., vector) of strategies chosen by all the agents.

The most basic representation of a game is the normal form,

which can be visualized as a matrix containing all agents’ utilities

at all strategy profiles. Analyzing a game means predicting its

outcome, i.e., the strategy profiles that one can reasonably expect

the agents to play. Perhaps the most common such prediction is
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that of Nash equilibrium, where each agent plays a best-response

to the strategies of the others: i.e., a strategy that maximizes their

utility [20]. More generally, at an ε-Nash equilibrium agents best

respond to other agents’ strategies up to an additive error of ε .
This paper is concerned with analyzing games for which a com-

plete and accurate description is not available. While knowledge

of the number of agents and their respective strategy sets is avail-

able, we do not assume a priori access to the game’s utility func-

tion. Instead, we assume access to a simulator from which we can

sample noisy utilities associated with any strategy profile. Such

games have been called simulation-based games [33] and black-box

games [22], and their analysis is called empirical game theoretic

analysis (EGTA) [13, 34]. EGTA methodology has been applied in a

variety of practical settings for which simulators are readily avail-

able, including trading agent analyses in supply chains [13, 32],

ad auctions [1, 15], and energy markets [16]; designing network

routing protocols [35]; strategy selection in real-time games [27];

and the dynamics of RL algorithms, like AlphaGo [28].

The aim of this work is to design learning algorithms that can

accurately estimate all the equilibria of simulation-based games.

We tackle this problem using the probably approximately correct

(PAC) learning framework [29]. Our algorithms learn so-called em-

pirical games [34], which are estimates of simulation-based games

constructed via sampling. We argue that empirical games so con-

structed yield uniform approximations of simulation-based games,

meaning all utilities in the empirical game tend toward their ex-

pected counterparts, simultaneously.

This notion of uniform approximation is central to our work:

we prove that, when one game Γ′ is a uniform approximation of

another Γ′′, all equilibria in Γ′ are approximate equilibria in Γ′′. In
particular, when an estimated game Γ̂ uniformly approximates a

(true) game Γ, all equilibria in Γ are approximate equilibria in Γ̂,
and all equilibria in Γ̂ are approximate equilibria in Γ. As a result, a
uniform approximation implies perfect recall

1
(all true positives—

equilibria in Γ—are at least approximate equilibria in Γ̂) and ap-

proximately perfect precision (all false positives—equilibria in Γ̂ but

not necessarily in Γ—are at least approximate equilibria in Γ). Our
learning algorithms, which learn empirical games that are uniform

approximations of simulation-based games, thus well estimate the

equilibria of simulation-based games.

Estimating all the utilities in an empirical game is non-trivial,

in part because of the multiple comparisons problem (MCP), which

arises when estimating many parameters simultaneously, since ac-

curate inferences for each individual parameter do not necessarily

imply a similar degree of accuracy for the parameters in aggregate.

1
We use the term recall in the information retrieval sense. The juxtaposition of the

two words “perfect” and “recall” is not a reference to extensive-form games.
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Controlling the family-wise error rate (FWER)—the probability that

one ormore of the approximation guarantees is violated—is oneway

to control for multiple comparisons. We control the FWER in em-

pirical games by first using a concentration inequality to establish

confidence intervals about each parameter individually, and then

applying a statistical correction (e.g., Bonferroni; in other words,

a union bound) to bound the probability that all approximation

guarantees hold simultaneously.

The first concentration inequality we apply is Hoeffding’s [1963].

We note that Hoeffding’s inequality implies sub-Gaussian tail bounds

for averages ofm c-bounded random variables, yielding 1 − δ prob-

ability confidence intervals of width Θ
√
c2

ln(1/δ)/m. Hoefdding’s

inequality, however, is sensitive only to the range c of the random
variables, not their variance σ 2

. Bennett’s inequality [1962] relaxes

the dependency on c , replacing it with a dependency on σ 2 < c2
,

yielding width Θ

(
c ln(1/δ)

m +

√
σ 2

ln(1/δ)
m

)
; i.e., a sub-gamma tail bound.

Tighter still would be to use Gaussian tail bounds, which yield

Θ
√
σ 2

ln(1/δ)/m. However, the central limit theorem does not pro-

vide finite sample guarantees, and any approximation errors are

amplified in a MCP setting; when applied to games, a single mistake

can lead to a cascade of mistakes in equilibrium estimation.

Thus, we resort to sub-gamma tail bounds, which still drastically

improve the situation because of the presence of a fast-decaying,

hyperbolic O (1/m) term in addition to the usual root-hyperbolic

O (1/
√
m) term. The fast-decaying range term is initially the domi-

nant factor, but it is quickly overcome by the variance term. When

the variance is substantially less than c2
, these variance-sensitive

bounds are substantially tighter than Hoeffding’s. They are also

of particular interest when only a loose bound on c is available, or
in cases where extreme outliers are unlikely albeit possible, thus

avoiding the pitfalls of the central limit theorem. In both cases, c
rigorously controls for the possibility of a rare event.

As the variance is not generally known, we present a 2-step

strategy wherein the variance is upper-bounded in terms of the

empirical variance,and the expectation is then upper-bounded by

Bennett’s inequality in terms of this upper bound, appropriately

corrected for the MCP. Analogous to the use of Hoeffding’s bound

in [28], our new bound (on the expectation) immediately gives rise

to a novel algorithm by which to learn an empirical game from a

static sample of utilities. We refer to this algorithm generically as

global sampling (GS), and instantiate with both bounds.

We also describe a second learning algorithm, progressive sam-

pling with pruning (PSP), which samples dynamically. Prior art [9,

24, 25] uses progressive sampling to obtain a desired accuracy given

a failure probability by guessing an initial sample size, computing

Rademacher bounds, and repeating with larger sample sizes until

said accuracy is attained. Our work complements this approach

with pruning: at each iteration, parameters that have already been

sufficiently well estimated for the task at hand (here, equilibrium

estimation) are pruned as subsequent iterations of PSP do not refine

their bounds. Pruning represents both a statistical and computa-

tional improvement over earlier progressive sampling techniques.

Finally, we report on extensive experiments designed to evaluate

the performance of our algorithms. Producing a robust empirical

evaluation is a daunting task, as the space of possible games is vast.

