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ABSTRACT
Evolutionary optimization is a generic population-based meta-

heuristic that can be adapted to solve a wide variety of optimization

problems and has proven very effective for combinatorial optimiza-

tion problems. However, the potential of this metaheuristic has

not been utilized in Distributed Constraint Optimization Problems

(DCOPs), a well-known class of combinatorial optimization prob-

lems prevalent in Multi-Agent Systems. In this paper, we present a

novel population-based algorithm, Anytime Evolutionary DCOP

(AED), that uses evolutionary optimization to solve DCOPs. In AED,

the agents cooperatively construct an initial set of random solutions

and gradually improve them through a new mechanism that con-

siders an optimistic approximation of local benefits. Moreover, we

present a new anytime update mechanism for AED that identifies

the best among a distributed set of candidate solutions and notifies

all the agents when a new best is found. In our theoretical analysis,

we prove that AED is anytime. Finally, we present empirical results

indicating AED outperforms the state-of-the-art DCOP algorithms

in terms of solution quality.
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1 INTRODUCTION
Distributed Constraint Optimization Problems (DCOPs) are awidely

used framework to model constraint handling problems in coop-

erative Multi-Agent Systems (MAS). In particular, agents in this

framework need to coordinate value assignments to their variables

in such a way that minimizes constraint violations by optimizing

their aggregated costs [28]. This framework has been applied to

various areas of multi-agent coordination, including distributed

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
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meeting scheduling [20], sensor networks [6][3] and smart grids

[8].

Over the last two decades, several algorithms have been pro-

posed to solve DCOPs, and they can be broadly classified into two

classes: exact and non-exact. The former always provide an optimal

solution of a given DCOP. Among the exact algorithms, SyncBB

[12], ADOPT [21], DPOP [24], AFB [11], BnB-ADOPT [27], and

PT-FB [18] are widely used. Since solving DCOPs optimally is NP-

hard, scalability becomes an issue as the system grows. In contrast,

non-exact algorithms compromise some solution quality for scala-

bility. As a consequence, diverse classes of non-exact algorithms

have been developed to deal with large-scale DCOPs. Among them,

local search based algorithms are generally most inexpensive in

terms of computational and communication cost. Some well-known

algorithms of this class are DSA [29], MGM & MGM2 [19], and

GDBA [22]. Also, in order to further enhance solution quality and

incorporate an anytime property in local search based algorithms,

the Anytime Local Search (ALS) framework [30] was introduced.

While inference based non-exact approaches such as Max-Sum

[7][15][14] and Max-Sum_ADVP [31] have also gained attention

due to their ability to handle n-ary constraints explicitly and guar-

antee optimality on acyclic constraint graphical representations of

DCOPs. The third class of non-exact approaches that have been de-

veloped are sample-based algorithms (e.g. DUCT [23] and PD-Gibbs

[25]) in which the cooperative agents sample the search space in a

decentralized manner to solve DCOPs.

More recently, a new class of non-exact DCOP algorithms have

emerged in the literature through the introduction of a population-

based algorithmACO_DCOP [2]. ACO_DCOP is derived from a cen-

tralized population-based approach called Ant Colony Optimization

(ACO) [4]. It has been empirically shown that ACO_DCOP produces

solutions with better quality than the aforementioned classes of

non-exact DCOP algorithms [2]. It is worth noting that although a

wide variety of centralized population-based algorithms exist, ACO

is the only such method that has been adapted to solve DCOPs.

Among the remaining centralized population-based algorithms, a

large portion is considered as evolutionary optimization techniques

(e.g. Genetic Algorithm [13], Evolutionary Programming [9]). Evo-

lutionary optimization, as a population-based metaheuristic, has

proven very effective in solving combinatorial optimization prob-

lems such as Traveling Salesman Problem [10], Constraint Satisfac-

tion Problem [26], andmany others besides. However, no prior work
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exists that adapts evolutionary optimization techniques to solve

DCOPs. Considering the effectiveness of evolutionary optimization

techniques in solving combinatorial optimization problems along

with the potential of population-based DCOP solver demonstrated

by ACO_DCOP motivates us to explore this nascent area.

Against this background, this paper proposes a novel population-

based algorithm that uses evolutionary optimization to solveDCOPs.

We call this Anytime Evolutionary DCOP (AED). In more detail,

AED maintains a set of candidate solutions that are distributed

among the agents, and they search for new improved solutions

by modifying the candidate solutions. This modification is done

through a new mechanism that considers an optimistic approxi-

mation of local benefits and utilizes the cooperative nature of the

agents. Moreover, we introduce a new anytime update mechanism

in order to identify the best among this distributed set of candidate

solutions and help the agents to coordinate value assignments to

their variables based on the best candidate solution. Our theoreti-

cal analysis proves that AED is anytime and empirical evaluation

shows its superior solution quality compared to the state-of-the-art

non-exact DCOP algorithms.

2 BACKGROUND
In this section, we first describe DCOPs and Evolutionary Optimiza-

tion in more detail. Then, we discuss challenges that need to be

addressed in order to effectively extend evolutionary optimization

in the context of DCOPs.

2.1 Distributed Constraint Optimization
Problems

Formally, a DCOP is defined by a tuple ⟨𝑋, 𝐷, 𝐹,𝐴, 𝛿⟩ [21] where,
• A is a set of agents {𝑎1, 𝑎2, ..., 𝑎𝑛}.
• X is a set of discrete variables {𝑥1, 𝑥2, ..., 𝑥𝑚}, which are being
controlled by the set of agents A.

• D is a set of discrete and finite variable domains {𝐷1, 𝐷2, ..., 𝐷𝑚},
where each 𝐷𝑖 is a set containing values which may be as-

signed to its associated variable 𝑥𝑖 .

• F is a set of constraints {𝑓1, 𝑓2, ..., 𝑓𝑙 }, where 𝑓𝑖 ∈ 𝐹 is a

function of a subset of variables 𝑥𝑖 ⊆ 𝑋 defining the re-

lationship among the variables in 𝑥𝑖 . Thus, the function

𝑓𝑖 : ×𝑥 𝑗 ∈𝑥𝑖𝐷 𝑗 →𝑅 denotes the cost for each possible assign-

ment of the variables in 𝑥𝑖 .

• 𝛿 : 𝑋 → 𝐴 is a variable-to-agent mapping function [16]

which assigns the control of each variable 𝑥𝑖 ∈ 𝑋 to an agent

of 𝐴. Each variable is controlled by a single agent. However,

each agent can hold several variables.

