
Summer Internship Matching with Funding Constraints
Haris Aziz

UNSW Sydney and Data61 CSIRO

Sydney

haris.aziz@unsw.edu.au

Anton Baychkov

University of Sydney

Sydney

abay3963@uni.sydney.edu.au

Péter Biró

Hungarian Academy of Sciences

Budapest

peter.biro@krtk.mta.hu

ABSTRACT
We present a novel model that captures matching markets for sum-

mer internships at universities and other organizations that involve

funding constraints. For these markets, we show that standard re-

sults from the literature such as the existence of stable matchings

do not extend and in fact checking whether a stable matching exists

is NP-complete which answers an open problem. Because of these

challenges, we investigate how far stability requirements can be

satisfied. One of our contributions is presenting a polynomial-time

algorithm that satisfies a weaker notion of stability and allocates

the budget in a fair manner.

KEYWORDS
Matching under preferences; economic paradigms

ACM Reference Format:
Haris Aziz, Anton Baychkov, and Péter Biró. 2020. Summer Internship

Matching with Funding Constraints. In Proc. of the 19th International Confer-
ence on Autonomous Agents andMultiagent Systems (AAMAS 2020), Auckland,
New Zealand, May 9–13, 2020, IFAAMAS, 8 pages.

1 INTRODUCTION
Centralized two-sided matching market algorithms have received

immense success in several application domains includingmatching

students to schools, residents to hospitals, and projects to workers.
1

We present a novel matching market model that we refer to as the

summer intern matching market. The model captures the matching

of student applicants to projects proposed by supervisors in the

internship program. A distinctive feature of the model is that in

order for an applicant to be assigned to any project, a certain amount

of money needs to be contributed from the project supervisors’

funds.

Our problem is inspired by summer intern research programs in

our country. It is common for undergraduate students to undertake

research projects over the summer. Each project is supervised by

one or more members of the faculty, with many offering multiple

projects. Even though the projects may be discounted by contribu-

tions from the faculty, supervisors are often required to contribute

to the funding of these positions, from their personal research bud-

get. Alternatively, they could be constrained by the amount of time

they can allocate to supervision. These supervisor-side constraints

mean that not all projects can be funded.

1
For an overview of real-life matching markets, please see http://www.

matching-in-practice.eu.

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous

Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

Just as the standard hospital resident matching models do not

just apply to matching of doctors to hospitals [22], our model also

does not just apply matching of student interns. It applies to any

two-sided matching model in which very widely applicable budget

requirements and budget constraints are involved. For example,

our problem also models hiring scenario in which different teams

have their own budgets and they want to hire employees. Certain

employee roles could sit across various teams. In that case, multiple

teams can pool in their money to fund joint positions.

The budget constraints that we consider lead to interesting re-

search challenges. A stable matching may not exist and the standard

deferred acceptance algorithm does not work for our problem.

Contributions. In this paper, we formalize the summer intern-

ship problem with budgets. It falls within the class of models that

matches applicants, projects, and supervisors. The main charac-

teristic of our problem is that supervisors have budgets that they

can spread across their projects. The model is more general than

a widely-used matching model called hospital resident matching

with regions in which the hospitals are partitioned into regions and

regions have upper capacities [13].

We first prove that a stable matching may not exist for our

model. Furthermore, even checking whether a (strongly) stable

matching exists is NP-complete. The statement not just applies to

our matchingmodel but also simultaneously applies to several other

matching models with distributional constraints. For a well-studied

model concerning disjoint regions [13], the complexity question

was open. In view of these challenges, we pursue a weaker notion

of stability.

We then present a strongly polynomial-time algorithm to com-

pute a weakly stable matching. Our algorithm uses as an oracle

an algorithm based on network flows to repeatedly check whether

a given matching is feasible or not. We also prove several other

properties of the algorithm.

We then provide a normative criterion for fair ex-post allocation

of supervisor funding among projects, and a polynomial-time algo-

rithm to find the fairest allocation. Combined with our polynomial-

time algorithm for finding a weakly stable matching, we present a

compelling approach for finding a desirable solution for the sum-

mer internship problem that appeals to both stability and fairness

requirements.

2 RELATEDWORK
The literature on two-sided matching was inspired by the seminal

paper of Gale and Shapley [8] who considered matching markets

that match students to schools and hospitals to residents. The paper

has spawned richer matching models and resulted in new algorith-

mic work (see e.g., Manlove [20]). Our work is an extension of these

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

97

http://www.matching-in-practice.eu
http://www.matching-in-practice.eu

models and falls in the general umbrella of matching markets with

various kinds of distributions constraints (see e.g., [3, 6, 7, 14, 18]).

Our concept of supervisor-feasibility is a type of feasibility con-

straint, as defined by Kamada and Kojima [15]. Thus, their notions

of stability also apply in our model. In our paper, we focus on

computational results such as establishing NP-completeness or

polynomial-time solvability of stable matchings. Our model also

has the additional dimension of budget allocations for which we

explore fairness concepts as well as algorithms to divide the method

fairly.

Our model bears some similarities with the hospital-resident

matching problem with regional constraints [4, 5, 9, 13]. In these

region-based problems, at most a certain number of students can

be selected from given regions. On the other hand, in the summer

internship problem, a supervisor’s budget is divisible and can be

spread partially over all of her projects. Even if regions can be

overlapping, region based constraints cannot capture the feasibility

constraints in our model. If the regions are disjoint (as studied by

Kamada and Kojima [13]), then the region-based model is a special

case of our model. The general setting with region constraints has

not seen many positive results, and the more constrained hierarchi-

cal regions as studied by Goto et al. [9] can neither replicate, nor

be replicated by a set of supervisors.