Moreover, computing equilibria is computationally intractable [7].

Fortunately, researchers have devised tools to address these is-

sues. The first, GAMUT, is a state-of-the-art suite of game gener-

ators capable of producing a myriad of games with rich strategic

structure [21]. The second, Gambit, is a state-of-the-art solver to

compute Nash equilibria [19]. We use both GAMUT and Gambit

to evaluate the performance of our algorithms. Concretely, for a

wide variety of game types, we draw multiple random game in-

stances from GAMUT, and for each such instance, we solve for

its equilibria using Gambit. Using our variance-sensitive bounds

within GS outperforms Hoeffding’s; and PSP, with either bound,

can significantly outperform the corresponding GS algorithm. Here

“outperform” means achieving the same guarantees with far fewer

samples—exponentially fewer for PSP in sufficiently large games

(in our experiments, two players with ten or more strategies each).

This paper purports to contribute to the literature on EGTA, a

methodology for the analysis of multi-agent systems. One impor-

tant application of ourmethodology is the estimation of equilibria in

meta-games [27]. Meta-games are simplified versions of intractably

large games, where, instead of modeling every possible strategy an

agent might implement, one analyzes a game with a substantially

reduced set of strategies, each of which may be given by a compli-

cated algorithmic procedure (i.e., a heuristic). That is, instead of

analyzing a game in terms of its (low-level) formal game-theoretic

strategies—a computationally intractable task in a game such as

Go—one might analyze a reduced version of the game where agents

play according to higher-level strategies given by reinforcement

learning algorithms: e.g., variants of AlphaGo [26]. Simulation is in

order; and since each run of the game can result in either agent win-

ning (depending on various stochastic elements, including perhaps

the agents’ strategies), utilities are noisy in general. Our techniques

are directly applicable to the learning of empirical meta-games, and

provide finite-sample guarantees on the quality of the equilibria of

the corresponding simulation-based meta-games.

Related Work. One distinctive feature of our work vis à vis the lit-

erature is that we aim to estimate all equilibria of a simulation-based

game, rather than just one (e.g., [14]). Notable exceptions include

[28], [31], [36], and [2, 30], the latter being our own prior work. The

first of these papers argues that all equilibria of a simulation-based

game are also approximate equilibria in an empirical game: i.e., they

establish perfect recall with finite-sample guarantees. The second

paper derives asymptotic results about the quality of the equilibria

of empirical games: i.e., they establish perfect precision in the limit,

as the number of samples tends to infinity. Our first theorem unifies

these two results, obtaining finite sample guarantees for both per-

fect recall and approximate precision. The third paper is perhaps

closest in spirit to ours; the goals are to characterize the quality of

the equilibria in empirical games, and to exploit statistical informa-

tion to save on sampling. Their methods employ bootstrapping [8],

so do not immediately afford any theoretical guarantees.

2 APPROXIMATION FRAMEWORK
We begin by presenting standard game-theoretic notions. We then

introduce the notion of uniform approximation. Given an approxi-

mation of one game by another, there is not necessarily a connec-

tion between their properties. For example, there may be equilib-

ria in one game with no corresponding equilibria in the other, as
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small changes to the utility functions can add or remove equilibria.

Nonetheless, we show that finding the approximate equilibria of

a uniform approximation of a game is sufficient for finding all the

(exact) equilibria of the game itself.

A normal-form game Γ � ⟨P , {Sp | p ∈ P },u (·)⟩ consists of a set
of agents P , with pure strategy set Sp available to agent p ∈ P . We

define S � S1 × · · · × S |P | to be the pure strategy profile space of Γ,
and then u : S → R |P | is a vector-valued utility function.

Given a normal-form game Γ, we let S⋄p denote the set of distri-

butions over Sp ; this set contains p’s mixed strategies. We define

S⋄ = S⋄
1
× · · · × S⋄

|P | , and then, overloading notation, we write u (s )
to denote the expected utility of a mixed strategy profile s ∈ S⋄.

A solution to a normal-form game is a prediction of how strategic

agents will play the game. One solution concept that has received a

great deal of attention in the literature is Nash equilibrium [20], a

(pure or mixed) strategy profile at which each agent selects a utility-

maximizing strategy, fixing all other agents’ strategies. In this paper,

we are concerned with ε-Nash equilibrium, an approximation of

Nash equilibrium that is amenable to statistical estimation.

Given a game Γ, fix an agent p and a mixed strategy profile

s ∈ S⋄. We define T ⋄p,s � {t ∈ S
⋄ | tq = sq ,∀q , p}: i.e., the set of

all mixed strategy profiles in which the strategies of all agents

q , p are fixed at sq . Agent p’s regret at s is defined as Reg
⋄
p (Γ, s ) �

sups ′∈T ⋄p,s
up (s ′)−up (s ). By restricting s andT

⋄
p,s to pure strategy

profiles, agent p’s pure regret Regp (Γ, s ) can be defined similarly.

Note that Reg
⋄
p (Γ, s ),Regp (Γ, s ) ≥ 0, since agent p can deviate

to any strategy s ′ ∈ Sp , including sp itself. A strategy profile s that
has regret at most ε ≥ 0, for all p ∈ P , is an ε-Nash equilibrium:

Given ε ≥ 0, a mixed strategy profile s ∈ S⋄ in a game Γ is an ε-
Nash equilibrium if, for all p ∈ P , Reg

⋄
p (Γ, s ) ≤ ε . At a pure strategy

ε-Nash equilibrium s ∈ S , for all p ∈ P , Regp (Γ, s ) ≤ ε . Let E
⋄
ε (Γ)

(Eε (Γ)) be the set of mixed (pure) ε-Nash equilibria. Eε (Γ) ⊆ E
⋄
ε (Γ).

We now show that equilibria can be approximated with bounded

error, given a uniform approximation. Ourmain theorem establishes

perfect recall: the approximate game contains all true positives: i.e.,

all (exact) equilibria of the original game. It also establishes ap-

proximately perfect precision: all false positives in the approximate

game are approximate equilibria in the original game.