Within the framework, the objective of a DCOP algorithm is to

produce𝑋 ∗; a complete assignment that minimizes
1
the aggregated

cost of the constraints as shown in Equation 1.

𝑋 ∗ = argmin

𝑋

𝑙∑
𝑖=1

𝑓𝑖 (𝑥𝑖 ) (1)

For ease of understanding, we assume that each agent controls

one variable. Thus, the terms ‘variable’ and ‘agent’ are used inter-

changeably throughout this paper. Figure 1a illustrates a sample

1
For a maximization problem argmin is replaced with argmax in Equation 1.

𝑥1

𝑥2 𝑥3

𝑥4

(a) A constraint graph

𝑥1

𝑥2
1 2

1 7 12

2 3 15

𝑥2

𝑥3
1 2

1 2 7

2 11 18

𝑥2

𝑥4
1 2

1 8 4

2 15 6

𝑥1

𝑥3
1 2

1 9 13

2 12 5

(b) Cost tables

Figure 1: Example DCOP

DCOP using a constraint graph where each node represents an

agent 𝑎𝑖 ∈ 𝐴 labelled by a variable 𝑥𝑖 ∈ 𝑋 that it controls and each

edge represents a function 𝑓𝑖 ∈ 𝐹 connecting all 𝑥 𝑗 ∈ 𝑥𝑖 . Figure 1b
shows the corresponding cost tables.

2.2 Evolutionary Optimization
Evolutionary optimization is a generic population-based meta-

heuristic inspired by biological evolutionary mechanisms such as

Selection, Reproduction and Migration. The core mechanism of

evolutionary optimization techniques can be summarized in three

steps. In the first step, an initial population is generated randomly.

A population is a set of ‘individuals’, each of which is a candidate

solution of the corresponding optimization problem. Besides, a fit-

ness function is defined to evaluate the quality of an individual

concerning a global objective. The fitness of all the individuals

in the initial population is also calculated. In the second step, a

subset of the population is selected based on their fitness to repro-

duce new individuals. This process is known as Selection. In the

final step, new individuals are created using the selected subset

of the population and their fitness is evaluated. New individuals

then replace a subset of old individuals. Evolutionary optimization

performs both the second and the third steps iteratively, which

results in a gradual improvement in the quality of individuals. An

additional step is performed at regular intervals by some paral-

lel/distributed evolutionary optimization models that concurrently

maintain multiple sub-populations instead of a single population.

In this step, individuals are exchanged between sub-populations.

This process is known as Migration, and this interval is known as

the Migration Interval.

2.3 Challenges
We need to address the following challenges in order to develop an

effective anytime algorithm that uses evolutionary optimization to

solve DCOPs:

• Individual and fitness: We need to define an individual

that represents a solution of a DCOP along with a fitness

function to evaluate its quality concerning Equation 1. We

also need to provide a method for calculating this fitness

function in a distributed manner.

• Population: We need to provide a strategy to maintain the

population collectively among the agents. Although creating

an initial random population is a trivial task for centralized

problems, we need to find a distributed method to construct

an initial random population for a DCOP.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

826



𝑥4

𝑥2

𝑥1 𝑥3

Figure 2: BFS Pseudo-Tree

• Reproduction mechanism: In the DCOP framework, in-

formation related to the entire problem is not available to

any single agent. So it is necessary to design a Reproduc-

tion method that can utilize information available to a single

agent along with the cooperative nature of the agents.

• Anytime update mechanism:We need to design an any-

time update mechanism that can successfully perform the

following tasks – (i) Identify the best individual in a pop-

ulation that is distributed among the agents. (ii) Notify all

the agents when a new best individual is found. (iii) Help

coordinate the variable assignment decision based on the

best individual in a population.

In the following section, we describe our method that addresses

the above challenges.

3 THE AED ALGORITHM
AED is a synchronous iterative algorithm that consists of two

phases: Initialization and Optimization. During the former, agents

initially order themselves into a pseudo-tree, then initialize the nec-

essary variables and parameters. Finally, they make a random as-

signment to the variables they control and cooperatively construct

the initial population. During the latter phase, agents iteratively

improve this initial set of solutions using the cooperation of their

neighbours. When an agent detects a better solution, it notifies

other agents. Moreover, all the agents synchronously update their

assignments based on the best of the individuals reported to them

so far. This results in a monotonic improvement of the global ob-

jective. Algorithm 1 shows the pseudo-code for AED. For ease of

understanding, we show the process of initialization and anytime

update separately in Procedure 1 and Procedure 2, respectively.

Note that the initialization phase addresses the first two of our

challenges, while the optimization phase addresses the rest.

The Initialization Phase of AED consists of two parts; pseudo-

tree construction and running INIT (Procedure 1) that initializes

the population, parameters and variables (Algorithm 1: Line 1-2).

This phase starts by ordering the agents into a Pseudo-Tree. This

ordering serves two purposes. It helps in the construction of the

initial population and facilitates ANYTIME-UPDATE (Procedure

2) during the optimization phase. Even though either of the BFS

or DFS pseudo-tree can be used, AED uses BFS Pseudo-tree
2
. This

is because it generally produces a pseudo-tree with smaller height

[1], which improves the performance of ANYTIME-UPDATE (see

Theoretical Analysis for details). Figure 2 shows an example of a

BFS pseudo-tree constructed from the constraint graph shown in

Figure 1a having 𝑥4 as the root. Here, the height
3
(i.e. H = 2) of

2
We suggest using the algorithm described in [1]. Height can be easily calculated by

utilizing LAYER information.

3
Length of the longest path in the pseudo-tree.

Algorithm 1: Anytime Evolutionary DCOP

1 Construct pseudo-tree

2 Every agent 𝑎𝑖 calls INIT( )

3 while Stop condition not met each agent 𝑎𝑖 do
4 𝑃𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑟𝑝 ( |𝑁𝑖 | ∗ 𝐸𝑅)
5 𝑃𝑛𝑒𝑤 ← Partition 𝑃𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 into equal size subsets

