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ABSTRACT
The policy gradient theorem describes the gradient of the expected

discounted return with respect to an agent’s policy parameters.

However, most policy gradient methods drop the discount factor

from the state distribution and therefore do not optimize the dis-

counted objective. What do they optimize instead? This has been an

open question for several years, and this lack of theoretical clarity

has lead to an abundance of misstatements in the literature. We

answer this question by proving that the update direction approxi-

mated by most methods is not the gradient of any function. Further,

we argue that algorithms that follow this direction are not guar-

anteed to converge to a “reasonable” fixed point by constructing a

counterexample wherein the fixed point is globally pessimal with
respect to both the discounted and undiscounted objectives. We

motivate this work by surveying the literature and showing that

there remains a widespreadmisunderstanding regarding discounted

policy gradient methods, with errors present even in highly-cited

papers published at top conferences.
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1 INTRODUCTION
Reinforcement learning (RL) is a subfield of machine learning in

which computational agents learn to maximize a numerical reward
signal through interaction with their environment. Policy gradient
methods encode an agent’s behavior as a parameterized stochastic

policy and update the policy parameters according to an estimate of

the gradient of the expected sum of rewards (the expected return)
with respect to those parameters. In practice, estimating the effect

of a particular action on rewards received far in the future can be

difficult, so almost all state-of-the-art implementations instead con-

sider an exponentially discounted sum of rewards (the discounted
return), which shortens the effective time horizon. The policy gra-
dient theorem [25] describes the appropriate update direction for

this discounted setting. However, almost all modern policy gradient

algorithms deviate from the original theorem by dropping one of

the two instances of the discount factor that appears in the theorem.

It has been an open question for several years as to whether these

algorithms are unbiased with respect to a different, related objective

[26]. In this paper, we answer this question and prove that most

policy gradient algorithms, including state-of-the-art algorithms,

do not follow the gradient of any function. Further, we show that
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for some tasks, the fixed point of the update direction followed by

these algorithms is pessimal, regardless of whether the discounted

or undiscounted objective is considered.

The analysis in this paper applies to nearly all state-of-the-art

policy gradient methods. In Section 6, we review all of the policy

gradient algorithms included in the popular stable-baselines
repository [9] and their associated papers, including A2C/A3C [13],

ACER [28], ACKTR [30], DDPG [11], PPO [18], TD3 [6], TRPO [16],

and SAC [8]. We motivate this choice in Section 6, but we note

that all of these papers were published at top conferences
1
and

have received hundreds or thousands of citations. We found that

all of the implementations of the algorithms used the “incorrect”

policy gradient that we discuss in this paper. While this is a valid

algorithmic choice if properly acknowledged, we found that only

one of the eight papers acknowledged this choice, while three of

the papers made erroneous claims regarding the discounted policy

gradient and others made claims that were misleading. The pur-

pose of identifying these errors is not to criticize the authors or

the algorithms, but to draw attention to the fact that confusion

regarding the behavior of policy gradient algorithm exists at the

very core of the RL community and has gone largely unnoticed

by reviewers. This has led to a proliferation of errors in the litera-

ture. We hope that by providing definitive answers to the questions

associated with these errors we are able to improve the technical

precision of the literature and contribute to the development of a

better theoretical understanding of the behavior of RL algorithms.

2 NOTATION
RL agents learn through interactions with an environment. An

environment is expressed mathematically as a Markov decision
process (MDP). An MDP is a tuple, (S,A, P ,R,d0,γ ), where S is

the set of possible states of the environment, A is the set of actions
available to the agent, P : S × A × S → [0, 1] is a transition
function that determines the probability of transitioning between

states given an action, R : S × A → [−Rmax,Rmax] is the expected

reward from taking an action in a particular state, bounded by

some Rmax ∈ R, d0 : S → [0, 1] is the initial state distribution,
and γ ∈ [0, 1] is the discount factor which decreases the utility of

rewards received in the future. In the episodic setting, interactions
with the environment are broken into independent episodes. Each
episode is further broken into individual timesteps. At each timestep,

t , the agent observes a state, St , takes an action, At , transitions to
a new state, St+1, and receives a reward, Rt . Each episode begins

with t = 0 and ends when the agent enters a special state called

the terminal absorbing state, s∞. Once s∞ is entered, the agent can

never leave and receives a reward of 0 forever. We assume that

1
ICML, NeurIPS, or ICLR, with the exception of PPO, which appears to have been

published only on arXiv.
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limt→∞ Pr(St = s∞) = 1, since otherwise, the episode may persist

indefinitely and the continuing setting must be considered.