We define the ℓ∞-norm between two compatible games, with

the same agents sets P and strategy profile spaces S , and with utility
functionsu,u ′, respectively, as follows: Γ − Γ′∞ � u (·) −u ′(·)∞
� supp∈P,s ∈S |up (s ) −u

′
p (s ) |. While the ℓ∞-norm as defined ap-

plies only to pure normal-form games, it is in fact sufficient to use

this metric even to show that the utilities of mixed strategy profiles

approximate one another. We formalize this claim presently.
2

Lemma 2.1. If Γ, Γ′ differ only in their utilities, then

supp∈P,s ∈S⋄ |up (s ) −u
′
p (s ) | =

Γ − Γ′∞.

Γ′ is said to be a uniform ε-approximation of Γ when Γ − Γ′∞ ≤
ε . They are so-called because the bound between utility deviations

in Γ and Γ′ holds uniformly over all players and strategy profiles.

Theorem 2.2 (Approximate Eqilibria). If two normal-form

games, Γ and Γ′, are uniform approximations of one another, then:

(1) E(Γ) ⊆ E2ε (Γ
′) ⊆ E4ε (Γ), and (2) E

⋄(Γ) ⊆ E
⋄
2ε (Γ

′) ⊆ E
⋄
4ε (Γ).

2
All proofs appear in the supplemental material, http://github.com/eareyan/pysegta.

3 LEARNING FRAMEWORK
In this section, we move on from approximating equilibria in games

to learning them. We present algorithms that learn so-called empir-

ical games, which comprise estimates of the expected utilities of

simulation-based games. We further derive uniform convergence

bounds, proving that our algorithms output empirical games that

uniformly approximate their expected counterparts, with high prob-

ability. By Theorem 2.2, the equilibria of these empirical games thus

approximate those of the corresponding simulation-based games,

with high probability.

A conditional normal-form game ΓX � ⟨X, P , {Sp | p ∈ P },u (·)⟩
consists of a set of conditionsX, a set of agents P , with pure strategy
set Sp available to agent p, and a vector-valued conditional utility

function u : S × X → R |P | . It is convenient to imagine a condition

x ∈ X as pertaining to the set P × S . Given such a condition, u (·;x )
yields a standard utility function of the form S → R |P | . Given a con-
ditional normal-form game ΓX together with distributionD , we also

define the expected utility function u (s; D ) = Ex∼D [u (s;x )], and
the expected normal-form game as ΓD � ⟨P , {Sp | p ∈ P },u (·; D )⟩.

Expected normal-form games serve as our mathematical model

of simulation-based games. They are sufficient not only to model

arbitrary black-box games, but additionally games where the rules

are known but environmental conditions are random (e.g., auctions

where bidder valuations are random, or deterministic war games

where initial armies and terrain are random), as well as games with

randomness, where X is taken to be a PRNG seed or entropy source.

Given a conditional normal-form game ΓX together with a dis-

tribution D and sample conditions X = (x1, . . . ,xm ) ∼ Dm
, we

define the empirical utility function û (s;X ) � 1

m
∑m
j=1

u (s;x j ). The
corresponding empirical normal-form game is then

Γ̂X � ⟨P , {Sp | p ∈ P }, û (·;X )⟩.
Our present goal, then, is to “uniformly learn” empirical games

(i.e., obtain uniform convergence guarantees) from finitely many

samples. This learning problem is non-trivial because it involves

multiple comparisons. Tuyls et al. [28] use Hoeffding’s inequality to

estimate a single utility value, and then apply a Šidák correction to

estimate all utility values simultaneously, assuming independence

among agents’ utilities. Similarly, one can apply a Bonferroni cor-

rection (i.e., a union bound) to Hoeffding’s inequality, which does

not require independence, but yields a slightly looser bound.

Theorem 3.1 (Finite-Sample Bounds viaHoeffding’s Ineqal-

ity). Consider finite, conditional normal-form game ΓX together with

distribution D and index set I ⊆ P × S such that for all x ∈ X and

(p, s ) ∈ I , it holds thatup (s;x ) ∈ [−c/2, c/2], where c ∈ R. Then, with
probability at least 1 − δ over X ∼ Dm

, it holds that

sup

(p,s )∈I

���up (s; D ) − ûp (s;X )��� ≤ c

√
ln( 2|I |

δ )
2m .

Remark Given a game, we state all theorems and algorithms for an

arbitrary index set I . Taking I = P×S , we bound u (·; D ) − û (·;X )∞.
Consider X1:m i.i.d. random variables, and their mean X̄ . (In our

case, X j = u (s;x j ).) Hoeffding’s inequality for bounded random

variables can be used to obtain tail bounds on the probability that an

empirical mean differs from its expectation. Oneway to characterize

such bounds is to compare them to well-studied cases of common
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random variables. We focus on the case of upper tails, as we apply

only symmetric two-tail and upper tail bounds in this work.

Random variables that obey the Gaussian Chernoff bound can

be characterized as σ 2

N
-sub-Gaussian: i.e.,

P
(
X̄ ≥ E[X̄ ] + ε

)
≤ exp

(
−mε2

2σ 2

N

)
; equivalently,

P

(
X̄ ≥ E[X̄ ] +

√
2σ 2

N
ln( 1

δ )

m

)
≤ δ .

Here, σ 2

N
is deemed a variance proxy. Using this characterization,

Hoeffding’s inequality reads “If Xi has range c , then Xi is c2

4
-sub-

Gaussian,” because, by Popoviciu’s inequality [1935], V[Xi ] ≤ c2

4
.

Thus, Hoeffding’s inequality yields sub-Gaussian tail bounds.

This result is not entirely satisfying, however, as it is stated in

terms of the worst-case variance; when V[Xi ] ≪ c2

4
, tighter bounds

should be possible. We might hope that knowledge of the variance

σ 2
would imply σ 2

-sub-Gaussian, but it does not; taking the range

c to∞ allows Xi to exhibit arbitrary tail behaviors. A (σ 2

Γ , c)-sub-
gamma [6] random variable obeys

P

(
X̄ ≥ E[X̄ ] +

c ln( 1

δ )
3m +

√
2σ 2

Γ ln( 1

δ )
m

)
≤ δ .

While the form of such bounds is more complicated than in the sub-

Gaussian case, there is an intuitive interpretation of the tail behavior

as sample size increases. The key is to observe that the additive

error consists of a hyperbolic

c ln( 1

δ
)

3m term and a root-hyperbolic√
2σ 2

Γ ln( 1

δ )/m term, which in learning theory are often called fast

and slow terms, respectively. Sub-gamma random variables then

yield mixed convergence rates, which initially decay quickly while

the c-term dominates, before slowing to the root-hyperbolic rate

when the σ 2

Γ term comes to dominate.