{𝑃𝑛1

𝑛𝑒𝑤 , ..., 𝑃
𝑛 |𝑁𝑖 |
𝑛𝑒𝑤 }

6 for 𝑛 𝑗 ∈ 𝑁𝑖 do
7 Modify individuals in 𝑃

𝑛 𝑗
𝑛𝑒𝑤 by Equations 5, 6, 7, 9

8 Send message 𝑃
𝑛 𝑗
𝑛𝑒𝑤 to 𝑛 𝑗

9 for 𝑃
𝑛 𝑗

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
received from 𝑛 𝑗 ∈ 𝑁𝑖 do

10 Modify individuals in 𝑃
𝑛 𝑗

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
by Equations 8, 9

11 Send 𝑃
𝑛 𝑗

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
to 𝑛 𝑗

12 for 𝑛 𝑗 ∈ 𝑁𝑖 do
13 Receive 𝑃

𝑛 𝑗
𝑛𝑒𝑤 back from 𝑛 𝑗

14 𝑃𝑎𝑖 ← 𝑃𝑎𝑖 ∪ 𝑃𝑛𝑒𝑤
15 𝐵 ← argmin𝐼∈𝑃𝑎𝑖

𝐼 .𝑓 𝑖𝑡𝑛𝑒𝑠𝑠

16 𝐴𝑁𝑌𝑇𝐼𝑀𝐸 −𝑈𝑃𝐷𝐴𝑇𝐸 (𝐵)
17 𝑃𝑎𝑖 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝑤𝑟𝑝 ( |𝑁𝑖 | ∗ 𝐸𝑅)
18 if 𝐼𝑡𝑟 = 𝐼𝑡𝑟𝑀 +𝑀𝐼 then
19 for 𝑛 𝑗 ∈ 𝑁𝑖 do
20 Send 𝑆𝑒𝑙𝑒𝑐𝑡𝑤𝑟𝑝 (𝐸𝑅) to 𝑛 𝑗

21 for 𝑃
𝑛 𝑗

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑
received from 𝑛 𝑗 ∈ 𝑁𝑖 do

22 𝑃𝑎𝑖 ← 𝑃𝑎𝑖 ∪ 𝑃
𝑛 𝑗

𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

this pseudo-tree is calculated during the time of construction and

is maintained by all agents. From this point, 𝑁𝑖 refers to the set

of neighbours; 𝐶𝑖 ⊆ 𝑁𝑖 refers to the set of child nodes and 𝑃𝑅𝑖
refers to the parent of an agent 𝑎𝑖 in the pseudo-tree. For instance,

we can see in Figure 2 that 𝑁2 = {𝑎1, 𝑎3, 𝑎4}, 𝐶2 = {𝑎1, 𝑎3} and
𝑃𝑅2 = 𝑎4 for agent 𝑎2. After the pseudo-tree construction, all the

agents synchronously call the procedure INIT (Algorithm 1: Line

2).

INIT starts by initializing all the parameters and variables to

their default values
4
. Then each agent 𝑎𝑖 sets its variable 𝑥𝑖 to a

random value from its domain 𝐷𝑖 . Lines 3 to 25 of Procedure 1

describe the initial population construction process. In AED, we

define population P as a set of individuals that are collectively

maintained by all the agents and local population 𝑃𝑎𝑖 ⊆ 𝑃 as the

subset of the population maintained by agent 𝑎𝑖 . An individual in

AED is represented by a complete assignment of variables in X and

fitness is calculated using a fitness function shown in Equation 2.

This function calculates the aggregated cost of constraints yielded

by the assignment. Hence, optimizing this fitness function results

in an optimal solution for the corresponding DCOP.

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 =
∑
𝑓𝑖 ∈𝐹

𝑓𝑖 (𝑥𝑖 ) (2)

Note that a single agent can not calculate the fitness function. Rather

it is calculated in parts with the cooperation of all the agents dur-

ing the construction process. Moreover, the fitness value is added

4
AED takes a default value for each of the parameters as input. Default values of the

variables are discussed later in this section.
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to the representation of an individual because it enables an agent

to recalculate the fitness when a new individual is constructed

only using local information. We take I = {𝑥1 = 1, 𝑥2 = 2, 𝑥3 =

1, 𝑥4 = 2, 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 = 38} as an example of a complete individual

from the DCOP shown in Figure 1. We use dot(.) notation to refer

to a specific element of an individual. For example 𝐼 .𝑥1 refers to

𝑥1 in I. Additionally, we define a Merger operation of two indi-

viduals under construction, 𝐼1, 𝐼2 as Merge(𝐼1, 𝐼2). This operation

constructs a new individual 𝐼3 by aggregating the assignments and

setting 𝐼3 .𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 = 𝐼1 .𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 + 𝐼2 .𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 . We define an extended

Merge operation for two ordered sets of individuals 𝑆1 and 𝑆2 as

𝑀𝑒𝑟𝑔𝑒 (𝑆1, 𝑆2) = {𝐼𝑖 : 𝑀𝑒𝑟𝑔𝑒 (𝑆1 .𝐼𝑖 , 𝑆2 .𝐼𝑖 )} where 𝐼𝑖 is the i-th indi-

vidual in a set.

At the beginning of the construction process, each agent 𝑎𝑖 sets

𝑃𝑎𝑖 to a set of empty individuals
5
. The size of the initial 𝑃𝑎𝑖 is

defined by parameter IN. Then for each individual 𝐼 ∈ 𝑃𝑎𝑖 , agent
𝑎𝑖 makes a random assignment to 𝐼 .𝑥𝑖 . After that each agent 𝑎𝑖
executes a merger operation on 𝑃𝑎𝑖 with each local population

maintained by agents in 𝑁𝑖 (Procedure 1: Line 2-8). At this point, an

individual 𝐼 ∈ 𝑃𝑎𝑖 consists of an assignment of variables controlled

by 𝑎𝑖 , and agents in 𝑁𝑖 with fitness set to zero. For example, I

= {𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 1, 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 = 0} represents an individual

of 𝑃𝑎3 . The fitness of each individual is then set to the local cost

according to their current assignment (Procedure 1: Line 9-10).

Hence, the individual I from the previous example becomes {𝑥1 =
1, 𝑥2 = 2, 𝑥3 = 1, 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 = 20}. In the next step, each agent 𝑎𝑖
executes a merger operation on 𝑃𝑎𝑖 with each local population that

is maintained by the agents in 𝐶𝑖 . Then each agent 𝑎𝑖 sends 𝑃𝑎𝑖 to

𝑃𝑅𝑖 apart from the root (Procedure 1: Line 11-18). At the end of

this step, the local population maintained by the root consists of

complete individuals. However, their fitness is twice its actual value

since each constraint is calculated twice. Therefore, the root agent

at this stage corrects all the fitness values (Procedure 1: Lines 20-21).

Finally, the local population of the root agent is distributed through

the network so that agents can initialize their local population

(Procedure 1: Line 22-25). This concludes the initialization phase

and after that, all the agents synchronously start the optimization

phase in order to improve this initial population iteratively.

The Optimization Phase of AED consists of five steps, namely

Selection, Reproduction, ANYTIME-UPDATE, Reinsertion and Mi-

gration. An agent 𝑎𝑖 begins an iteration of this phase by selecting

individuals from 𝑃𝑎𝑖 for the Reproduction step (Algorithm 1: Line 4).