A policy, π : S × A → [0, 1], determines the probability that

an agent will choose an action in a particular state. A parameter-
ized policy, πθ , is a policy that is defined as a function of some

parameter vector, θ , which may be the weights in a neural network,

values in a tabular representation, etc. The compatible features of
a parameterized policy represent how θ may be changed in order

to make a particular action, a ∈ A, more likely in a particular

state, s ∈ S, and are defined asψ (s,a) B ∂
∂θ lnπθ (s,a). The value

function, V θ
γ : S → R, represents the expected discounted sum

of rewards when starting in a particular state under policy πθ ;

that is, ∀t ,V θ
γ (s) B E[

∑∞
k=0 γ

kRt+k |St=s,θ ], where conditioning

on θ indicates that ∀t ,At ∼ πθ (St , ·). The action-value function,
Qθ
γ : S × A → R, is similar, but also considers the action taken;

that is, ∀t ,Qθ
γ (s,a) B E[

∑∞
k=0 γ

kRt+k |St=s,At=a,θ ]. The advan-
tage function is the difference between the action-value function

and the (state) value function: Aθγ (s,a) B Qθ
γ (s,a) −V θ

γ (s).
The objective of an RL agent is to maximize some function, J ,

of its policy parameters, θ . In the episodic setting, the two most

commonly stated objectives are the discounted objective, Jγ (θ ) =
E[

∑∞
t=0 γ

tRt |θ ], and the undiscounted objective, J (θ )=E[
∑∞
t=0 Rt |θ ].

The discounted objective has some convenient mathematical prop-

erties, but it corresponds to few real-world tasks. Sutton and Barto

[23] have even argued for its deprecation. However, we will see

in Section 6 that the discounted objective is commonly stated as

a justification for the use of a discounted factor, even when the

algorithms themselves do not optimize this objective.

3 PROBLEM STATEMENT
The formulation of the policy gradient theorem [2, 25, 29] presented

by Sutton et al. [25] was given for two objectives: the average

reward objective for the infinite horizon setting [12] and the dis-

counted objective, Jγ , for the episodic setting. The episodic setting
considered in this paper is more popular, as it is better suited to

the types of tasks that RL researchers typically use for evaluation

(e.g., many classic control tasks, Atari games [3], etc.). The dis-

counted policy gradient, ∇Jγ (θ ), tells us how to modify the policy

parameters, θ , in order to increase Jγ , and is given by:

∇Jγ (θ ) = E

[
∞∑
t=0

γ tψ θ (St ,At )Q
θ
γ (St ,At )

����θ ] .
Because ∇Jγ is the true gradient of the discounted objective, algo-

rithms that follow unbiased estimates of it are given the standard

guarantees of stochastic gradient descent (namely, that given an

appropriate step-size schedule and smoothness assumptions, con-

vergence to a locally optimal policy is almost sure [4]). However,

most conventional “policy gradient” algorithms instead directly or

indirectly estimate the expression:

∇J?(θ ) = E

[
∞∑
t=0

ψ θ (St ,At )Q
θ
γ (St ,At )

����θ ] .
Note that this expression includes the γ t contained in Qθ

γ , but

differs from the true discounted policy gradient in that it drops the

outer γ t . We label this expression ∇J?(θ ) because the question of

whether or not it is the gradient of some objective function, J?, was
left open by Thomas [26]. Thomas [26] was only able to construct

J? in an impractically restricted setting where π did not affect the

state distribution. The goal of this paper is to provide answers to

the following questions:

• Is ∇J?(θ ) the gradient of some objective function?

• If not, does ∇J?(θ ) at least converge to a reasonable policy?

4 ∇J?(θ ) IS NOT A GRADIENT
In this section, we answer the first of our two questions and show

that the update direction used by almost all policy gradient algo-

rithms, ∇J?(θ ), is not the gradient of any function using a proof

by contraposition with the Clairaut-Schwarz theorem on mixed

partial derivatives [19]. First, we present this theorem (Theorem

4.1) and its contrapositive (Corollary 4.2). Next, we present Lemma

4.3, which allows us to rewrite ∇J?(θ ) in a new form. Finally, in

Theorem 4.4 we apply Corollary 4.2 and Lemma 4.3 and derive

a counterexample proving that J? does not, in general, exist, and

therefore that the “policy gradient” given by ∇J?(θ ) is not, in fact,

a gradient.

Theorem 4.1. (Clairaut-Schwarz theorem): If f : Rn → R
exists and is continuously twice differentiable in some neighborhood
of the point (a1,a2, . . . ,an ), then its second derivative is symmetric:

∀i, j : ∂ f (a1,a2, . . . ,an )
∂xi∂x j

=
∂ f (a1,a2, . . . ,an )

∂x j∂xi
.

Proof. The first complete proof was given by Schwarz [19].

English proofs can be found inmany advanced calculus and analysis

textbooks [15, p. 236]. □

Corollary 4.2. (Contrapositive of Clairaut-Shwarz): If at
some point (a1,a2, . . . ,an ) ∈ Rn there exists an i and j such that

∂ f (a1,a2, . . . ,an )

∂xi∂x j
,
∂ f (a1,a2, . . . ,an )

∂x j∂xi
,

then f does not exist or is not continuously twice differentiable in any
neighborhood of (a1,a2, . . . ,an ).

Proof. Contrapositive of Theorem 4.1. As a reminder, the con-

trapositive of a statement, P =⇒ Q , is ¬Q =⇒ ¬P . The contra-
positive is always implied by the original statement. Additionally,

recall that for any function д, ¬∀i : д(i) =⇒ ∃i : ¬д(i). □

If we can find an example where ∇2 J?(θ ) is continuous but asym-

metric, that is, ∃i, j : ∂ J?(θ )
∂θi ∂θ j

,
∂ J?(θ )
∂θ j ∂θi

, then we may apply Corol-

lary 4.2 and conclude that J? does not exist. To this end, we present
a new lemma that allows us to rewrite ∇J?(θ ) in a form that is more

amenable to computing the second derivatives by hand. The result

of this lemma is of some theoretical interest in itself, but further

interpretation is left as future work. We do not leverage it here for

any purpose except to aid in our proof of Theorem 4.4.