Bennett’s inequality [1962], while usually stated as a sub-Poisson

bound, immediately implies that if Xi has range c and variance σ 2
,

then Xi is (σ
2, c)-sub-gamma. Bennett’s inequality, however, as-

sumes the range and variance are known. Various empirical Bennett

bounds have been shown [3, 4, 18], which all essentially operate by

bounding the variance of a random variable in terms of its empirical

variance and range, and then applying Bennett’s inequality. Simply

put, Bennett’s inequality gives us Gaussian-like tail bounds, where

the scale-dependent term acts as an asymptotically negligible cor-

rection for working with non-Gaussian distributions and empirical

estimates of variance. Asymptotic central-limit-theorem bounds

behave similarly, but lack corresponding finite-sample guarantees.

Our work differs from previous applications in that we require

confidence intervals of uniform width, and thus our bounds are lim-

ited by the maximum variance over all parameters being estimated.

The maximum variance over a set of random variables is known as

thewimpy variance [6]. We apply a sub-gamma bound to the wimpy

variance in terms of an empirical estimate, and then apply Bennett’s

inequality to the upper and lower tails of each utility function using

the wimpy variance bound, as this, by definition, upper bounds

the variance of each utility. This strategy yields uniform-width

confidence intervals over all utilities, and requires a union bound

overm upper tails,m lower tails, and the wimpy variance, whereas

bounding each variance separately would require a union bound

overm upper,m lower, andm variance bounds. Thus, our method

outperforms such strategies, yielding tighter confidence intervals.

Theorem 3.2 (Bennett-Type Variance-Sensitive Finite-Sam-

ple Bounds). Suppose as in Thm. 3.1. Take

v̂ � sup

(p,s )∈I

1

m−1

m∑
j=1

(
up (s;x j ) − ûp (s;X )

)
2

;

εv �
c ln( 3

δ )
m−1

+

√(
c ln( 3

δ )
m−1

)
2

+
2v̂ ln( 3

δ )
m−1

; &

εµ � min
*
,
c

√
ln( 3|I |

δ )
2m︸      ︷︷      ︸

Hoeffding

,
c ln( 3|I |

δ )
3m +

√
2(v̂+εv ) ln( 3|I |

δ )
m︸                               ︷︷                               ︸

Empirical Bennett

+
-
.

Then, with probability at least 1 − δ over X ∼ Dm
, it holds that

sup

(p,s )∈I

���up (s; D ) − ûp (s;X )��� ≤ εµ .

From the definition of εµ , we see that when v̂ is ≈ c2

4
(near-

maximal), the Hoeffding term applies, so this bound matches

Theorem 3.1 to within constant factors (in particular, ln( 3|I |
δ ) instead

of ln( 2|I |
δ )). On the other hand, when v̂ is small, Theorem 3.2 is much

sharper than Theorem 3.1. A few simplifying inequalities yield

εµ ≤
7c ln( 3|I |

δ
)

3(m−1) +

√
2v̂ ln( 3|I |

δ )
m ,

which matches the standard sub-gamma Bennett’s inequality up to

constant factors, with dependence on v̂ instead ofv . In the extreme,

when v̂ ≈ 0 (i.e., the game is near-deterministic), then Theorem 3.2

improves asymptotically over Theorem 3.1 by aΘ
√

ln( |I |δ )/m factor.

4 LEARNING ALGORITHMS
We are now ready to present our algorithms. Specifically, we discuss

two Monte-Carlo sampling-based algorithms that can be used to

uniformly learn empirical games, and hence ensure that the equi-

libria of the games they are learning are accurately approximated

with high probability. Note that our algorithms apply only to finite

games, as they require an enumeration of the index set I .
A conditional normal form game ΓX , together with a black box

from which we can sample distribution D , serves as our mathemat-

ical model of a black-box simulator from which the utilities of a

simulation-based game can be sampled. Given strategy profile s ,
we assume the simulator outputs a sample up (s,x ), for all agents
p ∈ P , after drawing a single condition value x ∼ D .

Our first algorithm, global sampling (GS), is a straightforward

application of Thms. 3.1 and 3.2. The second, progressive sampling

with pruning (PSP), iteratively prunes strategies, and thereby has

the potential to expedite learning by obtaining tighter bounds than

GS, given the same number of samples. We explore PSP’s potential

savings in our experiments (Sec. 5).

Our first algorithm, GS (Alg. 1), samples all utilities of interest,

given a sample sizem and a failure probability δ, and returns the

ensuing empirical game together with an ε̂ determined by either

Thm. 3.1 or 3.2 that guarantees an ε̂-uniform approximation.

More specifically, GS takes in a conditional game ΓX , a black box
from which we can sample distribution D , an index set I ⊆ P × S ,
a sample sizem, a utility range c such that utilities are required to

lie in [−c/2, c/2], and a bound type Bd, and then drawsm samples

to produce an empirical game Γ̂X , represented by ũ (·), as well as
an additive error ε̂ , with the following guarantee:
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Algorithm 1 Global Sampling

1: procedure GS(ΓX ,D , I ,m, δ, c,Bd)→ (ũ, ε̂ )
2: input: Conditional game ΓX , black box from which we

can sample distribution D , index set I , sample sizem, failure

probability δ, utility range c , and bound type Bd.