Abraham et al. [1] considered a different model for student-

project allocation. Notable differences in their model include: (1)

no project has multiple supervisors, (2) each supervisor has a uni-

versal priority list over students which is not project specific, and

(3) a supervisor has a rigid capacity constraint for the number of

projects to supervise. Our model allows supervisors to explore more

efficient outcomes by pooling in their budgets to host a student.

The universal priority list of each supervisors makes the model of

Abraham et al. [1] much more restricted and different from our

model.

Two other recentmodels are similar to our setting. Goto et al. [10]

introduce the Student-Project-Room matching problem. Rooms are

indivisible, and at most one room can be allocated to each project.

Ismaili et al. [12] extend this to a more general Student-Project-

Resource allocation problem. Resources are still indivisible, but

there is no longer a restriction imposed on the number of resources

that can be allocated to each project. Our model is distinct from both

of these, as it allows the resources (in our case, supervisor budgets)

to be divisible. This divisibility allows for better computational

results. For instance, verifying the feasibility of a matching, and

finding a weakly stable (and thus non-wasteful) matching can be

done in polynomial time.

There is also work on matching with budget constraints (see

e.g., Ismaili et al. [11], Kawase and Iwasaki [16, 17]). The models

considered in these papers are different in several respects. For

example, hospitals have additive utilities and each hospital gives

monetary compensation to doctors.

3 MODEL
Let A be a finite set of applicants, and P a finite set of projects.

Each applicant a ∈ A has a strict preference list ≻a that ranks

the subset of projects that a finds acceptable. Each project p ∈ P

has a preference list ≻p over the subset of applicants that p finds

acceptable, and a maximum capacity cp .
Furthermore, let S denote the set of project supervisors. Each

supervisor s ∈ S has a list of projects Ps that they supervise, and

is endowed with a budget (e.g. quantity of funds) qs that they can

allocate among those projects. We assume that these budgets are

infinitely divisible and that each applicant requires one unit of

funding. Further, we assume that these endowments are publicly

known, and thus supervisors cannot strategise bymisreporting their

budgets. Additionally, denote the list of supervisors for project p
by Sp .

We say that an applicant a ∈ A is matched to project p ∈ P if

(a,p) ∈ M . A matching M is a subset of A × P that satisfies the

following conditions:

• Each applicant is matched to at most one project (for all

a ∈ A, |{(a,p) ∈ M : p ∈ P }| ≤ 1), and a finds the project

they are matched to acceptable.

• The number of applicants matched to any project does not

exceed that project’s capacity (for allp ∈ P , |{(a,p) ∈ M : a ∈
A}| ≤ cp), and p finds all applicants matched to it acceptable.

We useM (a) to refer to the project that applicant a is matched

to (M (a) = ∅ if a is unmatched). Meanwhile,M (p) denotes the set
of applicants matched to p.

Let xs,p be the amount of funds a supervisor s allocates to project
p. We call a matchingM feasible (or supervisor-feasible) if there
exists a set {xs,p }s ∈S,p∈Ps that satisfies the following conditions:

• xs,p ≥ 0 for all s ∈ S,p ∈ Ps
• Every project receives one unit of funding for each applicant

matched to it:

∑
s ∈Sp xs,p = |M (p) | for all p ∈ P

• Supervisors do not exceed their endowment:

∑
p∈Ps xs,p ≤

qs for all s ∈ S

We call any set {xs,p }s ∈S,p∈Ps that satisfies the above conditions
for matching M a feasible funding allocation. The mathematical

model presented exactly captures the student research internship

program in our university: each supervisor can be part of multi-

ple internship project proposals but does not necessarily have the

funding to contribute to all of them.

Example 3.1 (Summer Internship Problem). Consider the follow-
ing instance of the summer internship problem with 2 applicants 2

supervisors, and 2 projects.

A = {a1,a2} ≻a1 : p2,p1 ≻a2 : p1,p2

P = {p1,p2} ≻p1 : a1,a2 ≻p2 : a2,a1

S = {s1, s2} Ps1 = {p1,p2} Ps2 = {p2}

qs1 = 0.7 qs2 = 0.5 cp1 = cp2 = 1

The only three feasible matchings are the empty matching and

the two matchings in which some applicant is matched to project

p2. The reason no one can be matched to project p1 is that p1 has a
sole supervisor s1 who does not have sufficient funding to fund p1.
On the other hand, the combined funding of s1 and s2 is more than

1 for project p2 so p2 can be funded. A feasible funding allocation

x is where s1 contributed half of the budget of project p1 and s2
contributes the rest: xs1,p2 = 0.5, xs2,p2 = 0.5.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

98

4 STRONG STABILITY
An applicant-project pair (a,p) is a blocking pair for matchingM
if:

• applicant a prefers project p to the project they are currently

matched to: p ≻a M (a), and
• either:

– p is under capacity and finds a acceptable: |M (p) | < cp
and a ≻p ∅; or

– p prefers a to one of its currently matched applicants:

∃ a′ ∈ M (p) such that a ≻p a′

Definition 4.1 (Strong Stability). We call a matchingM strongly

stable if for any blocking pair (a,p) for matchingM , the following

two conditions are satisfied:

• a′ ≻p a for all applicants a′ ∈ M (p)
• The matchingM ′ = (M∪{(a,p)})\{(a,M (a))} is not feasible.

The first condition implies that we only allow the existence of

blocking pairs involving a projectp that is under itsmaximum capac-

ity cp . The second condition implies that even if slot is free at project

p, adding applicant a to project p will result in a distributional con-

straint being violated so that M ′ = (M ∪ {(a,p)}) \ {(a,M (a))} is
not feasible. Thus, we allow blocking pairs that cannot be satisfied

without violating our feasibility constraint to exist in a strongly

stable matching.

Our first observation is that for our problem, a strongly stable

matching does not exist. This follows from the observation that

our model is more general than the hospital resident setting with

disjoint regions [13]. We provide an adaptation of an example (Ex-

ample 1) of Kamada and Kojima [15] for the sake of completeness.