Lemma 4.3. Let dθγ be the unnormalized, weighted state distribu-
tion given by:

dθγ (s) B d0(s) + (1 − γ )
∞∑
t=1

Pr(St = s |θ ).
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Then:

∇J?(θ ) =
∑
s ∈S

dθγ (s)
∂

∂θ
V θ
γ (s).

Proof. See appendix. □

In this form, we begin to see the root of the issue: In the above

expression, dθγ (s) is not differentiated, meaning that ∇J?(θ ) does
not consider the effect updates to θ have on the state distribution.

We will show that this is in fact the source of the asymmetry in

∇2 J?(θ ). With this in mind, we present our main theorem.

Theorem 4.4. LetM be the set of all MDPs with rewards bounded
by [−Rmax,Rmax] satisfying ∀π :

∑∞
t=0 Pr(St , s∞) < ∞. Then, for

all γ < 1:

¬∃J? : ∀M∈M : ∇J?(θ ) = E

[
∞∑
t=0

ψ θ (St ,At )Q
θ
γ (St ,At )

�����θ
]
.

Proof. Theorem 4.1 states that if J? is a twice continuously

differentiable function, then its second derivative is symmetric. It

is easy to show that this is not true informally using Lemma 4.3:

∂2 J?(θ )

∂θi∂θ j
=
∂

∂θi

(∑
s ∈S

dθγ (s)
∂

∂θ j
V θ
γ (s)

)
=

∑
s ∈S

dθγ (s)
∂2

∂θi∂θ j
V θ
γ (s)︸                       ︷︷                       ︸

symmetric

+
∑
s ∈S

∂

∂θi
dθγ (s)

∂

∂θ j
V θ
γ (s)︸                        ︷︷                        ︸

asymmetric

.

Therefore, we have by Corollary 4.2 that so long as ∇2 J?(θ ) is
continuous, J? does not exist. In order to rigorously complete the

proof, we must provide as a counterexample an MDP for which the

above asymmetry is present. We provide such a counterexample in

Figure 1. While we defer the full proof to the appendix, we describe

the intuition behind the counterexample below.

Assume that for the example given in Figure 1, J? exists and
∇J?(θ ) is its gradient. Consider in particular the case where γ = 0.

In this case, ∇2 J?(θ ) is asymmetric because θ1 affects the value

function and the state distribution, whereas θ2 affects the value
function but not the state distribution. Therefore, the second term

in ∂2 J?(θ )/∂θi∂θ j (labeled “asymmetric” in the above equation) is

non-zero when i = 1 and j = 2, and zero when i = 2 and j = 1. In

the appendix, we show that the above expression is symmetric if

and only if γ = 1. Therefore, for γ < 1, Corollary 4.2 applies and we

may conclude that J? either does not exist or is not continuously
twice differentiable. In this example, the ∇2 J?(θ ) is continuous

everywhere. Therefore, we conclude that J? does not exist. This
completes the counterexample.

□

5 THE FIXED POINT OF ∇J?(θ ) IS SOMETIMES
PESSIMAL

Having established that ∇J?(θ ) is not the gradient of any function

for choices of γ < 1, we move on to the question of whether or

not ∇J?(θ ) converges to some reasonable policy in the general case.

For instance, consider the case of temporal difference (TD) methods.

Figure 1: A counterexample wherein the derivative of ∇J?(θ )
is asymmetric for all γ < 1, necessary for the proof of Theo-
rem 4.4. The agent begins in s1, and may choose between ac-
tions a1 and a2, each of which produces deterministic transi-
tions. The rewards are 0 everywhere except when the agent
chooses a2 in state s2, which produces a reward of +1. The
policy is assumed to be tabular over states and actions, with
one parameter, θ1, determining the policy in s1, and a sec-
ond parameter, θ2, determining the policy in s2 (e.g., the pol-
icy may be determined by the standard logistic function,
σ (x) = 1

1+e−x , such that π (s1,a1) = σ (θ1)).

While the expected update of TD is not a gradient update [22],

in the on-policy setting with a linear function approximator, TD

has been shown to converge to a unique point close to the global

optimum of themean-squared projected Bellman error (MSPBE) [23,

24, 27], which is called the “TD fixed point.” Through the geometric

interpretation of the MSPBE, it may be said that the TD fixed point

is “reasonable” in that it is close to the best possible estimate of

the mean squared Bellman error (MSBE) under a particular linear

parameterization of the value function.

We ask the question of whether or not a similar reasonable fixed

point exists in the case of the update given by ∇J?(θ ). While it is

not clear in what sense the fixed point should be “reasonable,” we

propose a very minimal criterion: any reasonable policy fixed point

should at least surpass the worst possible (pessimal) policy under

either the discounted or undiscounted objective. That is, if the fixed
point is pessimal under both objectives, this suggests that it will be

difficult to come up with a satisfactory justification. Surprisingly, it

can be shown that ∇J?(θ ) fails to pass even this low bar.