3: output: Empirical utilities ũ,∀(p, s ) ∈ I ; additive error ε̂ .
4: X ∼ Dm ▷ Drawm samples from distribution D
5: ∀(p, s ) ∈ I : ũp (s ) ← ûp (s;X )
6: if Bd = H then ▷ See Thm. 3.1 (Hoeffding)

7: ε̂ ← c

√
ln( 2|I |

δ )
2m

8: else if Bd = B then ▷ See Thm. 3.2 (Empirical Bennett)

9: v̂ ← sup

(p,s )∈I

1

m−1

∑m
j=1

(
up (s;x j ) − ũp (s )

)
2

10: εv ←
c ln( 3

δ )
m−1

+

√(
c ln( 3

δ )
m−1

)
2

+
2v̂ ln( 3

δ )
m−1

11: ε̂ ← min
*.
,
c

√
ln( 3|I |

δ )
2m ,

c ln( 3|I |
δ )

3m +

√
2(v̂+εv ) ln( 3|I |

δ )
m

+/
-

12: end if
13: return (ũ, ε̂ )
14: end procedure

Theorem 4.1 (Approximation Guarantees of Global Sam-

pling). Consider conditional game ΓX together with distribution D
and take index set I ⊆ P × S such that for all x ∈ X and (p, s ) ∈ I ,
up (s;x ) ∈ [−c/2, c/2], for some c ∈ R. If GS(ΓX ,D , I ,m, δ, c,Bd) out-
puts the pair (ũ, ε̂ ), then with probability at least 1 − δ, it holds that

sup

(p,s )∈I

���up (s; D ) − ũp (s )
��� ≤ ε̂ .

Next, we present PSP (Alg. 2), which, using GS as a subroutine,

draws progressively larger samples, refining the empirical game at

each iteration, and stopping when the equilibria are approximated

to the desired accuracy, or when the sampling budget is exhausted.

Although performance ultimately depends on a game’s structure,

PSP can learn equilibria using vastly fewer resources than GS.

As the name suggests, PSP is a pruning algorithm. The key idea

is to prune (i.e., cease estimating the utilities of) strategy profiles

that (w.h.p.) are provably not equilibria. Recall that s ∈ Eε (Γ)
iff Regp (Γ, s ) ≤ ε , for all p ∈ P . Thus, if there exists p ∈ P s.t.

Regp (Γ, s ) > ε , then s < Eε (Γ). In the search for pure equilibria,

such strategy profiles can be pruned.

A strategy s ∈ Sp is said to ε-dominate another strategy s ′ ∈ Sp
if for all s ∈ S , taking s ′ = (s1, . . . , sp−1, s

′
p , sp+1, . . . , s |P | ), it holds

that up (s ) − ε ≥ up (s ′). The ε-rationalizable strategies Ratε (Γ)
are those that remain after iteratively removing all ε-dominated

strategies. Only strategies in Ratε (Γ) can have nonzero weight in a

mixed ε-Nash equilibrium [10]; thus eliminating strategies not in

Ratε (Γ) is a natural pruning criterion for mixed equilibria.

If a strategy s ∈ Sp is ε-dominated by another strategy s ′ ∈
Sp , then p always regrets playing strategy s , regardless of other
agents’ strategies. Consequently, the mixed pruning criterion is

more conservative than the pure, whichmeansmore pruning occurs

when learning pure equilibria.

Like GS, PSP takes in a conditional game ΓX , a black box from

which we can sample distribution D , a utility range c , and a bound

type Bd. Instead of a single sample size, however, it takes in a

sampling schedule M in the form of a (possibly infinite) strictly

increasing sequence of integers; and instead of a single failure

probability, it takes in a failure probability schedule δ, with each δt
in this sequence and their sum in (0, 1). These two schedules dictate
the number of samples to draw and the failure probability to use

at each iteration. PSP also takes in a boolean Pure that indicates

whether the equilibria of interest are pure or mixed, and an error

threshold ε , which enables early termination as soon as equilibria

are estimated to within the additive factor ε .

Algorithm 2 Progressive Sampling with Pruning

1: procedure PSP(ΓX ,D ,M,δ, c,Bd, Pure, ε)→ ((ũ, ε̃ ), (Ê, ε̂ ), ˆδ)
2: input: Conditional game ΓX , black box from which we can

sample distributionD , sampling scheduleM , failure probability

schedule δ, utility range c , bound type Bd, equilibrium type

Pure, error threshold ε .
3: output: Empirical utilities ũ, ∀(p, s ) ∈ P × S , utility error ε̃ ,

empirical equilibria Ê, equilibria error ε̂ , failure probability ˆδ.

4: I ← P × S ▷ Initialize index set

5: ∀(p, s ) ∈ I : (ũp (s ), ε̃p (s )) ← (0, c/2), ▷ Initialize outputs
6: for t ∈ 1, . . . , |M | do
7: (ũ, ε̂ ) ← GS(ΓX ,D , I ,Mt ,δt , c,Bd) ▷ Improve estimates

8: ∀(p, s ) ∈ I : ε̃p (s ) ← ε̂ ▷ Update confidence intervals

9: if ε̂ ≤ ε or t = |M | then ▷ Termination condition

10: Ê ←

{
Pure : E

2ε̂ (ũ)
¬Pure : E

⋄
2ε̂ (ũ)

11: return ((ũ, ε̃ ), (Ê, ε̂ ),
∑t
i=1

δi )
12: end if

13: I ←



Pure :

{
(p, s ) ∈ I �� Regp (ũ, s ) ≤ 2ε̂

}
¬Pure :

{
(p, s ) ∈ I ��� ∀q ∈ P : sq ∈ Rat

2ε̂ (ũ)
}

14: end for
15: end procedure

In the PSP pseudocode, and in the following theorem, we over-

load the Reg and E operators (both pure and mixed) to depend on a

utility function, rather than a game.

Theorem 4.2. Suppose conditional game ΓX and distribution D
such that for all x ∈ X and (p, s ) ∈ P × S , up (s;x ) ∈ [−c/2, c/2] for

some c ∈ R. If PSP(ΓX ,D ,M,δ, c,Bd, Pure, ε ) outputs
(
(ũ, ε̃ ), (Ê, ε̂ ), ˆδ

)
,

it holds that:

(1)
ˆδ ≤

∑
δt ∈δ δt , ˆδ ∈ (0, 1);

(2) If limt→∞ ln(1/δt )/Mt = 0, then ε̂ ≤ ε .

Furthermore, if PSP terminates, then with probability at least 1 − ˆδ,

the following hold simultaneously:

(3)
���up (s; D ) − ũp (s )

��� ≤ ε̃p (s ), for all (p, s ) ∈ P × S ;

(4) If Pure, then E(u) ⊆ E
2ε̂ (ũ) ⊆ E

4ε̂ (u);
(5) If ¬Pure, then E

⋄(u) ⊆ E
⋄
2ε̂ (ũ) ⊆ E

⋄
4ε̂ (u).