Example 4.2 (A strongly stable matching does not necessarily exist
for the summer internship problem). Consider the following instance
of the summer internship problem:

A = {a1,a2} ≻a1 : p2,p1 ≻a2 : p1,p2

P = {p1,p2} ≻p1 : a1,a2 ≻p2 : a2,a1

S = {s} Ps = {p1,p2} qs = cp1 = cp2 = 1

It is easy to see that |M | ≤ 1. If both applicants are unmatched

then (a1,p1) forms a blocking pair. Suppose without loss of general-

ity that a1 is matched in the stable matching. IfM = {(a1,p1)} then
(a1,p2) is a blocking pair that doesn’t satisfy the second condition

of strong stability. IfM = {(a1,p2)} then (a2,p2) is a blocking pair

that doesn’t satisfy the first condition of strong stability. Thus every

feasible matching admits a blocking pair that is not permitted under

strong stability, and is therefore not strongly stable.

Below we show that the problem of deciding the existence of a

strongly stable matching is NP-complete. We reduce for Restricted

MAX-SMTI, the problem of deciding whether there exists a com-

plete stable matching for the stable marriage problem with incom-

plete lists and ties under the restriction that the preferences of the

men are strict, and the preference list of each woman is either strict

or consists solely of a tie of length two [21]. First, we introduce an

instance that will serve as the core of the construction imitating an

indifferent woman.

Example 4.3 (An instance with two strongly stable matchings, cov-
ering different agents). The instance consists of a preference cycle

involving four applicants and four projects as follows.

A = {a1,a2,a3,a4}

≻a1 : p2,p1 ≻a2 : p3,p2

≻a3 : p4,p3 ≻a4 : p1,p4

P = {p1,p2,p3,p4}

≻p1 : a1,a4 ≻p2 : a2,a1

≻p3 : a3,a2 ≻p4 : a4,a3

S = {s1, s2, s3} Ps1 = {p1,p3}

Ps2 = {p2} Ps3 = {p4}

qs1 = qs2 = qs3 = 1 cp1 = cp2 = cp4 = cp4 = 1

One can check that there are two strongly stablematchings:M1 =

{(a1,p1), (a2,p2), (a4,p4)} andM2 = {(a2,p2), (a3,p3), (a4,p4)}. First,
let us show the stability of M1 (the argument is similar for M2 by

symmetry). The only blocking pairs forM1 are (a2,p3) and (a3,p3),
but adding any of these pairs to M1 would make the matching

infeasible. To show that M1 and M2 are the only strongly stable

matchings we observe first that a2 has to be matched to p2, and a4
has to be matched to p4 by symmetric reasons (so we prove only

the former fact). Note that a2 cannot be unmatched, as she would

block the matching with p2. Suppose now for a contradiction that

a2 is matched to p3. Then p1 must be unfilled by feasibility, thus a4
has to be matched to p4 and a3 remains unmatched and so forms a

blocking pair with p3, a contradiction. So we showed that (a2,p2)
and (a4,p4) must be contained in any strongly stable matching.

Finally we shall note that both p1 and p3 cannot remain unfilled, as

(a4,p1) would form a blocking pair. Therefore, in a strongly stable

matching we must also have either (a1,p1) or (a3,p3), resulting in

M1 andM2, respectively.

Using the example as a gadget, we will show that deciding

whether an instance of our problem has a strongly stable solution

is an NP-complete problem.

Theorem 4.4. Checking the existence of a strongly stable matching
is NP-complete, even if all the supervisors have capacity one and each
is responsible for at most two distinct projects.

Proof. Given a solution, we can check whether it is strongly

stable by considering each potential blocking pair in polynomial

time, so the problem is in NP. For proving NP-hardness, we reduce

from the special version of the MAX-SMTI problem [21]. Here, we

are given an instance of a stable marriage problem with incomplete

lists and ties, whereU = {u1,u2, . . . ,un } is the set of men, each hav-

ing a strict preference list over the women acceptable for him, and

W =W s ∪W t
is the set of women, whereW s = {w1, . . . ,wk } are

the women with strict preference lists andW t = {wk+1, . . . ,wn }

are the women, where each has a single tie of length two in her pref-

erence list (i.e., she finds two men acceptable, and she is indifferent

between them). A matching is said to be weakly stable if it is not

blocked by a pair where both parties strictly prefer each other to

their current partners. Let us denote the restricted instance of SMTI

by I , where the problem of deciding the existence of a complete

weakly stable matching is NP-complete [21].

We construct the corresponding internship problem I ′ as follows.
For every man ui we create a project pi with a single supervisor si

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

99

each with capacity one. We denote this set of projects by Pu . For
every woman inw j ∈W

s
we create an applicant aj , and we denote

this set of applicants by As . Here the preference list of aj over the
projects in I ′ is identical to the preference list ofw j over the men

in I . Now, for each womanw j ∈W
t
, we introduce a gadgetG j

that

is identical to the instance in Example 4.3, so let G j
be constructed

as follows.