Prior to this selection, all the individuals are ranked from (0, 𝑅𝑚𝑎𝑥 ]
based on their relative fitness in the local population 𝑃𝑎𝑖 . The rank

𝑅 𝑗 of an individual 𝐼 𝑗 ∈ 𝑃𝑎𝑖 is calculated using Equation 3. Here,

𝐼𝑏𝑒𝑠𝑡 and 𝐼𝑤𝑜𝑟𝑠𝑡 are the individuals with the lowest and highest

fitness in 𝑃𝑎𝑖 respectively
6
. We define 𝑆𝑒𝑙𝑒𝑐𝑡𝑟𝑝 (𝑆) as the process of

taking a sample with replacement
7
of size S from population 𝑃𝑎𝑖

based on the probability calculated using Equation 4. As 𝛼 increases

in Equation 4, the fitness vs. selection probability curve gets steeper.

As a consequence, individuals with better fitness get selected more

often. In this way, 𝛼 controls the exploration and exploitation dy-

namics in the Selection mechanism (See Section 5 for more details).

5
Individuals with no assignment and fitness set to 0.

6
For minimization problems, a lower value of fitness is better.

7
Any individual can be selected more than once.

Procedure 1: INIT( )
1 Initialize algorithm parameters IN, ER, 𝑅𝑚𝑎𝑥 , 𝛼, 𝛽 , MI and variables

LB, GB, FM, UM

2 𝑥𝑖 ← random value from 𝐷𝑖

3 𝑃𝑎𝑖 ←Set of empty individuals

4 for Individual 𝐼 ∈ 𝑃𝑎𝑖 do
5 𝐼 .𝑥𝑖 ←a random value from 𝐷𝑖

6 Send 𝑃𝑎𝑖 to agents in 𝑁𝑖

7 for 𝑃𝑛 𝑗
received from 𝑛 𝑗 ∈ 𝑁𝑖 do

8 𝑃𝑎𝑖 ← 𝑀𝑒𝑟𝑔𝑒 (𝑃𝑎𝑖 , 𝑃𝑛 𝑗
)

9 for Individual 𝐼 ∈ 𝑃𝑎𝑖 do
10 𝐼 .𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 ← ∑

𝑛 𝑗 ∈𝑁𝑖
𝐶𝑜𝑠𝑡𝑖,𝑗 (𝐼 .𝑥𝑖 , 𝐼 .𝑥 𝑗 )

11 if |𝐶 | = 0 then
12 Send 𝑃𝑎𝑖 to 𝑃𝑅𝑖

13 else
14 Wait until received 𝑃𝑐 𝑗 from all 𝑐 𝑗 ∈ 𝐶𝑖

15 for 𝑃𝑐 𝑗 received from 𝑐 𝑗 ∈ 𝐶𝑖 do
16 𝑃𝑎𝑖 ← 𝑀𝑒𝑟𝑔𝑒 (𝑃𝑎𝑖 , 𝑃𝑐 𝑗 )
17 if 𝑎𝑖 ≠ 𝑟𝑜𝑜𝑡 then
18 Send 𝑃𝑎𝑖 to 𝑃𝑅𝑖

19 else
20 for Individual 𝐼 ∈ 𝑃𝑎𝑖 do
21 𝐼 .𝑐𝑜𝑠𝑡 ← 𝐼 .𝑓 𝑖𝑡𝑛𝑒𝑠𝑠/2
22 Send 𝑃𝑎𝑖 to all agent in𝐶𝑖

23 if Received 𝑃𝑃𝑅𝑖
from 𝑃𝑅𝑖 then

24 𝑃𝑎𝑖 ← 𝑃𝑃𝑅𝑖

25 Send 𝑃𝑎𝑖 to all agent in𝐶𝑖

For example, assume 𝑃𝑎𝑖 consists of 3 individuals 𝐼1, 𝐼2, 𝐼3 with fit-

ness 16, 30, 40 respectively and 𝑅𝑚𝑎𝑥 = 5. Then Equations 3 and 4

will yield, 𝑃 (𝐼1) = 0.676, 𝑃 (𝐼2) = 0.297, 𝑃 (𝐼3) = 0.027 if 𝛼 = 1 and

𝑃 (𝐼1) = 0.92153, 𝑃 (𝐼2) = 0.07842, 𝑃 (𝐼3) = 0.00005 if 𝛼 = 3. During

this step, each agent 𝑎𝑖 selects |𝑁𝑖 | ∗𝐸𝑅 individuals from 𝑃𝑎𝑖 which

we define as 𝑃𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 .

𝑅 𝑗 = 𝑅𝑚𝑎𝑥 ∗
|𝐼𝑤𝑜𝑟𝑠𝑡 .𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 − 𝐼 𝑗 .𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 | + 1
|𝐼𝑤𝑜𝑟𝑠𝑡 .𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 − 𝐼𝑏𝑒𝑠𝑡 .𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 | + 1

(3)

𝑃 (𝐼 𝑗 ) =
𝑅𝛼
𝑗∑

𝐼𝑘 ∈𝑃𝑎𝑖 𝑅
𝛼
𝑘

(4)

Now, lines 5 to 11 of Algorithm 1 illustrate our proposed Repro-

duction mechanism. Agents start this step by partitioning 𝑃𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
into |𝑁𝑖 | subsets of size ER. Then each subset is randomly assigned

to a unique neighbour. The subset assigned to 𝑛 𝑗 ∈ 𝑁𝑖 is denoted by

𝑃
𝑛 𝑗

𝑛𝑒𝑤 . An agent 𝑎𝑖 creates a new individual from each 𝐼 ∈ 𝑃𝑛 𝑗

𝑛𝑒𝑤 with

cooperation of neighbour 𝑛 𝑗 . Initially, agent 𝑎𝑖 changes assignment

𝐼 .𝑥𝑖 by sampling from its domain 𝐷𝑖 using Equations 5, 6, 7. Then,

𝑃
𝑛 𝑗

𝑛𝑒𝑤 is sent to 𝑛 𝑗 . Agent 𝑛 𝑗 updates its assignment of 𝐼 .𝑥 𝑗 for each

𝐼 ∈ 𝑃𝑎𝑖
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑

(i.e. 𝑃
𝑛 𝑗

𝑛𝑒𝑤 ) using Equation 8. Additionally, both agents

𝑎𝑖 and𝑛 𝑗 update the fitness of the individual 𝐼 by adding 𝛿𝑖 and 𝛿 𝑗 to

I.fitness, respectively. Here, 𝛿∗ is calculated using Equation 9 where

𝐼 .𝑥𝑛𝑒𝑤∗ and 𝐼 .𝑥𝑜𝑙𝑑∗ are the old and new values of 𝐼 .𝑥∗, respectively.
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𝑂𝑑𝑖 =
∑