Finally, we propose two possible sampling and failure probability

schedules for PSP,M and δ, depending on whether the sampling

budget is finite or infinite. Given a finite sampling budget m <
∞, a neutral choice is to take M to be a doubling sequence such

that

∑
Mi ∈M Mi ≤ m, withM1 sufficiently large so as to possibly

permit pruning after the first iteration (iterations that neither prune
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nor achieve ε-accuracy are effectively wasted), and to take δt =
δ/|M |, where δ is some maximum tolerable failure probability. This

strategy may fail to produce the desired ε-approximation, as it

may exhaust the sampling budget first. To guarantee a particular

ε-δ-approximation, then we can takeM to be an infinite doubling

sequence, and δ to be a geometrically decreasing sequence such

that

∑∞
t=1

δt = δ, for which the conditions of Thm. 4.2 (2) hold.

At first glance, it may seem that the sample complexity of es-

timating a game with our empirical Bennett-type bound should

depend on the number, the worst-case variance over, and the range

of utility values. However, if the variance of the utilities at all equi-

libria is small, and if the variance of the utilities at non-equilibrium

strategy profiles is no more than half the square of their regret,

then PSP runs only until the high-variance high-regret strategy

profiles are pruned. Once this critical point is reached, the game is

essentially learned, as each subsequent iteration prunes more strat-

egy profiles, further reducing the wimpy variance, yielding tighter

bounds for the remaining profiles. Under these circumstances, PSP

can provably require fewer samples than GS.

5 EXPERIMENTS
We now set out to evaluate the strength of our methodology to

learn black-box games and their equilibria from samples. The em-

pirical performance of an algorithm can vary dramatically under

different distributions of inputs; in particular, the success of game-

theoretic solvers can vary dramatically even within the same class

of games [17, 21]. Consequently, we employ GAMUT [21], a state-

of-the-art suite of game generators that is capable of producing a

wide variety of interesting game inputs of varying scales with rich

strategic structure, thereby affording us an opportunity to conduct

a robust evaluation of our methodology. Furthermore, we employ

Gambit [19], a state-of-the-art equilibrium solver. We bundled both

of these packages together with our statistical learning algorithms

in a python library for empirical game-theoretic analysis, pySEGTA,

to make it easier for other EGTA researchers to benchmark their

algorithms against ours.

Black-Box Game Design. In all our experiments, we use GAMUT

to generate what we call ground-truth games. Ground-truth games

are ordinarily inaccessible; however, we rely on them here to mea-

sure the loss experienced by our algorithms: i.e., the regrets in a

learned game as compared those in the corresponding ground-truth

game. To simulate a black-box game, we simply add noise drawn

from a zero-centered distribution to the utilities of a ground-truth

game. We detail this construction presently.

Let Γ be a realization of a ground-truth game drawn fromGAMUT,

and let up (s ) be the utility of player p at profile s in Γ. Fix a con-
dition set X = [a,b], where a < b. In the conditional game ΓX ,
up (s;xp,s ) = up (s ) + xp,s , for xp,s ∈ X. Conditional game ΓX to-

gether with distribution D on X is then our model for a black-box

game. For simplicity, all noise xp,s ∼ D is drawn i.i.d..

We only consider noise distributions where D is zero-centered.

Consequently, the expected-normal form game ΓD , which is the

object of our algorithms’ estimation, exactly coincides with Γ: i.e.,
it holds that for every p and s , up (s; D ) = Exp,s∼D

[
up (s;xp,s )

]
=

Exp,s∼D
[
up (s ) + xp,s

]
= up (s ) + Exp,s∼D

[
xp,s

]
= up (s ), because

up (s ) is constant and D is zero-centered.

Experimental Setup. We normalize the utilities generated by

GAMUT to lie in the range [-10, 10]. We experiment with three

different noise regimes, high, medium, and low variance. Letting

U [a,b] be a uniform distribution over [a,b], wemodel high,medium,

and low variance noise by distributionsU [−2.5, 2.5],U [−.5, .5], and

U [−.1, .1], respectively.

We test both GS, Alg. 1, and PSP, Alg. 2. These algorithms take

as input a flag Bd ∈ {H, B}, indicating which bound, Hoeffding’s

(Thm. 3.1) or our empirical Bennett-type (Thm. 3.2), to use. Hence-

forth, to refer to an algorithm that uses bound Bd, we write GS(Bd)

and PSP(Bd). Throughout our experiments, we fix δ = 0.05.

Sample Efficiency of GS. In this experiment, we investigate the

sampling efficiency of our algorithms; that is, the quality of the

games learned, as measured by ε , as a function of the number of

samples needed to achieve said guarantee. We tested ten differ-

ent classes of GAMUT games, all of them two-player, with vary-

ing numbers of strategies, either indicated in parentheses next

to the game’s name, or two by default. For each class of games,

we draw 60 random ground-truth games from GAMUT, and for

each such draw, we run GS 20 times for each of sample sizes

m ∈ {10, 20, 40, 80, 160, 320, 640, 1280, 2560, 5120}, measuring ε for
all possible combinations of these parameters. We then average the

measured values of ε , fixing the number of samples. Fig. 1 plots, in

a log-log scale, these averages, comparing the performance of GS

given Hoeffding’s bound and our empirical Bennett-type bound,

for the cases of high and low variance. Fig. 1 depicts only four

classes of games, but trends over all ten classes are similar (see the

supplemental material). In all cases, we found that our empirical

Bennett-type bound produces better estimates for the same number

of samples, as measured by ε . Note the initial 1/m decay rate, later

slowing to 1/
√
m, in the Bennett bounds, reflecting the fast c term

and slow σ 2
terms of the sub-gamma bounds.

Figure 1: Quality of Learned Games

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

84



Empirical Regret of GS. In this experiment, we investigate the

quality of the equilibria learned by our algorithms. To compute

the equilibria of a game, we use Gambit [19], a state-of-the-art

equilibrium solver. The goal of these experiments is to provide

empirical evidence for Thm. 2.2, namely that our algorithms are

capable of learning games that approximately preserve the Nash

equilibria of black-box games. The goal is not to test the quality

of different equilibrium solvers—we refer the reader to [21] for

an evaluation along those lines. Hence, we fix one such solver

throughout, namely, Gambit’s GNM solver, a global Newtonmethod

that computes Nash equilibria [11].