Aj = {a
j
1
,a

j
2
,a

j
3
,a

j
4
}

≻a j
1

: p
j
2
,p

j
1

≻a j
2

: p
j
3
,p

j
2

≻a j
3

: p
j
4
,p

j
3

≻a j
4

: p
j
1
,p

j
4

P j = {p
j
1
,p

j
2
,p

j
3
,p

j
4
}

≻p j
1

: a
j
1
,a

j
4

≻p j
2

: a
j
2
,a

j
1

≻p j
3

: a
j
3
,a

j
2

≻p j
4

: a
j
4
,a

j
3

S = {s
j
1
, s
j
2
, s
j
3
} Ps j

1

= {p
j
1
,p

j
3
}

Ps j
2

= {p
j
2
} Ps j

3

= {p
j
4
}

qs j
1

= qs j
2

= qs j
3

= 1 cp j
1

= cp j
2

= cp j
4

= cp j
4

= 1

Furthermore, if w j ∈ W t
had preference list [ui1 ,ui2] then we

append pi1 to the end of the preference list of a
j
1
and we append

pi2 to the end of the preference list of a
j
3
. Likewise, we adjust the

preference list of pi ∈ P
u
as follows: for everyw j ∈W

s
, we replace

w j with aj , whilst if w j ∈ W
t
then we replace w j with either a

j
1

or a
j
3
according to whether ui was the first or the second man in

the tie of w j . Finally, we add a gadget G∗, which is a copy of the

unsolvable instance in Example 4.2, together with an additional

applicant a∗ who accepts one of the projects, say p∗, in G∗. Let a∗

be the most preferred applicant by the projects in G∗, so including

this applicant in G∗ will turn the instance solvable by assigning a∗

to p∗ and leaving the other applicants in G∗ unmatched. To link

G∗ ∪ a∗ with the rest of I ′ we put all the projects in Pu ahead of p∗

in the preference list of a∗ and we also append a∗ to the end of the

preference list of each pj ∈ P
u
.

We will show that I has a complete weakly stable matching

if and only if I ′ has a strongly stable matching. Let us suppose

first that M is a complete stable matching of I , we construct a

strongly stable matchingM ′ of I ′ as follows. For every (ui ,w j) ∈ M ,

where w j ∈W
s
we simply add the corresponding pair (pi ,aj) to

M ′. Suppose now that (ui ,w j) ∈ M , where w j ∈ W t
and ui is

the first man in the single tie of w j , so pi is linked with a
j
1
in I ′.

Let then include (pi ,a
j
1
) in M ′, together with the corresponding

strongly stablematchingM2 ofG
j
that leavesa

j
1
unmatched, namely

M
j
2
= {(a

j
2
,p

j
2
), (a

j
3
,p

j
3
), (a

j
4
,p

j
4
)}. Similarly, if ui is the second man

in the tie of w j , then we include (pi ,a
j
3
) in M ′, together with the

corresponding strongly stable matching M1 of G
j
that leaves a

j
3

unmatched, namely M
j
1
= {(a

j
1
,p

j
1
), (a

j
2
,p

j
2
), (a

j
4
,p

j
4
)}. Finally, we

add (a∗,p∗) to M ′. The strong stability of M ′ is implied by the

following reasons. Observe first that a∗ cannot block with any

project in Pu , since all of these projects are assigned with better

applicants. The matching in gadget G∗ is also stable internally, as

well as in each gadget G j
. Finally, the weak stability ofM implies

the lack of the blocking pairs of form (aj ,pi) forM
′
, where aj ∈ A

s

and pi ∈ P
u
.

In the other direction, let us assume that M ′ is a strongly stable

matching for I ′ andwe construct a complete weakly stablematching

M for I as follows. First we note that a∗ must be matched top∗ inM ′,
as otherwise the separated gadgetG∗ would cause instability. But if
a∗ is matched to p∗ then each project pi ∈ P

u
must be assigned to

an applicant better than a∗. Now, if (pi ,aj) ∈ M
′
for aj ∈ A

s
then

we add (ui ,w j) to M (where w j ∈ W
s
), and if (pi ,a

j
1
) or (pi ,a

j
3
)

belongs to M ′ then we add (ui ,w j) to M (where w j ∈ W
t
). It is

obvious that M is a complete matching in I , its weak stability is

implied by the strong stability of M ′ as follows. Suppose for a

contradiction that a pair (ui ,w j) would be blocking forM (where

w j ∈ W
s
), then the corresponding pair (pi ,aj) would also block

M ′, a contradiction. This completes the proof. □

Our hardness result is strong because it holds for a very restricted

setting and also implies NP-completeness for the setting of Kamada

and Kojima [13] that concerns disjoint regions, even if at most two

hospitals belong to each region. The complexity of existence of

strongly stable matching was also an open problem for the model

of Kamada and Kojima [13].
2
Furthermore, this case can also occur

when one hospital has a common upper quota for two different

types of jobs, e.g., daytime and night shifts, or surgical and medical

internship positions. Another motivating example is the Hungarian

college admission scheme, where students can be admitted to a

programme under two contracts, state-funded and privately-funded,

and there is a common upper bound on them [5].

5 WEAK STABILITY
In view of the non-existence and NP-completeness of checking the

existence of strongly stable matchings, one can consider a weaker

stability criterion. Kamada and Kojima [15] proposed a weak stabil-

ity concept for a setting that does not concern budgets but which

has an abstract feasibility indicator function for any given match-

ing. We present the definition in our terminology of applicants and

projects.

Definition 5.1 (Weak Stability). We call a matching M weakly

stable if for any blocking pair (a,p) for matchingM , the following

two conditions are satisfied.

• a′ ≻p a for all applicants a′ ∈ M (p)
• M ∪ {(a,p)} is not feasible.

Note the similarity in the definition of strong stability and weak

stability. The only difference is that in the second condition, appli-

cant a can have two contracts: one with project M (a) and another

with the project p she is blocking with. One way to see this is that

in order for applicant a to block with p, it must sign the contract

with p before it opts to annul its match with projectM (a). We call

any blocking pair that satisfies these condition permitted under
weak stability. Note that due to the second condition, any empty

matching need not be weakly stable.

Note that strong stability implies weak stability, and in a setting

without distributional constraints both definitions are equivalent

2
Most of the computational hardness results concern overlapping regions (see e.g.

Goto et al. [9]).