To demonstrate this, we contrast two examples, given in Figures

2 and 3. In the former example, ∇J?(θ ) behaves in a way that is

(perhaps) expected: it converges to the optimal policy under the

discounted objective, while failing to optimize the undiscounted

objective. This is a well understood trade-off of discounting that can

be explained as “short-sightedness” by the agent. The latter example,

however, shows a case where an agent following ∇J?(θ ) behaves
in a manner that is apparently irrational: it achieves the smallest

possible discounted return and undiscounted return, despite the

fact that it is possible to maximize either within the given policy

parameterization. We therefore suggest that for at least some MDPs,

∇J?(θ ) may not be a reasonable choice.

6 LITERATURE REVIEW
We previously claimed that ∇J?(θ ) is the direction followed by state-
of-the-art policy gradient methods and that the lack of theoretical

clarity on the behavior of algorithms following ∇J?(θ ) has resulted
in a multiplicity of errors in the literature. In this section, we sub-

stantiate this point by surveying a subset of popular policy gradient
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Figure 2: An example where the fixed point of ∇J?(θ ) is op-
timal with respect to the discounted objective but pessimal
with respect to the undiscounted objective. The agent starts
in state s1, and can achieve a reward of +1 by transitioning
from s1 to s2, and a reward of +2 by transitioning from s6 to
s7, regardless of the action taken. In order to maximize the
undiscounted return, the agent should choose a2. However,
the discounted return is higher from choosing a1. Only the
return in s1 will affect the policy gradient as the advantage is
zero in every other state. Thus, algorithms following ∇J?(θ )
methods will eventually choose a1. If the researcher is con-
cerned with the undiscounted objective, as is often the case,
this result is problematic. Choosing a larger value of γ triv-
ially fixes the problem in this particular example, but for
any value of γ < 1, similar problems will arise given a suffi-
ciently long horizon, and thus the problem is not truly elim-
inated. Nevertheless, this is well-understood as the trade-off
of discounting.

Figure 3: An example where the fixed point of ∇J?(θ ) is pes-
simal with respect to both the discounted and undiscounted
objectives. In this formulation, there is a single policy pa-
rameter, θ , so the agent must execute the same policy in ev-
ery state. It is difficult to justify any solution other than to
always choose a1. If the agent is completely myopic, then
a1 gives the superior immediate reward of +1 in the start-
ing state. If the agent is somewhat farther-sighted, then al-
ways choosing a1 will eventually result in the +100 reward.
Choosing a2 provides no benefit with respect to either view.
Following ∇J?(θ ), however, will result in a policy that al-
ways chooses a2. This results from the fact that the advan-
tage of a2 in state s2 is greater than the advantage of a1 in
state s1, while the advantages in states s3 and s5 are zero. Be-
cause ∇J?(θ ) ignores the change in the state distribution, the
net update always increases the probability of choosing a2.
Again, while we chose γ = 0 for simplicity, similar examples
can be produced in long-horizonproblemswith “reasonable”
settings of γ , such as 0.99 or higher. One may ask if the shar-
ing of a policy between states is contrived, but such a situ-
ation occurs reliably under partial observability or when a
function approximator is used.

algorithms and their associated papers. We show that the majority

of them include erroneous or misleading statements directly relat-

ing to arguments made in this paper. We emphasize that we do not

pose this as a criticism of the authors, but rather a symptom of the

ambiguity in the literature that we hope to address with this paper.

6.1 Methodology
Rather than manually selecting which papers to review, which may

have introduced an unacceptable degree of bias, we chose to review

the papers associated with every policy gradient algorithm included

in stable-baselines [9], a fork of the popular OpenAI baselines
[5] library. We chose this particular subset of algorithms because

inclusion in the library generally indicates that the algorithms have

achieved a certain level of popularity and relevance. The papers

corresponding to these algorithms have received hundreds or thou-

sands of citations each, and, with the exception of PPO [18], were

published at top machine learning conferences. It therefore seems

reasonable to claim that the papers were impactful in the field and

are representative of high-quality research. While we acknowledge

that this sampling of algorithms is heavily biased towards the sub-

field of “deep” RL, we argue that this is not unreasonable given the

immense popularity of this area and its impact on the broader field.

For each algorithm, we examined the psuedocode for the algo-

rithm itself, the background and theoretical sections of the associ-

ated paper, and several publicly available implementations, includ-

ing the implementation created by the authors where available. We

tried to answer the following three questions for each algorithm:

(1) Does the algorithm use ∇J?(θ ) rather than an unbiased esti-

mator?

(2) If so, did the authors note that ∇J?(θ ) is not an unbiased

estimator of the policy gradient?

(3) Did the paper include any erroneous or misleading claims

about ∇J?(θ )?

For questions (2) and (3), we support our evaluation of the papers

with quotations from the text in cases where there were errors or

ambiguities. While this approach is verbose, we felt that paraphras-

ing the original papers would not allow the readers understand

the errors in their appropriate context. For 5 out of 8 of the algo-

rithms,
2
the original authors or organizations provided code, allow-

ing us to directly answer (1). For all eight papers, we examined the

stable-baselines [9] implementation as well as several other im-

plementations including tf-agents [20], garage [7], spinning-up
[1], and the autonomous-learning-library [14]. Finally, for each
paper we note the conference, year, and citation count estimated

by Google Scholar on February 23, 2020.