To measure the quality of learned equilibria, given a game Γ
and a subset of the strategy profile space S ′ ⊆ S⋄, we define the
metric Max-Regret(Γ, S ′) = sups ∈S ′ maxp∈P Reg

⋄
p (Γ, s ): i.e, the

maximum regret of any player p at any profile s in S ′. Note that,
given two compatible games Γ and Γ′, and S ′, we can measure

Max-Regret of either game, since the strategy profile space is

shared by compatible games. This is useful because, given a ground-

truth game Γ and a corresponding empirical estimate Γ̂X , we can

measure the maximum regret of a set of Nash equilibrium profiles

in Γ, say S∗, in its empirical estimate Γ̂X . Thm. 2.2 implies that,

given an ε-uniform approximation Γ̂X of Γ, we should observe

Max-Regret(Γ̂X , S
∗) ≤ 2ε . Thm. 4.1 then implies that if said ε-

uniform approximation holds with probability 1−δ, then we should

likewise observe Max-Regret(Γ̂X , S
∗) ≤ 2ε with probability 1 − δ.

We empirically measureMax-Regret, where equilibria are com-

puted using Gambit, for the same ten different classes of games as in

the previous experiment, again over 60 draws for each class, where

for each such draw, we run GS 10 times for each of sample sizes

m ∈ {10, 20, 40, 80, 160}, measuring Max-Regret for all possible

combinations of these parameters. We then average the measured

values ofMax-Regret, fixing the number of samples. Fig. 2 plots, in

a log-log scale, both these averages (the markers) and the theoretical

guarantees (the lines). This plot complements our theory, establish-

ing experimentally that our algorithms are capable of preserving

equilibria in learned black-box games. This learning is robust to var-

ious classes of games, for example, for dominance-solvable games

(such as Prisoners’ Dilemma), games with guaranteed pure-strategy

equilibria (such as congestion games), as well as other games with

no guarantee on their equilibria other than existence (such as ran-

dom and zero-sum games).
3
This learning is also robust to different

levels of noise, with our algorithms consistently achieving higher

accuracy in practice than in theory, all across the board.

Sample Efficiency of PSP. In this experiment, we investigate the

sample efficiency of PSP as compared to GS. We say that algorithm

A has better sample efficiency than algorithm B if A requires fewer

samples than B to achieve a desired accuracy ε .
Our experimental design is as follows. Fixing a game, and the

following values of ε ∈ {0.125, 0.25, 0.5, 1.0}, we compute the num-

ber of samplesm(ε ) that would be required for GS(H ) to achieve

accuracy ε . We then run both GS(H ) and GS(B) withm(ε ) samples.

For PSP, we use the following doubling strategy as a sampling

schedule M (m(ε )) = [m (ε )/4,m (ε )/2,m(ε ), 2m(ε )], rounding to the

nearest integer as necessary. For δ, we use a uniform schedule such

3
Similar to before, we report on only three game classes here, and refer the reader to

the supplemental material for results on all 10 classes.

Figure 2: Average Maximum Regret

that

∑
δt ∈δ δt = δ: i.e., δ = [0.0125, 0.0125, 0.0125, 0.0125]. Using

these schedules, we run both PSP(H ) and PSP(B) until completion

by setting the desired accuracy to zero. We prune using the mixed-

strategy criterion, namely the set of rationalizable strategies.

We ran this experiment on three different classes of games: con-

gestion games (2 players, and 2, 3, 4, and 5 facilities; game sizes 18,

98, 450, and 1,922 respectively), random games (2 players, and 5,

10, 20, and 30 strategies each; game sizes 50, 200, 800, and 1,800

respectively), and zero-sum games (2 players, and 5, 10, 20, and 30

strategies; game sizes 50, 200, 800, and 1,800 respectively). As with

our other experiments, we draw multiple games for each class of

games (in this case 30) and multiple runs (in this case 10 for each

draw of each game). We consider medium variance only.

For all algorithms, we measure the total number of samples

across all players and strategy profiles. If and when it prunes, PSP

requires progressively fewer and fewer samples, with the number

decreasing each iteration to the size of the unpruned game.

Table 1 summarizes the results of these experiments for select

games. In all cases, we simply report the total number of sam-

ples, averaged across all experiments. The theory tells us that

given this number of samples, GS must achieve at least the de-

sired ε ∈ {0.125, 0.25, 0.5, 1.0}. Although there is no such guarantee

for PSP, in these experiments PSP always achieved a strictly greater

accuracy than GS (these accuracies are also reported in Table 1,

under the columns labeled εPSP). Moreover, PSP tends to exhibit

significantly better sample efficiency than GS; notable exceptions

include cases where either the games are small or the ε guarantee
is loose (e.g., ε ≤ 1.0). These results demonstrate the promise of

PSP as an algorithm for learning black-box games, as its sample

efficiency generally exceeds that of GS.

Limitations of PSP. While our experiments demonstrate that

PSP can yield substantial savings when learning games in many

different classes, in some GAMUT games, our simple doubling

schedule yielded no such gains. We found Grab The Dollar to be

a particularly difficult game. In Grab The Dollar, there is a prize
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ε ≤ 0.125 ε ≤ 0.25 ε ≤ 0.5 ε ≤ 1.0

Bound Hoeffding Emp. Bennett Hoeffding Emp. Bennett Hoeffding Emp. Bennett Hoeffding Emp. Bennett

Game/Algorithm GS; PSP; εPSP GS; PSP; εPSP GS; PSP; εPSP GS; PSP; εPSP GS; PSP; εPSP GS; PSP; εPSP GS; PSP; εPSP GS; PSP; εPSP