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

100

to classical stability as formulated by Gale and Shapley [8]. We

present a polynomial-time algorithm that always returns a weakly

stable matching. Kamada and Kojima [15] mentioned an algorithm

(Appendix B.3 [15]) that produces in finite time a weakly stable

matching under any distributional constraints that can be repre-

sented by a feasibility function f :M → {0, 1} that satisfies the

following condition:

• f (∅) = 1 and, for any two matchingsM andM ′, if |M ′(p) | ≤
|M (p) | ∀p ∈ P then f (M) = 1⇒ f (M ′) = 1.

A matchingM is feasible if and only if f (M) = 1. Note that the

feasibility constraints are ‘anonymous’ in the sense that they do

not depend on the names of the applicants matched but only on

the number.

Our first insight is that our concept of supervisor-feasibility

satisfies this condition. Therefore, we note that the algorithm of

Kamada and Kojima can be applied to our setting if we treat the

budget constraints as abstract feasibility constraints and if we ig-

nore how exactly the research funding is allocated to the projects.

In particular, the algorithm returns a weakly stable matching in

finite time as noted by Kamada and Kojima.

We show that for our problem, a weakly stable matching can

be computed in strongly polynomial-time. To prove the result, we

first revisit the algorithm of Kamada and Kojima and present it

in pseudocode. We carefully study the running time and under-

stand the conditions under which the algorithm is polynomial-time

computable. We prove that the algorithm returns a weakly stable

matching. We then show how a weakly stable matching can be

computed in polynomial time for our problem.

The idea of the algorithm is as follows. The algorithm maintains

an ordering of the projects. The matching is initialized to the empty

matching. With respect to the current matching, the algorithm

maintains a set Bp for each project which contains the set of appli-

cants that can block with p with respect to the current matching.

If no a∗ ∈ Bp can simply be added to p’s match without violating

a feasibility constraint, we then return the current matching. Oth-

erwise, we go through the list of projects and find the first project

that has a non-empty Bp and for which some a∗ ∈ Bp can simply

be added to p’s match without violating a feasibility constraint. The

algorithm then identifies a∗ ∈ Bp with such a property and which

the highest priority for p among all such applicants. Applicant a∗ is
allowed to block with p to get a new matching. Such an applicant

a∗ is simply rematched to p to an updated matching. After getting

the new matching, we repeat the process by again going through

the list of projects starting from the first one. If there is a known

priority ranking of the central administrator over the projects that

ranking can be used as the order employed by the algorithm.

We first establish the following properties of the algorithm.

Lemma 5.2. At every step of Algorithm 1, for the current matching
M , there exist no pairs (a,p) ∈ A × P such that p ≻a M (a) and there
exists a′ ∈ M (p) such that a ≻p a′.

Proof. We say that the algorithm begins with matchingM0 = ∅,

takes a step every time M is updated and produces matching Mk
after the kth step.

Suppose that Mk , k > 0, is the first matching in which we

encounter a blocking pair (a,p) such that there exists a′ ∈ Mk (p)

Input: lists ≻p for all p ∈ P and ≻a for all a ∈ A; feasibility
function f ; project order P∗ = (p1, ...,pk)

Output: MatchingM

1 InitializeM to empty.

2 Cp ←− {a ∈ Bp | f (M ∪ (a,p)) = 1} for each p ∈ P % Bp is the

set of applicants who form blocking pairs with p in matching

M
3 if Cp = ∅ for all p ∈ P then
4 return M
5 else
6 while Cp , ∅ for some p ∈ P do
7 Locate the first pj in the list P∗ for which Cpj , ∅.
8 Consider a∗ to be pj ’s most preferred applicant from

Cpj
9 Update M as follows: M ←− (M \ {a∗,M (a∗)}) ∪

(a∗,pj)
10 Update Cp for each p.

Algorithm 1

such that a ≻p a′. Call this an envious blocking pair for matching

M . We now note that Algorithm 1 is Pareto improving for the set

of applicants, since applicants are never displaced, and only move

up in their project rankings. Thus p ≻a Mk (a) ⇒ p ≻a Mk−1 (a).
We consider two cases:

• Suppose (a′,p) ∈ Mk−1. Then (a,p) is an envious blocking

pair for Mk−1, violating our assumption that Mk was the

first matching in which we encountered such a pair.

• Suppose (a′,p) < Mk−1. Thus, (a
′,p) is the blocking pair sat-

isfied in step k by Algorithm 1. Since our feasibility function

is anonymous, (a,p) could have been satisfied in step k . And,
since a ≻p a′, a′ was not pj ’s most preferred applicant from

Cpj at that point, which results in a contradiction.

Therefore, it must be the case that there are no envious blocking

pairs created during Algorithm 1 □

Using the lemma above, we prove the following.

Theorem 5.3. Aweakly stable matching always exists for amatch-
ing problem under any set of distributional constraints that can be
represented by a feasibility function. Algorithm 1 produces one such
matching.

Proof. From Lemma 5.2 we know that Algorithm 1 does not

introduce any envious blocking pairs as it is running. Thus, it

correctly resolves a blocking pair that is not permitted under weak

stability during every step, and terminates when there are no such

pairs remaining, so the outputM is weakly stable. Further, since the

set of matchings is finite, and Algorithm 1 is applicant-improving,

it must terminate in finite time. □

The next theorem shows that as long as the feasibility of a match-

ing can be tested in polynomial time, Algorithm 1 runs in polyno-

mial time.

Theorem 5.4. Suppose checking f (w) takes t time. Then, the run-
ning time of Algorithm 1 is O (|A|2 |P |2t).

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

101

Proof. Cp can be computed in time O (|A|t) so it takes time

O (|A| |P |t) to compute allCp s. Thewhile loop iterates at most |A|· |P |
times because each new match is a Pareto improvement for the

applicants. In the while loop, we need to update Cps which takes

time O (|A| |P |t). Hence the overall time is O (|A|2 |P |2t). □

We note that Algorithm 1 can be applied to the summer in-

ternship problem where the feasibility function is based on the

supervisor budgets. Therefore for the summer internship problem a

weakly stable matching exists. Next we show that for our problem,

a weakly stable matching can be computed in polynomial time. In

view of Theorem 5.4, it is sufficient to show that for our problem, it

can be checked in polynomial time whether a matching is feasible

or not.