6.2 Results
Eight policy gradient algorithms are included in stable-baselines.
Our high-level results to each question are as follows:

(1) All eight of the algorithms use ∇J?(θ ) instead of an unbiased

estimator, both in their psuedocode and implementations.

(2) Only one out of the eight papers calls attention to the fact

that ∇J?(θ ) is a biased estimator.

2
ACKTR, PPO, TD3, TRPO, and SAC
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(3) Three out of the eight papers included claims that are clearly

erroneous. Two additional papers made misleading claims in

that they presented the discounted policy gradient (∇Jγ (θ )),
and then proposed an algorithm that uses ∇J?(θ ), without
making note of this discrepancy. A sixth paper included

claims that we argue are misleading, but not strictly false.

We reproduce the three explicitly erroneous claims below in order

to give the reader a sense of common misunderstandings. Notice

that the quotations sometimes use slightly different notation than

this paper. We try to supply the appropriate context such that the

meaning intended by the authors can be understood. Additional

analysis can be found in the appendix.

A3C (ICML 2016, 2859 citations)
Asynchronous Advantage Actor-Critic (A3C) [13] is an actor-critic

method that generates sample batches by running multiple actors

in parallel. The original version of the algorithm achieved state-of-

the-art performance on many Atari games when it was published.

The background section of the main paper includes the text:

The return Rt =
∑∞
k=0 γ

krt+k is the total accumu-

lated return from time step t with discount factor

γ ∈ (0, 1]. The goal of the agent is to maximize the

expected return from each state st .
[. . . ]

In contrast to value-basedmethods, policy basedmeth-

ods directly parameterize the policy π (a |s;θ ) and up-

date the parameters θ by performing, typically approx-

imate, gradient ascent on E[Rt ]. One example of such

a method is the REINFORCE family of algorithms due

to Williams [29]. Standard REINFORCE updates the

policy parametersθ in the direction∇θ logπ (at |st ;θ )Rt ,
which is an unbiased estimate of ∇θE[Rt ]. It is possi-
ble to reduce the variance of this estimate while keep-

ing unbiased by subtracting a learned function of the

state bt (st ), known as a baseline [29], from the return.

The resulting gradient is ∇θ log(at |st ;θ )(Rt − bt (st )).

It is falsely claimed that ∇θπ (at |st ;θ )Rt (which is an unbiased

sample estimate of ∇J?(θ )) is an unbiased estimate of ∇θE[Rt ],
where Rt is the discounted return at timestep t rather than the

individual reward. We showed that this is not the case.

ACKTR (ICLR 2017, 235 citations)
Actor Critic using Kronecker-Factored Trust Region (ACKTR) [30]

is a variation of A3C that attempts to efficiently estimate the natural
policy gradient, which uses an alternate notion of the direction

of steepest ascent. The resulting algorithm is considerably more

sample efficient than A3C. The background section contains:

The goal of the agent is to maximize the expected

γ -discounted cumulative return J (θ ) = Eπ [Rt ] =
Eπ [

∑∞
i≥0 γ

ir (st+i ,at+i )] with respect to the policy

parameters θ . Policy gradient methods directly pa-

rameterize a policy πθ (a |st ) and update parameter θ
so as to maximize the objective J (θ ). In its general

form [17], the policy gradient is defined as:

∇θ J (θ ) = Eπ

[
∞∑
t=0

Ψt∇θ logπθ (at |st )

]
,

where Ψt
is often chosen to be the advantage function

Aπ (st ,at ), which provides a relative measure of value

of each action at at a given state st .

The authors assert that the gradient, ∇θ J (θ ), is equal to the given

expression, which is false for the proposed choice of Aπ (st ,at ).
They did not note that above expression is an approximation or

otherwise clarify. Therefore, the definition of the policy gradient

presented above is erroneous.

SAC (ICML 2018, 446 citations)
Soft Actor-Critic (SAC) [8] is an algorithm in the deterministic pol-

icy gradient family [21]. The deterministic policy gradient gives an

expression for updating the parameters of a deterministic policy and

is derived from the conventional policy gradient theorem, meaning

that the arguments presented in this paper apply. SAC is considered

state-of-the-art on continuous control tasks. The appendix states:

The exact definition of the discounted maximum en-

tropy objective is complicated by the fact that, when

using a discount factor for policy gradient methods,

we typically do not discount the state distribution,

only the rewards. In that sense, discounted policy gra-

dients typically do not optimize the true discounted

objective. Instead, they optimize average reward, with

the discount serving to reduce variance, as discussed

by Thomas [26].

The relationship between the average reward objective and ∇J?(θ )
was discussed by Kakade [10] and elaborated on by Thomas [26].

However, the claim that ∇J?(θ ) optimizes the average reward ob-

jective is erroneous by Theorem 4.4.

6.3 Discussion
The three erroneous claims all involved misinterpreting ∇J?(θ )
as the gradient of some function. Two of the remaining papers

failed to acknowledge the difference between the gradient of the

discounted objective, ∇Jγ (θ ), and the gradient direction followed

by the presented algorithm, typically an estimate of ∇J?(θ ). Even
among the papers where we did not find explicit errors, errors were

avoided largely through the use of hedged language and ambiguity,

rather than technical precision. For examples of this, we encourage

the reader to refer to the appendix. While for the purposes of this

review we only sampled a small subset of the literature on policy

gradients, we found the results sufficient to support our claim that

there exists a widespread misunderstanding regarding ∇J?(θ ).