𝑛𝑘 ∈𝑁𝑖\𝑛 𝑗

𝐶𝑜𝑠𝑡𝑖,𝑘 (𝐼 .𝑥𝑖 , 𝐼 .𝑥𝑘 ) + min

𝑑 𝑗 ∈𝐷 𝑗

𝐶𝑜𝑠𝑡𝑖, 𝑗 (𝐼 .𝑥𝑖 , 𝑑 𝑗 ) (5)

𝑊𝑑𝑖 = 𝑂𝑚𝑎𝑥 ∗
|𝑂𝑤𝑜𝑟𝑠𝑡 −𝑂𝑑𝑖 | + 1
|𝑂𝑤𝑜𝑟𝑠𝑡 −𝑂𝑏𝑒𝑠𝑡 | + 1

(6)

𝑃 (𝑑𝑖 ) =
𝑊

𝛽

𝑑𝑖∑
𝑑𝑘 ∈𝐷𝑖

𝑊
𝛽

𝑑𝑘

(7)

𝐼 .𝑥 𝑗 = argmin

𝑑 𝑗 ∈𝐷 𝑗

∑
𝑛𝑘 ∈𝑁 𝑗

𝐶𝑜𝑠𝑡 𝑗,𝑘 (𝑑 𝑗 , 𝐼 .𝑥𝑘 ) (8)

𝛿∗ =
∑

𝑛𝑘 ∈𝑁∗
𝐶𝑜𝑠𝑡∗,𝑘 (𝐼 .𝑥𝑛𝑒𝑤∗ , 𝐼 .𝑥𝑘 ) −𝐶𝑜𝑠𝑡∗,𝑘 (𝐼 .𝑥𝑜𝑙𝑑∗ , 𝐼 .𝑥𝑘 ) (9)

For example, agent 𝑎3 of Figure 1 creates a new individual from

𝐼 = {𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 2, 𝑥4 = 2, 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 = 49} with the help of

neighbour 𝑎2. Here, the domain of agent 𝑎3 and 𝑎2 is {1, 2}. Initially,
agent 𝑎3 calculates P(1) = 0.90 and P(2) = 0.10 using Equation 5, 6, 7

(𝛽 = 1). It then updates 𝐼 .𝑥3 by sampling this probability distribution.

The fitness is also updated by adding 𝛿𝑖 (= -11). Let the updated I

be {𝑥1 = 1, 𝑥2 = 2, 𝑥3 = 1, 𝑥4 = 2, 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 = 38}, it is then sent to

𝑎2. Based on Equation 8, the new value of 𝐼 .𝑥2 should be 1. Now,

agent 𝑎2 updates 𝐼 .𝑥2 along with the fitness by adding 𝛿 𝑗 (= -16)

and sends I back to 𝑎3. Hence, Agent 𝑎3 receives 𝐼 = {𝑥1 = 1, 𝑥2 =

1, 𝑥3 = 1, 𝑥4 = 2, 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 = 22}.
To summarize the Reproduction mechanism, each agent 𝑎𝑖 picks

a neighbour 𝑛 𝑗 randomly for each 𝐼 ∈ 𝑃𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 . Agent 𝑎𝑖 then

updates 𝐼 .𝑥𝑖 by sampling based on the most optimistic cost (i.e. the

lowest cost) of the constraint between 𝑎𝑖 and 𝑛 𝑗 and aggregated

cost of the remaining local constraints. This cost represents the

optimistic local benefit for each domain value. Then 𝑛 𝑗 sets 𝐼 .𝑥 𝑗 to a

value that complements the optimistic change in 𝐼 .𝑥𝑖 most. The key

insight of this mechanism is that it not only takes into account the

improvement in fitness that the change in 𝐼 .𝑥𝑖 will bring but also

considers the potential improvement the change in 𝐼 .𝑥 𝑗 will bring.

Moreover, note that the parameter 𝛽 in Equation 7 plays a similar

role as parameter 𝛼 in Equation 3 (See Section 5 for details). After

collecting the newly constructed individuals from neighbours they

are added to 𝑃𝑎𝑖 (Algorithm 1: Line 12-14). Then the best individual

B in 𝑃𝑎𝑖 is sent for ANYTIME-UPDATE (Algorithm 1: Line 15-16).

To facilitate the anytime update mechanism, each agent main-

tains four variables LB, GB, FM, UM. LB (Local Best) and GB (Global

Best) are initialized to empty individuals with fitness set to infinity.

FM and UM are initialized to ∅. Additionally, GB is stored with a

version tag and each agent maintains previous versions of GB hav-

ing version tags in the range [𝐼𝑡𝑟 − 𝐻 + 1, 𝐼𝑡𝑟 ] (see the Theoretical
section for details). Here, Itr refers to the current iteration number.

We use𝐺𝐵 𝑗
to refer to the latest version of GB with version tag not

exceeding j. Ours proposed anytime update mechanism works as

follows. Each agent keeps track of two different best, LB and GB.

Whenever the fitness of LB becomes less than GB, it has the poten-

tial to be the global best solution. So it gets reported to the root

through the propagation of a Found message up the pseudo-tree.

Since the root gets reports from all the agents, it can identify the

true global best solution, and notify all the agents by propagating

an Update message down to the pseudo tree. The root also adds the

Procedure 2: ANYTIME-UPDATE(B)

1 if 𝐵.𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 < 𝐿𝐵.𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 then
2 𝐿𝐵 ← 𝐵

3 if 𝐿𝐵.𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 < 𝐺𝐵𝐼𝑡𝑟 .𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 then
4 if 𝑎𝑖 = 𝑟𝑜𝑜𝑡 then
5 𝐺𝐵𝑖𝑡𝑟 ← 𝐿𝐵

6 𝑈𝑀 ← {𝑉𝑒𝑟𝑠𝑖𝑜𝑛 : 𝐼𝑡𝑟, 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 : 𝐿𝐵 }
7 else
8 𝐹𝑀 ← {𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 : 𝐿𝐵 }

9 Send Update Message UM to agents in𝐶𝑖 and Found Message FM to

𝑃𝑅𝑖

10 𝐹𝑀 ← ∅
11 𝑈𝑀 ← ∅
12 if Received update message M and𝑀 ≠ ∅ then
13 𝐺𝐵𝑀.𝑉𝑒𝑟𝑠𝑖𝑜𝑛 ← 𝑀.𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙

14 𝐿𝐵 ←Best between LB and M.individual

15 𝑈𝑀 ← 𝑀

16 if Received found message M and𝑀 ≠ ∅ and
𝑀.𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 .𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 < 𝐿𝐵.𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 then

17 𝐿𝐵 ← 𝑀.𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙

18 if 𝐼𝑡𝑟 >= 𝐻 then
19 𝑥𝑖 = 𝐺𝐵𝐼𝑡𝑟−𝐻+1 .𝑥𝑖

version tag in the Update message to help coordinate variable as-

signment. Now, ANYTIME-UPDATE starts by keeping LB updated

with the best individual B in 𝑃𝑎𝑖 . In line 3 of Procedure 2, agents try

to identify whether LB is the potential global best. When identified

and if the identifying agent is the root, it is the true global best and

an Update message UM is constructed. If the agent is not the root,

it is a potential global best and a Found message FM is constructed

(Procedure 2: Lines 4-8). Each agent forwards the message UM to

agents in 𝐶𝑖 and the message FM to the 𝑃𝑅𝑖 . Upon receiving these

messages, an agent takes the following actions:

• If an Update message is received then an agent updates both

its GB and LB. Additionally, the agent saves the Update

message in UM and sends it to all the agents in 𝐶𝑖 during

the next iteration (Procedure 2: Lines 12-15).

• If a Found message is received and it is better than LB, only

LB is updated. If this remains a potential global best it will be

sent to 𝑃𝑅𝑖 during next iteration (Procedure 2: Lines 16-17).

An agent 𝑎𝑖 then updates the assignment of 𝑥𝑖 using 𝐺𝐵
𝐼𝑡𝑟−𝐻+1

(Procedure 2: Lines 18-19). Agentsmake decisions based on𝐺𝐵𝐼𝑡𝑟−𝐻+1

instead of the potentially newer 𝐺𝐵𝐼𝑡𝑟 so that decisions are made

based on the same version of GB. 𝐺𝐵𝐼𝑡𝑟−𝐻+1 will be same for all

agents since it takes at most H iterations for an Update message

to propagate to all the agents. For example, assume agent 𝑎1 from

Figure 2 finds a potential best individual I at 𝐼𝑡𝑟 = 3. Unless it

gets replaced by a better individual, it will reach the root 𝑎4 via

agent 𝑎2 through a Found message at 𝐼𝑡𝑟 = 4. Then 𝑎4 constructs

an Update message {𝑉𝑒𝑟𝑠𝑖𝑜𝑛 : 5, 𝐼𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 : 𝐼 } at 𝐼𝑡𝑟 = 5. This

message will reach all the agents by 𝐼𝑡𝑟 = 6 and the agents save it

as 𝐺𝐵5 = 𝐼 . Finally, at 𝐼𝑡𝑟 = 6 agents assign their variables using

𝐺𝐵6−2+1 = 𝐺𝐵5 which is the best individual found at 𝐼𝑡𝑟 = 3.
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After ANYTIME-UPDATE each agent performs Reinsertion, i.e.

updates its local population with new individuals. At first each

agent adds newly constructed individuals 𝑃𝑛𝑒𝑤 to 𝑃𝑎𝑖 (Algorithm

1: line 14). After that, each agent 𝑎𝑖 updates their 𝑃𝑎𝑖 by keeping a

sample of size |𝑁𝑖 | ∗𝐸𝑅 and discarding the rest based on their fitness

(Algorithm 1: line 17). This sample is taken using 𝑆𝑒𝑙𝑒𝑐𝑡𝑤𝑟𝑝 (𝑆)
which is the same as 𝑆𝑒𝑙𝑒𝑐𝑡𝑟𝑝 (𝑆, ) except agents sample without

replacement
8
. This sampling method keeps the local population

𝑃𝑎𝑖 diverse by selecting a unique set of individuals.

Finally, Migration, an essential step of AED, takes place on ev-

ery MI iteration. We sketch this in lines 18-22 of Algorithm 1. For

this step, we define 𝐼𝑡𝑟𝑀 as the iteration number when the last

Migration occurred. Migration is a simple process of exchanging

individuals among the neighbours. In AED, the Reproduction mech-

anism utilizes local cooperation, so only a subset of variables of

an individual change. However, because of Migration, different

agents can change a different subset of variables as individuals get

to traverse the network through this mechanism. Hence, this step

plays an essential role in the optimization process of AED. During

this step, an agent 𝑎𝑖 selects a sample of size ER using 𝑆𝑒𝑙𝑒𝑐𝑡𝑤𝑟𝑝 (𝑆)
for each 𝑛 𝑗 ∈ 𝑁𝑖 and sends a copy of those individuals to that

neighbour. Upon collecting individuals from all the neighbours, an

agent, 𝑎𝑖 adds them to its local population 𝑃𝑎𝑖 . This concludes an

iteration of the optimization phase and every step repeats during

the subsequent iterations..

4 THEORETICAL ANALYSIS
In this section, we first prove that AED is anytime, that is the quality

of solutions found by AED increasemonotonically. Thenwe analyze

the complexity of AED in terms of communication, computation

and memory requirements.

Lemma 4.1. At iteration i + H, the root agent is aware of the best
individual in P at least up to iteration i.

Proof. Suppose, the best individual up to iteration i is found
at iteration i′ ≤ i by agent ax at level l′. Afterwards, one of the
following 2 cases will occur at each iteration.

• Case 1. This individual will be reported to the parent of the

current agent through a Found message.

• Case 2. This individual gets replaced by a better individual

on its way to the root at iteration i∗ > i′ by agent ay at

level l∗ .
When only Case 1 occurs, the individual will reach the root at

iteration i′ + l′ ≤ i + H (since 𝑙 ′ can be at most H). If Case 2

occurs, the replaced individual will reach the root agent by i∗ + l∗ =
{i∗ − (l′ − l∗)} + {(l′ − l∗) + l∗} = i′ + l′ ≤ i + H. The same can be

shown when the new individual also gets replaced. In either case,

at iteration i+H, the root will become aware of the best individual

in P up to iteration i or will become aware of a better individual in

P found at iteration i∗ > i; meaning the root will be aware of the

best individual in P at least up to iteration i. □

Lemma 4.2. The variable assignment decision made by all the
agents at iteration i + 2H − 1 yield a global cost equal to the fitness
of the best individual in P at least up to iteration i.
8
Each individual can be selected at most once.