Checking Feasibility of a Matching. We can formulate the

concept of feasibility in terms of network flows.
3
Define the fund-

ing flow graph GM associated with a matchingM as follows:

• V (GM) = {s∗} ∪ S ∪ P ∪ {t∗}, where s∗ is the source, and t∗

is the sink

• Arcs (s,p), for all supervisor-project pairs where p ∈ Ps with
capacity∞

• Arcs (s∗, s), for all s ∈ S , each with capacity qs
• Arcs (p, t∗), for all p ∈ P , each with capacity |M (p) |

Theorem 5.5. The feasibility of a matching can be checked in
polynomial time O ((max{|S |, |P |}3) for the summer-internship prob-
lem.

Proof. Our first claim is that a matching M is feasible if and

only if GM admits a feasible s∗-t∗ flow of size |M |.
SupposeM is feasible. Define a flow f on GM as follows:

• f (s,p) = xs,p , ∀s ∈ S,p ∈ Ps
• f (s∗, s) =

∑
p∈Ps xs,p , ∀s ∈ S

• f (p, t∗) =
∑
s ∈Sp xs,p , ∀p ∈ P

It is easy to see that this is a feasible flow of size |M |. Now suppose

that GM admits a feasible flow f of size |M |. Set xs,p = f (s,p),
∀s ∈ S,p ∈ Ps . We can then show that this {xs,p } satisfies the
conditions of feasibility.

Now that we have established the claim, we use the fact that

the maximum flow problem can be solved in O (V 3) time, using for

instance, the algorithm proposed by Malhotra et al. [19]. V (GM) =
|S | + |P | + 2 and, given a matching M, GM can be constructed

in O ((|S | + |P |)2) time. We can check whether M is feasible in

O (max{|S |, |P |}3) time by computing amaximumflow and verifying

whether it equals |M |. □

Note that by the integer property of the network flow problem,

if all the capacities of the supervisors are integer and the flow is

feasible then an integer funding allocation exists.

Although Algorithm 1 satisfies weak stability, it also has some

drawbacks. Next we establish some properties of the algorithm.

Theorem 5.6. The following properties hold for Algorithm 1.
(1) Algorithm 1 is not strategyproof for the applicants.
(2) Algorithm 1 does not always find a strongly stable matching

whenever one exists.
3
For an overview of network flows, see [2].

(3) Changing the order of projects ordered afterp by P∗ can change
p’s allocation.

(4) There exist weakly stable matchings that cannot be produced
as a result of Algorithm 1 by changing the project order P∗.

The proofs of the statements are based on examples.

Proof. We prove each of the statements separately.

(1) Consider the following instance.

A = {a1} ≻a1 : p2,p1

P = {p1,p2} ≻p1 : a1 ≻p2 : a1

S = {s} Ps = {p1,p2} qs = cp1 = cp2 = 1

If we set P∗ = (p1,p2) then the algorithm outputs M =

{(a1,p1)}. However, if a1 were to lie about their preferences,

setting≻a1 : p2, then the algorithmwill outputM = {(a1,p2)},
which is preferred by a1. Thus, the algorithm is not strategy-

proof for applicants.

(2) For the example above, since (a1,p2) is the only strongly

stable matching, the algorithm does not find the strongly

stable matching when one exists.

(3) Consider the following instance.

A = {a1,a2,a3}

≻a1 : p2,p1 ≻a2 : p1 ≻a3 : p3

P = {p1,p2,p3}

≻p1 : a1,a2 ≻p2 : a1 ≻p3 : a3

S = {s} Ps = P

cp1 = cp2 = cp3 = 1 qs = 2

Setting P∗ = (p1,p2,p3), the algorithm proceeds as follows:

a1 gets matched top1, thena1 gets matched top2, and thena2
gets matched to p1. The algorithm terminates with matching

(a1,p2), (a2,p1) However, if we set P
∗ = {p1,p3,p2}, a1 gets

matched to p1 and then a3 gets matched to p3. The algorithm
terminates with matching (a1,p1), (a3,p3). This shows that:
changing the order of projects ordered after p by P∗ can
change p’s allocation.

(4) Consider the following instance.

A = {a1,a2} ≻a1 : p1,p2 ≻a2 : p1,p2

P = {p1,p2} ≻p1 : a1,a2 ≻p2 : a1,a2

S = {s} Ps = P

cp1 = cp2 = qs = 2

P∗ = (p1,p2) producesM = {(a1,p1), (a2,p1)}
P∗ = (p2,p1) producesM = {(a1,p2), (a2,p2)}
There is no project order P∗ that producesM = {(a1,p1), (a2,p2)}.
Thus, there exist weakly stable matchings that cannot be

produced as a result of the algorithm.

This complete the proof. □

It is natural to consider applicants with varying costs in our

summer internship setting. For instance, rural applicants can re-

quire an accommodation allowance, and international students may

receive less governmental support. However, this would lead to the

existence of some blocking pairs that are not permitted under weak

stability, but can no longer be satisfied without violating feasibility.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

102

To address this, we can modify our definition of weak stability to

the following:

Definition 5.7 (Weak Stability with varying applicant costs). We

call a matchingM weakly stable if for any blocking pair (a,p) for
matchingM , the following conditions are satisfied.

• For each applicant a′ ∈ M (p), either:
– a′ ≻p a, or
– M ∪ {(a,p)}/{afi,p} is not feasible
• M ∪ {(a,p)} is not feasible.

This new definition simply prevents less costly applicants from

being replaced with more costly ones if that would violate the

feasibility constraint.