7 CONCLUSIONS
We conclude by emphasizing the while ∇J?(θ ) is not a gradient

(Section 4), can in some cases result in pessimal behavior (Section

5), and is commonly misrepresented in the literature (Section 6), it

has remained the most popular estimator of the policy gradient due

to its effectiveness when applied to practical problems. The pre-

cise reason for this effectiveness, especially in the episodic setting,

remains an open question.

Research Paper  AAMAS 2020, May 9–13, Auckland, New Zealand

943



APPENDIX
Proof of Lemma 4.1
We begin by hypothesizing that ∇J?(θ ) takes the form of a weighted

distribution over
∂
∂θV

θ
γ (s), given some time-dependent weights,

w(t), on each term in the state distribution. That is, we hypothesize

that equality:

∇J?(θ ) =
∑
s ∈S

dθγ (s)
∂

∂θ
V θ
γ (s),

holds for some dθγ :

dθγ (s) =
∞∑
t=0

w(t) Pr(St = s |θ ).

We thenmust prove that this holds for some choice ofw(t), and then
derive the satisfying choice of w(t). Sutton et al. [25] established

that:

∂

∂θ
V θ
γ (s)=

∞∑
k=0

∑
x ∈S

γk Pr(St+k=x |St=s,θ )
∑
a∈A

Qθ
γ (x ,a)

∂πθ (x ,a)

∂θ
.

Substituting this into our expression for ∇J?(θ ) gives us:∑
s ∈S

dθγ (s)
∂

∂θ
V θ
γ (s)

=
∑
s ∈S

∞∑
t=0

w(t) Pr(St = s |θ )

×

∞∑
k=0

∑
x ∈S

γk Pr(St+k = x |St = s,θ )
∑
a∈A

Qθ
γ (x ,a)

∂πθ (x ,a)

∂θ

=
∑
s ∈S

∞∑
t=0

∞∑
k=0

∑
x ∈S

∑
a∈A

w(t)γk

× Pr(St = s |θ ) Pr(St+k = x |St = s,θ )Q
θ
γ (x ,a)

∂πθ (x ,a)

∂θ

=
∑
s ∈S

∞∑
t=0

∞∑
k=0

∑
x ∈S

∑
a∈A

w(t)γk

× Pr(St = s |θ ) Pr(St+k = x |St = s,θ )Q
θ
γ (x ,a)π

θ (x ,a)
∂ ln(πθ (x ,a))

∂θ

=
∑
s ∈S

∞∑
t=0

∞∑
k=0

∑
x ∈S

∑
a∈A

w(t)γk

× Pr(St = s |θ ) Pr(St+k = x |St = s,θ )Q
θ
γ (x ,a)π

θ (x ,a)ψ (x ,a)

=
∑
s ∈S

∞∑
t=0

∞∑
k=0

∑
x ∈S

∑
a∈A

w(t)γk

× Pr(St = s |θ ) Pr(St+k = x |St = s,θ ) Pr(At+k = a |St+k = x ,θ )

×Qθ
γ (x ,a)ψ (x ,a)

=

∞∑
t=0

∞∑
k=0

∑
x ∈S

∑
a∈A

w(t)γk

× Pr(St+k = x |θ ) Pr(At+k = a |St+k = x ,θ )Qθ
γ (x ,a)ψ (x ,a),

since Pr(At+k = a |St+k = x ,θ ) = Pr(At+k = a |St+k = x , St =
s,θ ) and by the law of total probability. The key point is that we

have removed the term Pr(St = s |θ ). Continuing, starting with the

fact that Pr(St+k = x |θ ) Pr(At+k = a |St+k = x ,θ ) = Pr(St+k =
x ,At+k = a |θ ), we have that:

∑
s ∈S

dθγ (s)
∂

∂θ
V θ
γ (s)

=

∞∑
t=0

∞∑
k=0

∑
x ∈S

∑
a∈A

w(t)γk Pr(St+k = x ,At+k = a |θ )Qθ
γ (x ,a)ψ (x ,a)

=

∞∑
t=0

∞∑
k=0

E
[
w(t)γkQθ

γ (St+k ,At+k )ψ (St+k ,At+k )
���θ ]

=

∞∑
t=0

∞∑
i=t
E

[
w(t)γ i−tQθ

γ (Si ,Ai )ψ (Si ,Ai )
���θ ] ,

by substitution of the variable i = t + k . Continuing, we can move

the summation inside the expectation and reorder the summation:

∑
s ∈S

dθγ (s)
∂

∂θ
V θ
γ (s) = E

[
∞∑
t=0

∞∑
i=t

w(t)γ i−tQθ
γ (Si ,Ai )ψ (Si ,Ai )

����θ ]
= E

[
∞∑
i=0

i∑
t=0

w(t)γ i−tQθ
γ (Si ,Ai )ψ (Si ,Ai )

����θ ]
= E

[
∞∑
i=0

Qθ
γ (Si ,Ai )ψ (Si ,Ai )

i∑
t=0

w(t)γ i−t
����θ ] .