Proof. At iteration i + 2H − 1, all the agents make decisions

about variable assignment using GBi+H. However, GBi+H is the

best individual known to the root up to iteration i + H. We know

from Lemma 4.1 that, at iteration i + H, the root is aware of the best
individual in P at least up to iteration i. Hence, the fitness of GBi+H

is at least equal to the best individual in P up to iteration i. Hence,
at iteration i + 2H − 1, it yields a global cost equal to the fitness of

the best individual in P at least up to iteration i. □

Proposition 4.3. AED is anytime.

Proof. From Lemma 4.2, the decisions regarding the variable as-

signments at iterations i + 2H − 1 and i + 2H − 1 + 𝛿 yields a global

cost equal to the fitness of the best individual in P at least up to

iterations i and i + 𝛿 (𝛿 ≥ 0), respectively. Now, the fitness of the
best individual in P up to iteration i + 𝛿 is at most the fitness at

iteration i. So the global cost at iteration i + 𝛿 is less than or equal

to the same cost at iteration i. As a consequence, the quality of

the solution monotonically improves as the number of iterations

increases. Hence, AED is anytime. □

We now consider algorithm complexity. Assume, n is the number

of agents, |N| is the number of neighbours and |D| is the domain

size of an agent. In every iteration, an agent sends 2|𝑁 | messages

during the Reproduction step. Additionally, at most |𝑁 | messages

are passed for each of the ANYTIME-UPDATE and Migration steps.

Now, |𝑁 | can be at most n (complete graph). Hence, the total number

of messages transmitted per agent during an iteration is𝑂 (4|𝑁 |) =
𝑂 (𝑛). Since the main component of a message in AED is the set

of individuals, the size of a single message can be calculated as

the size of an individual multiplied by the number of individuals.

During the Reproduction, Migration and ANYTIME-UPDATE steps,

at most ER individuals, each of which has size 𝑂 (𝑛), is sent in a

single message. As a result, the size of a single message is𝑂 (𝐸𝑅 ∗𝑛).
This makes the total message size per agent during an iteration

𝑂 (𝐸𝑅 ∗ 𝑛 ∗ 𝑛) = 𝑂 (𝑛2).
Before Reproduction, |𝑃𝑎𝑖 | can be at most 2𝐸𝑅 ∗ |𝑁 | (if Migra-

tion occurred in the previous iteration) and Reproduction will add

𝐸𝑅 ∗ |𝑁 | individuals. So the memory requirement per agent is

𝑂 (3 ∗ 𝐸𝑅 ∗ |𝑁 | ∗ 𝑛) = 𝑂 (𝑛2). Finally, Reproduction using Equa-

tions 5, 6, 7, 8 and 9 requires |𝐷𝑖 | ∗ |𝑁 | operations and in total

𝐸𝑅 ∗ |𝑁 | individuals are reproduced during an iteration per agent.

Hence, the total computation complexity per agent during an itera-

tion is 𝑂 (𝐸𝑅 ∗ |𝑁 | ∗ |𝐷 | ∗ |𝑁 |) = 𝑂 ( |𝐷 | ∗ 𝑛2).

5 EXPERIMENTAL RESULTS
In this section, we empirically evaluate the quality of solutions

produced by AED compared to six different state-of-the-art DCOP

algorithms. We show that AED asymptotically converges to solu-

tions of quality higher than these six state-of-the-art algorithms.

We select these algorithms to represent all four classes of non-exact

algorithms. Firstly, among the local search algorithms, we pick DSA

(type C, P = 0.8, this value of P yielded the best performance in our

settings), MGM2 (with offer probability p = 0.5) and GDBA (N, NM,

T; reported to perform the best [22]). Secondly, among the inference-

based non-exact algorithms, we compare with Max-Sum_ADVP−
as it has empirically shown to perform significantly better than
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Figure 3: Comparison of AED and the benchmarking algo-
rithms on a sparse configurations of random DCOPs.

Max-Sum [31]. We used switching parameter that yielded best re-

sult between n and 2n, where n is the number of agents. Thirdly,

we consider a sampling-based algorithm, namely PD-Gibbs, which

is the only such algorithm that is suitable for large-scale DCOPs

[25]. Finally, we compare with ACO_DCOP as it is only available

population-based DCOP algorithm. To evaluate ACO_DCOP, we

use the same values of the parameters recommended in [2]. We

discuss parameter settings of AED
9
in details later in this section.

Additionally, we used the ALS framework for non-monotonic algo-

rithms having no anytime update mechanism.

We compare these algorithms on three different benchmarks.

We consider random DCOPs for our first benchmark. Specifically,

we set the number of agents to 70 and domain size to 10. We use

Erdős-Rényi topology (i.e. random graph) to generate the constraint

graphs with the value of 𝑝 = 0.1 (i.e. sparse graph) [5]. We then

take constraint costs uniformly from the range [1, 100]. Our second
benchmark is identical to the first setting except the value of 𝑝 = 0.6

(i.e. dense graph). For our last benchmark, we consider weighted

graph coloring problems with the number of agents 120, 3 colors per

agent, Erdős-Rényi topology with 𝑝 = 0.05 and constraint violation

costs are selected uniformly from [1, 100]. In all three settings, we

run all algorithms on 70 independently generated problems and

30 times on each problem. Moreover, for stopping condition we

consider both max-iteration and max-time. For max-iteration, we

stop each of the algorithms after the 1000-th iteration. For max-time,

we run each algorithm for 4 seconds, 25 seconds and 6 seconds

for the aforementioned benchmarks 1, 2 and 3, respectively. In

order to conduct these experiments, we use a GCP-n2-highcpu-64
instance10 - a cloud computing service which is publicly accessible

at cloud.google.com. It is worth noting that all differences shown in

Figures 3, 4, 5 and Table 1 are statistically significant for 𝑝−𝑣𝑎𝑙𝑢𝑒 <

0.01.

Figure 3 shows a comparison between AED and the benchmark-

ing algorithms on the sparse random DCOP benchmark after run-

ning an equal amount of iteration. On the other hand, the EXP-1 col-

umn of Table 1 shows the comparison after running each algorithm

an equal amount of time (4 seconds). The closest competitor to AED

is ACO_DCOP. Unlike other competitors, both of the population-

based algorithms kept on improving the solution until the end of

9
For implementing 𝑆𝑒𝑙𝑒𝑐𝑡𝑤𝑟𝑝 (.) we use Reservoir-sampling algorithm [17]. For per-

forming set operation we use constant time polynomial hashing.