Example 5.8. Denote the wage, in units, of applicant a by wa .

The following instance shows a situation with varying applicant

costs that does not admit a weakly stable matching.

A = {a1,a2,a3}

≻a1 : p2,p1 ≻a2 : p1,p2 ≻a3 : p1

wa1 = 1 wa2 = 1 wa3 = 2

P = {p1,p2}

≻p1 : a1,a3,a2 ≻p2 : a2,a1

S = {s1, s2} Ps1 = p1 Ps2 = p2

cp1 = cp2 = 2 qs1 = 2 qs2 = 1

The following matchings are not weakly stable:

• {(a1,p1), (a2,p1)} - blocked by (a1,p2)
• {(a1,p2), (a2,p1)} - blocked by (a3,p1)
• {(a1,p2), (a3,p1)} - blocked by (a2,p2)
• {(a2,p2), (a3,p1)} - blocked by (a1,p1)
• {(a1,p1), (a2,p2)} - blocked by (a2,p1)

All other feasible matchings are of size one or zero, and are therefore

not weakly stable. Thus, no weakly stable matching exists.

This result also applies for the setting of Kamada and Kojima

[13] with disjoint regions, and no supervisors, if, instead of having

varying costs, applicants take up varying amounts of slots in a

project.

6 FAIR BUDGET ALLOCATIONS
Given a feasible matching M , there can exist multiple ways to

allocate supervisor budgets among projects to fund all applicants

matched to them. Our goal is to find a method for the fairest such

allocation. We have chosen to deal with fairness post-match, in

order to find a solution that does not constrain the set of feasible

matchings.

For each supervisor s ∈ S , and each project they supervise p ∈ Ps
set 0 < ts,p ≤ 1 such that, for each p ∈ P ,

∑
s ∈Sp ts,p = 1. Call this

the normative ‘target’ - howmuch we would want s to contribute to
the funding of any applicant matched to p. For instance, if we would
ideally want the supervisors of any given project to contribute

equally to its funding, we would set: ts,p =
|M (p) |
|Sp |

∀p ∈ P , s ∈ Sp .

However, given a feasible matchingM , some supervisors may lack

sufficient funding to reach these targets. Therefore, we seek to

find a funding allocation that is closest to the target allocations. In

Input: T = {(s,p) |s ∈ S,p ∈ Ps }, qs ∀s ∈ S and {ts,p |(s,p) ∈ T }.
Output: Funding Allocation x

1 Tt iдht ← ∅
2 while Tt iдht , T do

3 Minimise the maximal component of

{
xs,p
ts,p |(s,p) ∈ T

}
that is not yet tight by solving the following LP:

λ∗ ← Min λ s.t.

xs,p ≥ 0 ∀(s,p) ∈ T∑
s ∈Sp

xs,p = |T (p) | ∀p ∈ P∑
p∈Ps

xs,p ≤ qs ∀s ∈ S

xs,p

ts .p
≤ λ ∀(s,p) ∈ T \Tt iдht

xs,p

ts .p
= λs,p ∀(s,p) ∈ Tt iдht

4 for (s,p)∗ ∈ T \Tt iдht do
5 Determine whether the constraint corresponding to

(s,p)∗ is tight by solving the following Auxiliary LP:

ϵ∗ ← Max ϵ s.t.

xs,p ≥ 0 ∀(s,p) ∈ T∑
s ∈Sp

xs,p = |T (p) | ∀p ∈ P∑
p∈Ps

xs,p ≤ qs ∀s ∈ S

xs,p

ts .p
≤ λ∗ ∀(s,p) ∈ T \Tt iдht \{(s,p)

∗}

xs,p

ts .p
= λs,p ∀(s,p) ∈ Tt iдht

xs,p

ts .p
+ ϵ ≤ λ∗ for (s,p) = (s,p)∗

6 if ϵ∗ = 0 then
7 Add (s,p)∗ to Tt iдht
8 λs,p ← λ∗

9 return {λs,p |(s,p) ∈ T }

Algorithm 2: Computing the fairest funding allocation for a
given feasible matching

order to define closest, we consider specific lexicographic compar-

isons. Let X = {xs,p }s ∈S,p∈Ps be a feasible funding allocation for

matchingM . Denote by ϕX the vector corresponding to the weakly

decreasing ordering of the set:

{
xs,p
ts,p

}
s ∈S,p∈Ps

. Denote by ΦM the

set of such vectors corresponding to all feasible funding allocations

for matchingM .

The fairest feasible funding allocation for matching M is

the funding allocation corresponding to ϕ∗ ∈ ΦM such that for

all ϕ ∈ ΦM , ϕ∗ ≺lex ϕ, where ≺lex refers to the well-known

lexicographic order. This is exactly equivalent to finding the leximin

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

103

optimum of the following set:

{
−xs,p
ts,p

}
s ∈S,p∈Ps

. The fairest feasible

funding allocation can be achieved via Algorithm 2, which runs a

series of linear programs.

Theorem 6.1. Given a feasible matching, the fairest funding allo-
cation can be computed in timeO (|S |2 |P |2)LP (O (|S | · |P |)), where LP
refers to the running time of the linear programming algorithm used.

Proof. The algorithm solves a series of linear programs with

O (|S | · |P |) constraints. The while loop iterates at most |T | ≤ |S | |P |
times, as the algorithm adds at least one element to the setTt iдht in
every iteration. The for loop also iterates at most |T | times. Thus, the

overall complexity is O (|S |2 |P |2)LP (O (|S | · |P |)), where LP refers

to the running time of the linear programming algorithm used.

Since linear programs can be solved in polynomial time, the fairest

funding allocation can also be computed in polynomial time. □

7 CONCLUSION
We presented a novel matching model that captures many real-

world scenarios. For the model, we presented a compelling solution

that is polynomial-time and satisfies stability and fairness proper-

ties. Several directions and problems arise as a result of our study.