In order to derive ∇J?(θ ), we simply need to choose a w(t) such
that ∀i : ∑i

t=0w(t)γ i−t = 1. This is satisfied by the choice:w(t) = 1

if t = 0, and 1 − γ otherwise. This trivially holds for i = 0, as

w(0)γ 0 = (1)(1) = 1. For i > 0:

i∑
t=0

w(t)γ i−t = w(0)γ i +
i∑

t=1
w(t)γ i−t

= γ i +
i∑

t=1
(1 − γ )γ i−t

= γ i +
i∑

t=1
(γ i−t − γ i−t+1)︸                  ︷︷                  ︸

telescoping series

= γ i + γ i−i − γ i−1+1

= γ i + 1 − γ i

= 1.

Thus, for this choice ofw(t):

∑
s ∈S

dθγ (s)
∂

∂θ
V θ
γ (s) = E

[
∞∑
i=0

Qθ
γ (Si ,Ai )ψ (Si ,Ai )

����θ ]
= ∇J?(θ ).

Finally, we see that this choice ofw(t) also gives us the expression

for dθγ stated in Lemma 4.3:
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dθγ (s) =
∞∑
t=0

w(t) Pr(St = s |θ )

= w(0)︸︷︷︸
1

Pr(S0 = s |θ )︸        ︷︷        ︸
d0(s)

+

∞∑
t=1

w(t)︸︷︷︸
1−γ

Pr(St = s |θ )

= d0(s) + (1 − γ )
∞∑
t=1

Pr(St = s |θ ).

Continuation of Proof of Theorem 4.2
We continue from the example given in Figure 1. First, we compute

dθγ in terms of θ for each state using the definition of the MDP and

π :

dθγ (s1) = 1

dθγ (s2) = (1 − γ ) Pr(S1 = s2)

= (1 − γ )π (s1,a1)

= (1 − γ )σ (θ1)

Next, we compute V θ
γ in each state in terms of θ . Note that

Qθ
γ (s1,a1) = γV

θ
γ (s2) because taking a1 in s1 leads to s2 and has

zero reward.

V θ
γ (s2) = π (s2,a1)Q

θ
γ (s2,a1) + π (s2,a2)Q

θ
γ (s2,a2)

= π (s2,a1)(1) + π (s2,a2)(0)

= σ (θ2)

V θ
γ (s1) = π (s1,a1)Q

θ
γ (s1,a1) + π (s1,a1)Q

θ
γ (s1,a1)

= π (s1,a1)(γV
θ
γ (s2)) + π (s1,a1)(0)

= γσ (θ1)σ (θ2)

Recall that by the definition of our policy and substitution, we

have:

∂πθ (s1,a1)

∂θ1
=
∂σ (θ1)

∂θ1

∂πθ (s2,a1)

∂θ2
=
∂σ (θ2)

∂θ2

Next, we compute each partial derivative, ∂V θ
γ (s)/∂θi :

∂V θ
γ (s1)

∂θ1
=
∂

∂θ1
γσ (θ1)σ (θ2)

= γσ (θ2)
∂σ (θ1)

∂θ1

∂V θ
γ (s1)

∂θ2
=
∂

∂θ2
γσ (θ1)σ (θ2)

= γσ (θ1)
∂σ (θ2)

∂θ2

∂V θ
γ (s2)

∂θ1
=
∂σ (θ2)

∂θ1
= 0

∂V θ
γ (s2)

∂θ2
=
∂σ (θ2)

∂θ2

With the necessary components in place, we can apply Lemma

4.3 to compute each partial derivative of J?:

∂J?(θ )

∂θ1
= dθγ (s1)︸︷︷︸

1

∂V θ
γ (s1)

∂θ1
+ dθγ (s2)

∂V θ
γ (s2)

∂θ1︸    ︷︷    ︸
0

= γσ (θ2)
∂σ (θ1)

∂θ1

∂J?(θ )

∂θ2
= dθγ (s1)

∂V θ
γ (s1)

∂θ2
+ dθγ (s2)

∂V θ
γ (s2)

∂θ2

= γσ (θ1)
∂σ (θ2)

∂θ2
+ (1 − γ )σ (θ1)

∂σ (θ2)

∂θ2

= σ (θ1)
∂σ (θ2)

∂θ2

Finally, we compute the second order partial derivatives:

∂

∂θ2

(
∂J?(θ )

∂θ1

)
=
∂

∂θ2

(
γσ (θ2)

∂σ (θ1)

∂θ1

)
= γ
∂σ (θ1)

∂θ1

∂σ (θ2)

∂θ2
∂

∂θ1

(
∂J?(θ )

∂θ2

)
=
∂

∂θ1

(
σ (θ1)

∂σ (θ2)

∂θ2

)
=
∂σ (θ1)

∂θ1

∂σ (θ2)

∂θ2

Thus we see that the following holds for any θ1 and θ2:

∀γ < 1 :

∂

∂θ2

(
∂J?(θ )

∂θ1

)
,
∂

∂θ1

(
∂J?(θ )

∂θ2

)
.