Congestion Games (5 facilities) 3,051; 1,654; 0.08 3,051; 1,449; 0.00 762; 464; 0.17 762; 364; 0.01 190; 146; 0.34 190; 93; 0.01 47; 58; 0.70 47; 25; 0.04
Zero-Sum Games (30 strategies) 2,841; 1,691; 0.08 2,841; 1,383; 0.00 710; 502; 0.17 710; 349; 0.01 177; 166; 0.35 177; 90; 0.01 44; 62; 0.71 44; 25; 0.04
Random Games (30 strategies) 2,841; 1,666; 0.08 2,841; 1,375; 0.00 710; 491; 0.17 710; 347; 0.01 177; 159; 0.35 177; 90; 0.01 44; 58; 0.71 44; 25; 0.04
Congestion Games (4 facilities) 622; 492; 0.09 622; 438; 0.00 156; 138; 0.17 156; 110; 0.01 39; 41; 0.35 39; 28; 0.01 10; 15; 0.71 10; 8; 0.04
Zero-Sum Games (20 strategies) 1,171; 829; 0.09 1,171; 708; 0.00 293; 240; 0.17 293; 179; 0.01 73; 77; 0.35 73; 46; 0.01 18; 28; 0.71 18; 13; 0.04
Random Games (20 strategies) 1,171; 809; 0.09 1,171; 698; 0.00 293; 232; 0.17 293; 176; 0.01 73; 73; 0.35 73; 45; 0.01 18; 25; 0.71 18; 12; 0.04
Congestion Games (3 facilities) 114; 145; 0.09 114; 135; 0.00 29; 40; 0.18 29; 34; 0.01 7; 12; 0.36 7; 9; 0.02 2; 4; 0.73 2; 2; 0.05
Zero-Sum Games (10 strategies) 254; 268; 0.09 254; 242; 0.00 63; 73; 0.18 63; 61; 0.01 16; 22;0.36 16; 15;0.02 4; 7; 0.73 4; 4; 0.05
Random Games (10 strategies) 254; 254; 0.09 254; 233; 0.00 63; 69; 0.18 63; 59; 0.01 16; 21;0.36 16; 15; 0.02 4; 7; 0.72 4; 4; 0.05
Congestion Games (2 facilities) 17; 37; 0.09 17; 37; 0.00 4; 10; 0.19 4; 9; 0.01 1; 3; 0.38 1; 2; 0.02 1; 1; 0.76 1; 1; 0.05
Zero-Sum Games (5 strategies) 54; 94; 0.09 54; 89; 0.00 13; 25; 0.18 13; 22; 0.01 3; 7; 0.37 3; 6; 0.02 1; 2; 0.75 1; 1; 0.05
Random Games (5 strategies) 54; 83; 0.09 54; 90; 0.00 13; 22; 0.18 13; 20; 0.01 3; 6; 0.37 3; 5; 0.02 1; 2; 0.74 1; 1; 0.05

Table 1: PSP’s sample efficiency. Numbers of samples are reported in tens of thousands. The values in bold are smaller than
their counterparts; as ε is fixed, they indicate the more sample efficient algorithms.

(or "dollar") that two players are free to grab at any time, and there

are two utility values, one high and one low. If both players grab

for the dollar at the same time, it will rip; so the players earn the

low utility. If one grabs the dollar before the other, then that player

wins the dollar (and thus high utility), while the other player earns

utility somewhere between the high and the low values.

The utility structure of this game is such that the player’s utilities

are the same across many different strategy profiles—in particular,

whenever one player “Grabs The Dollar” before their opponent.

As a result, there are few ε-dominated strategies, which in turn

makes pruning ineffective. PSP is most effective in cases where

utilities between neighboring strategy profiles (i.e., where only

one player’s strategy differs) are distinct enough that pruning is

possible. Arguably, this kind of structure is common in practice,

where, fixing all other players’ strategies, one player’s strategy

(like defect in the Prisoners’ Dilemma) can yield very different

utilities than neighboring strategies (like cooperate). Finally, our

PSP algorithm does not compare favorably to the baseline in games

where there are few strategies, and hence few opportunities to

prune.

6 SUMMARY AND CONCLUSION
In this paper, we present and evaluate a methodology for learn-

ing games that cannot be expressed analytically. On the contrary,

it is assumed that a black-box simulator is available that can be

queried to obtain noisy samples of utilities. In many simulation-

based games of interest, queries to the simulator are exceedingly

expensive, so that the time and effort required to obtain sufficiently

accurate utility estimates dwarves that of any other relevant compu-

tations, including equilibrium computations. This condition holds

in meta-games like Starcraft [28], for example, where agents choices

comprise a few high-level heuristic strategies, not intractably many

low-level game-theoretic strategies. Thus, our primary concern in

this paper is to limit the need for sampling, while still guaranteeing

that we are estimating a game well.

Our main contributions come in two flavors. First, we derive a

novel bound that can adapt to any naturally occurring variance in

a game’s black-box simulator, so that fewer samples are required

to obtain robust guarantees on the estimated game. Whereas Tuyls

et al. [28] control the FWER by applying a Šidák correction to

Hoeffding’s bound, we improve upon their approach using an em-

pirical variant of Bennett’s inequality that does not require a priori

knowledge of the variance.

Second, we develop an algorithm that progressively samples a

game, all the while pruning strategy profiles: i.e., ceasing to esti-

mate those strategy profiles that provably (with high probability) do

not comprise any (approximate) equilibria. In extensive experimen-

tation over a broad swath of games, we show that this algorithm,

equipped with our variance-sensitive bound, makes frugal use of

samples, often requiring far fewer to learn to the same—or even a

better—degree of accuracy than a variant of the sampling algorithm

in Tuyls et al. [28]’s, which serves as a baseline.

A pySEGTA: A PYTHON LIBRARY
We carried out our experiments in a Python library we developed

and named pySEGTA, for statistical EGTA.
4

pySEGTA interfaces

with bothGAMUT andGambit, exposing simple interfaces bywhich

users can generate games (GAMUT), learn them (via our learning

algorithms, for example), and solve them (Gambit). As the logic

concerning game implementation is entirely separate from game

learning and/or solving, pySEGTA can be used to analyze arbi-

trarily complex simulation-based games with arbitrarily complex

strategies. pySEGTA already affords access to most GAMUT games,

and is designed to be easily extensible to interface with other game

generators. To do so only requires describing a game’s structure

(number of players, and per-player numbers of strategies), and im-

plementing one query method, which takes as input a strategy pro-

file and returns sample utilities for all players at the given strategy

profile. pySEGTA also includes parameterizable implementations

of both GS and PSP, and was designed with extensibility in mind,

so that other users can incorporate their learning algorithms as

they are developed. Our intent is that pySEGTA ease the work of

benchmarking empirical game-theoretic learning algorithms.
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