Our approach to finding a fair budget allocationwas to first compute

a weakly stable matching and then find the fairest possible budget

allocation. It will be interesting to explore a fair outcome that is

fairest in some global sense across all weakly stable matchings.

We showed that the algorithm we consider is not strategyproof

for applicants. It is open whether there exists an algorithm that is

strategyproof and satisfies weak stability. The problem has been

open even for the abstract setting of Kamada and Kojima [15].

ACKNOWLEDGMENTS
Aziz gratefully acknowledges the UNSW Scientia Fellowship and

Defence Science and Technology (DST). Baychkov’s work was sup-

ported by the CSIRO undergraduate vacation scholarship program,

and he extends many thanks to Haris Aziz and Gavin Walker for

their invaluable mentorship. Biró is supported by the Hungarian

Academy of Sciences under its Momentum Programme (LP2016-

3/2019) and Cooperation of Excellences Grant (KEP-6/2019), and

the Hungarian Scientific Research Fund, OTKA, Grant No. K128611.

REFERENCES
[1] D. J. Abraham, R. W. Irving, and D. Manlove. 2007. Two algorithms for the

Student-Project Allocation problem. J. Discrete Algorithms 5, 1 (2007), 73–90.
[2] R. K. Ahuja, T. L.Magnanti, and J. B.Orlin. 1993. Network Flows: Theory, Algorithms,

and Applications. Prentice Hall.
[3] H. Aziz, J. Chen, S. Gaspers, and Z. Sun. 2018. Stability and Pareto Optimality in

Refugee Allocation Matchings. In Proceedings of the 17th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS). 964–972.

[4] H. Aziz, S. Gaspers, Z. Sun, and T. Walsh. 2019. From matching with diversity

constraints to matching with regional quotas. In Proceedings of the 18th Inter-
national Conference on Autonomous Agents and Multiagent Systems (AAMAS).
377–385.

[5] P. Biro, T. Fleiner, R. W. Irving, and D. F. Manlove. 2010. The College Admissions

problem with lower and common quotas. Theoretical Computer Science 411, 34–36
(2010), 3136–3153.

[6] D. Fragiadakis, A. Iwasaki, P. Troyan, S. Ueda, and M. Yokoo. 2016. Strategyproof

matching with minimum quotas. ACM Transactions on Economics and Computa-
tion 4, 1 (2016), 1–40.

[7] D. Fragiadakis and P. Troyan. 2017. Improvingmatching under hard distributional

constraints. Theoretical Economics 12, 2 (2017), 863–908.
[8] D. Gale and L. S. Shapley. 1962. College admissions and the stability of marriage.

The American Mathematical Monthly 69, 1 (1962), 9–15.

[9] M. Goto, A. Iwasaki, Y. Kawasaki, R. Kurata, Y. Yasuda, and M. Yokoo. 2016.

Strategyproof matching with regional minimum and maximum quotas. Artificial
intelligence 235 (2016), 40–57.

[10] M. Goto, F. Kojima, R. Kurata, A. Tamura, andM. Yokoo. 2017. Designingmatching

mechanisms under general distributional constraints. American Economic Journal:
Microeconomics 9, 2 (2017), 226–262.

[11] A. Ismaili, N. Hamada, Y. Zhang, T. Suzuki, and M. Yokoo. 2019. Weighted

Matching Markets with Budget Constraints. J. Artif. Intell. Res. 65 (2019), 393–
421.

[12] A. Ismaili, T. Yamaguchi, and M. Yakoo. 2018. Student-Project-Resource Alloca-

tion: Complexity of the Symmetric Case. In PRIMA 2018: Principles and Practice
of Multi-Agent Systems. Springer Verlag, 226–241.

[13] Y. Kamada and F. Kojima. 2015. Efficient Matching under Distributional Con-

straints: Theory and Applications. American Economic Review 105, 1 (2015),

67–99.

[14] Y. Kamada and F. Kojima. 2017. Recent Developments in Matching with Con-

straints. The American Economic Review 107, 5 (2017), 200–204.

[15] Y. Kamada and F. Kojima. 2017. Stability concepts inmatching under distributional

constraints. Journal of Economic Theory 168, C (2017), 107–142.

[16] Y. Kawase and A. Iwasaki. 2017. Near-Feasible Stable Matchings with Budget

Constraints. In Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence, IJCAI-17. 242–248. https://doi.org/10.24963/ijcai.2017/35

[17] Y. Kawase and A. Iwasaki. 2018. Approximately Stable Matchings With Budget

Constraints. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18). 1113–1120.

[18] R. Kurata, N. Hamada, A. Iwasaki, and M. Yokoo. 2017. Controlled school choice

with soft bounds and overlapping types. Journal of Artificial Intelligence Research
58 (2017), 153–184.

[19] V. Malhotra, M. P. Kumar, and S. N. Maheshwari. 1962. AnO (|V |3) algorithm for

finding maximum flows in networks. Inform. Process. Lett. 7, 6 (1962), 277–278.
[20] D. F. Manlove. 2013. Algorithmics of Matching Under Preferences. World Scientific

Publishing Company.

[21] D. F. Manlove, R. W. Irving, K. Iwama, S. Miyazaki, and Y. Morita. 2002. Hard

variants of stable marriage. Theoretical Computer Science 276, 1–2 (2002), 261–279.
[22] A. E. Roth. 2008. Deferred acceptance algorithms: history, theory, practice, and

open questions. International Journal of Game Theory 36 (2008), 537—569.

Research Paper AAMAS 2020, May 9–13, Auckland, New Zealand

104

https://doi.org/10.24963/ijcai.2017/35

	Abstract
	1 Introduction
	2 Related Work
	3 Model
	4 Strong Stability
	5 Weak Stability
	6 Fair Budget Allocations
	7 Conclusion
	References