The consequence of this asymmetry is that the contrapositive

of the Clairaut-Schwarz theorem [19] implies that if J? exists, it
must not be continuously twice differentiable. However, consider

the remaining terms in the second order partial derivative:
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∂

∂θ1

(
∂J?(θ )

∂θ1

)
=
∂

∂θ1

(
γσ (θ2)

∂σ (θ1)

∂θ1

)
= γσ (θ2)

∂2σ (θ1)

∂θ2
1

∂

∂θ2

(
∂J?(θ )

∂θ2

)
=
∂

∂θ2

(
σ (θ1)

∂σ (θ2)

∂θ2

)
= σ (θ1)

∂2σ (θ2)

∂θ2
2

.

Thus, we have constructed all of the second order partial deriva-

tives. As the sigmoid function, σ , is itself continuously twice differ-

entiable, we see that ∀θ ∈ R2, i, j : ∂2 J?(θ )/∂θi∂θ j is continuous.
Therefore, if J? exists, it is continuously twice differentiable. How-

ever, we showed using the Clairaut-Schwarz theorem [19] that J? is
not continuously twice differentiable. Therefore, we have derived a

contradiction.

Additional Literature Review
Here we include our analysis of the papers associated with al-

gorithms from stable-baselines which did not include clearly

erroneous claims regarding ∇J?(θ ). However, several of the papers
included claims that we argue are nevertheless misleading, some

more so than others. Due to space limitations, we are forced to omit

our analysis of DDPG and TRPO.

ACER (ICLR 2017) (299 Citations)
ACER [30] combines experience replay with actor-critic methods,

improving sample efficiency. The background section contains the

following text:

The parametersθ of the differentiable policyπθ (at |xt )
can be updated using the discounted approximation

to the policy gradient [25], which borrowing notation

from Schulman et al. [17], is defined as:

д = Ex0:∞,a0:∞

[∑
t ≥0

Aπ (xt ,at )∇θ logπθ (at |xt )

]
.

Following Proposition 1 of Schulman et al. [17], we

can replace Aπ (xt ,at ) in the above expression with

the state-action value Qπ (xt ,at ), the discounted re-

turn Rt , or the temporal difference residual

rt + γV
π (xt+1) −V π (xt ), without introducing bias.

We note that д is exactly ∇J?(θ ). The authors claim that any of the

given choices may be used “without introducing bias.” We would

argue that a naive reader is likely to assume that this means that

д is unbiased with respect to some objective. The authors were

actually making the subtler point that the given choices do not

introduce bias relative to the choice of Aπ , which is itself biased.

This claim is not erroneous, but at the same time, information is

left out that is important for a clear understanding. The correctness

hinges on ambiguity rather than precision, and a reader is likely to

come away with the opposite impression. For this reason, we argue

that this section is still misleading.

PPO (arXiv 2017, 1769 citations)
Proximal Policy Optimization (PPO) [18] is arguably the most pop-

ular deep actor-critic algorithm at this time due to its speed and

sample efficiency. The paper contains the text:

Policy gradient methods work by computing an es-

timator of the policy gradient and plugging it into a

stochastic gradient ascent algorithm. The most com-

monly used gradient estimator has the form

д̂ = ˆE[∇θ logπθ (at |st )Ât ]

where πθ is a stochastic policy and Ât is an estima-

tor of the advantage function at timestep t . Here the

expectation
ˆE[. . . ] indicates the empirical average

over a finite batch of samples, in an algorithm that

alternates between sampling and optimization.

In this case, the authors considered a very specific setup where an

algorithm “alternates between sampling and optimization.” They

construct an objective that operates on a given batch of data and

is used only for a single optimization step. They do not relate this

objective to a global objective. The final algorithm does follow

a direction resembling д̂, with a number of optimization tricks.

For this reason, we did not consider the claims above made to be

misleading. However, we note again that the issues with ∇J?(θ )
were sidestepped rather than addressed directly.

TD3 (ICML 2018, 247 citations)
Twin Delayed Deep Deterministic policy gradient (TD3) Fujimoto

et al. [6] is another paper in the DDPG family. The paper was pub-

lished concurrently with SAC and contains similar enhancements.

It contains the text:

The return is defined as the discounted sum of rewards

Rt =
∑T
i=t γ

i−t r (si ,ai ), where γ is a discount factor

determining the priority of short-term rewards. In

reinforcement learning, the objective is to find the op-

timal policy πϕ , with parameters π , which maximizes

the expected return J (π ) = Esi∼pπ ,ai∼π [R0]. For con-
tinuous control, parameterized policies πϕ can be up-

dated by taking the gradient of the expected return

∇ϕ J (π ). In actor-critic methods, the policy, known as

the actor, can be updated through the deterministic

policy gradient algorithm:

∇ϕ J (ϕ) = Es∼pπ [∇aQ
π (s,a)|a=π (s)∇ϕπϕ (s)].

Qπ (s,a) = Esi∼pπ ,ai∼π [Rt |s,a], the expected return

when performing action a in state s and following π
after, is known as the critic or the value function.

The authors did not define pπ , leaving the above expression

ambiguous. In the original DDQN paper, it was defined as the dis-

counted state distribution. It is misused here in the definitions of J
andQ , in that its not clearwhat role the discounted state distribution

plays in the definition ofQ in either case. The algorithm eventually

computes the sample gradient by averaging over samples drawn

from a replay buffer: ∇ϕ J (ϕ) = N−1Σ∇aQθ1 (s,a)|a=πϕ (s)∇ϕπϕ (s),

the deterministic policy gradient form of ∇J?(θ ).
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