10
64 Intel Skylake vCPU @ 2.0 GHZ and 58 GB RAM
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Figure 5: Comparison of AED and the benchmarking algo-
rithms on weighted graph coloring problems.

the run due to their superior capability of exploration. However,

it can be observed from Table 1 that AED produces 1.7% better

solution than ACO_DCOP after running an equal amount of time.

In contrast, most of the local search algorithms converge to local

optima within 400 iterations (see Figure 3) - with GDBA producing

the best performance. After running an equal amount of time, AED

outperforms GDBA by a 9% and DSA by 14.9%. Finally, the other

two representative algorithms, Max-Sum_ADVP and PD-Gibbs are

outperformed by 11.1% − 13.8% margin. The superiority of AED

in this experiment indicates that the Selection method along with

the new Reproduction mechanism based on optimistic local benefit

achieves a better balance between exploration and exploitation.

This helps AED to explore until the end of the run and produce

solutions with better quality than the state-of-the-art algorithms.

Figure 4 shows a comparison between AED and other bench-

marking algorithms on dense random DCOP benchmark. It clearly

shows the advantage of AED over its competitors. To be exact, it out-

performs the benchmarking algorithms by a margin of 0.7% − 3.0%
after running an equal amount of time (25 seconds). In this bench-

matk, most of the algorithms find results of similar quality with

a slight variation. Among the competitors, GDBA outperforms

ACO_DCOP by a slight margin till 1000-th iteration. However, after

running an equal amount of time, ACO_DCOP manages to pro-

duce better solutions and becomes the closest competitor to AED.

PD-Gibbs fails to explore much through sampling and converges

quickly while producing the most substantial performance differ-

ence with AED. It is also worth noting that ACO_DCOP takes 1000
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iterations to produce a similar quality solution that is found by

AED at the expense of only 70 iterations.

Table 1: Comparison of AED and the benchmarking algo-
rithms using Max-Time as Stopping condition.

Algorithm EXP - 1 EXP - 2 EXP - 3
DSA 6076 56799 781

MGM-2 5775 56780 486

GDBA 5770 56051 310

PD-Gibbs 6021 56985 682

MS_ADVP 5877 56786 625

ACO_DCOP 5380 55735 291

AED 5289 55347 229

Figure 5 shows a comparison between AED and the other bench-

marking algorithms on weighted graph colouring problems. In

this experiment, AED demonstrates its excellent performance by

outperforming other algorithms by a significant margin. Among

the benchmarking algorithms, ACO_DCOP is the closest but still

outperformed by AED by a 27% margin. Among the local search

algorithms, GDBA is the most competitive, but AED still finds solu-

tions that are 35% better. Finally, it improves the quality of solutions

around 1.73 − 2.4 times over some of its competitors, namely DSA,

Max-Sum_ADVP and PD-Gibbs after running an equal amount of

time. Through this experiment, it is also evident that AED can also

be an effective algorithm for DCSPs
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Figure 6: Performance of AED for different 𝛼 and 𝛽 on a
sparse configurations of random DCOPs.

Nowwe consider the effects of different parameters on the bench-

marks. Firstly, for all three benchmarks, we set 𝐼𝑁 , which defines

the initial population size to 50. A small value of 𝐼𝑁 will affect

the exploration of AED. However, after 50, it does not have any

significant effect on the solution quality. Secondly, for all three

benchmarks, we set the migration interval,𝑀𝐼 to 5. Through the

Migration process, individuals get to traverse the network and

different agents get to change different variables of an individual.

Hence, Migration works as an implicit cooperation mechanism. If

the value of 𝑀𝐼 is set too high, convergence will slow down due

to a lack of cooperation. On the other hand, when it is set too low,

the population will lack diversity as different sub-population will

mix fast. Thirdly, we show the effect of parameter 𝐸𝑅 on solution

Table 2: SolutionQuality &MemoryRequirement Per-Agent
of AED for different ER value.

ER Solution Quality Memory (KB)
EXP-1 EXP-2 EXP-3 EXP-1 EXP-2 EXP-3

05 5378 55550 275 39 188 53

10 5346 55450 252 69 367 97

20 5316 55347 240 129 725 184

40 5289 55325 229 248 1441 358
50 5285 55310 223 308 1899 445

quality and memory requirement on Tables 2. 𝐸𝑅 effectively de-

termines the population size. When it is set too low, exploration

will suffer. However, as we increase 𝐸𝑅 after a certain threshold, it

does not improve solution quality by any significant margin. We

specifically highlight the different values of ER we used in different

benchmarks on Table 2. Notice that even with the small value of

𝐸𝑅 = 5 AED is outperforming the benchmarking algorithms.

Finally, we depict the effect of 𝛼 and 𝛽 in Figure 6. While keep-

ing 𝛼 constant as we increase 𝛽 , both the solution quality and the

convergence rate increase up to a threshold. After that, the conver-

gence rate does not change much but the solution quality starts

to suffer. As we increase 𝛽 , the Reproduction mechanism starts

to exploit more than explore. At the threshold value, the balance

between exploitation and exploration becomes optimal. After that,

when we increase 𝛽 , the exploration starts to suffer. Hence, this

phenomenon occurs. In Figure 6, we observe that this 𝛽 threshold

is 5 (Benchmark 1). For Benchmark 2, we have found this threshold

to be 5 and the value is 2 for Benchmark 3. On the other hand,

as we increase 𝛼 , the convergence rate increases but the solution

quality decreases. In order to mitigate this problem, we use a vari-

able 𝛼 . To be precise, in the first 150 iterations, we use 𝛼 = 3. We

then use 𝛼 = 2 in the following 150 iterations, and for the rest of

the iterations we consider 1 as the value of 𝛼 . Figure 6 shows that

𝑎𝑙𝑝ℎ𝑎 = 𝑉𝐴𝑅 yields a similar solution quality as 𝛼 = 1; however,

the convergence rate is near 𝛼 = 3.

6 CONCLUSIONS
In this paper, we introduce a novel algorithm called AED that effec-

tively uses evolutionary optimization to solve DCOPs. To incorpo-

rate the anytime property in AED, we also present a new anytime

update mechanism. In our theoretical evaluation, we prove that

AED is anytime. Finally, we present empirical results that show

that AED outperforms state-of-the-art non-exact algorithms by

1.7% − 14.9% on sparse random DCOPs, 0.7% − 3.0% on dense ran-

dom DCOPs. More notably, AED produces 0.27 − 2.4 times better

solutions on weighted graph colouring problems. These results

demonstrate the significance of applying evolutionary optimization

techniques in solving DCOPs. In the future, we intend to investigate

whether this algorithm can be applied to solve continuous-valued

and multi-objective DCOPs.
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