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ABSTRACT
A patrol of robot teams, where the robots are required to repeatedly

visit a target area, is a useful tool in detecting an adversary trying

to penetrate. In this work we examine the Closed Perimeter Patrol
problem, in which the robots travel along a closed perimeter and

the adversary is aware of the robots’ patrol policy. The goal is to

maximize the probability of penetration detection. Previous work

dealt with symmetric tracks, in which all parts of the track have

similar properties, and suggested non-deterministic patrol schemes,

characterized by a uniform policy along the entire area. We con-

sider more realistic scenarios of asymmetric tracks, with various

parts of the track having different properties, and suggest a patrol

policy with a non-uniform policy along different points of the track.

We compare the achievements of both models and show the ad-

vantage of the non-uniform model. We further explore methods to

efficiently calculate the attributes needed to maximize the probabil-

ity of penetration detection and compare their implementation in

various scenarios.
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1 INTRODUCTION
The problem of multi-robot patrol has been widely examined during

the past few years [5, 6, 20, 22, 30, 35]. In this problem, a team of

robots is required to continuously travel along a path, in our case a

closed perimeter, while monitoring it for the purpose of detecting

changes in state. Many works in this area have dealt with assuring

optimization of frequency criteria [16, 18]. However, we follow

several studies that consider the problem of multi-robot patrol
in adversarial environments: There is an adversary that intends

to penetrate this perimeter without being detected. We assume

that the adversary has full knowledge of the patrolling robots (their

capabilities, their locations and patrolling behavior), and would take

the optimal steps, in his view, in order to penetrate successfully (we

elaborate on this assumption in Section 6.4). Our goal is to set up

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
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the patrol in a way that will minimize the adversary’s probability

of success. Naturally, this problem is relevant to many practical

domains, including security applications.

Previous studies (e.g. [3]) focused on the problem of patrolling

along a symmetric perimeter, i.e. all parts of the perimeter have

identical characteristics. The solution to this kind of track was a

uniform probability policy which yielded satisfactory results. Un-

fortunately, in many realistic cases there are differences between

parts of the perimeter fence and the environment. Specifically, there

are certain places the adversary can penetrate more easily than

others. The performance of the uniform probability policy in such

cases is much worse, and the quality of patrol is low. In this work

we suggest using a non-uniform probability policy in asymmetric

tracks. Since the non-uniform model presents greater complex-

ity and requires changes in the calculation of the parameters and

in the deployment of the robots, we consider these aspects and

suggest ways to efficiently calculate a patrolling policy for such

cases. Finally, we show that the quality of patrol using this policy

is significantly higher than in the former policy.

2 RELATEDWORK
The problem of patrolling efficiently along a line [25] or in an area

[5, 15, 17, 23] has been studied in several contexts. One approach is

a frequency-based patrol, i.e. patrol that tries to maximize the visit

frequency of the robots in the various parts of the arena [7, 18],

(without regard for an adversarial presence, or disregarding its be-

havior). The track may be homogeneous, or there might be specific

points that should be monitored more closely than the rest of the

arena due to special importance concerning them [9, 16, 33]. Vari-

ous robot movement models are discussed: The movement might

be deterministic along preset cyclic paths, or randomized (continu-

ously executing random steps). There are several possible criteria

to evaluate the quality of the patrol – the uniformity of the patrol

(minimal variance between frequencies), the average frequency and

the under-bounded frequency (the minimal frequency in which any

target is visited, also described as "idleness" [16]).

A second approach focuses on adversarial patrol schemes

[2, 12]. This approach, also followed in this paper, assumes an

adversary that wishes to penetrate a line, either an open polyline

[1] or a closed perimeter [3] (there are significant differences in

the patrol characteristics between the two cases [2]). It is assumed

that the adversary knows the properties of the patrol and thus

chooses its strategy and aims its penetration attempt at the patrol’s

weakest points. In this context, an efficient patrol would be one

that makes it harder for the adversary to succeed in his penetration

attempt despite full knowledge about the patrol. Implementing this
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approach with stochastic movement may prevent the adversary

from assuring the success of the penetration by choosing a smart

penetration point. As mentioned before, these papers discuss only

symmetric tracks, and we would like to approach the more common

situation of asymmetric tracks.

In a different approach, elaborated in [8, 29] regarding both fence

and perimeter patrol, both parties (the attacker and the defender)

choose their strategies simultaneously, each of themwithout having

knowledge about the choice of its opponent. There are interesting

results regarding properties of the tracks and the possible conse-

quences, but it is assumed that the tracks are symmetric (i.e. all of

the parts of a track have identical characteristics), and the possibility

of different parts having different properties is not discussed.

Another approach to adversarial patrolling is the game theoretic

approach based on stochastic Stackelberg game models. The anchor

of this method is defender-attacker Stackelberg games: In the first

step the defender (leader) commits to a randomized security policy,

and then the attacker (follower) uses surveillance to learn about

the policy before launching its attack. The application might be

either attack-timing indifferent [11] or it may have temporal prefer-

ences incorporated using exponential discounting [36, 37]. Bounded

rational attackers in such settings was also studied [4, 27, 31].

The application of security-games to patrolling was examined in

a series of innovative papers [10, 11, 13] that studied the problem of

single andmulti-robot patrols in a graph environment. They provide

algorithms for determining the smallest number of robots needed

to patrol a given environment, and the optimal patrolling strategies

along several coordination dimensions. Our 1-D environment is a

very common simplified case of their environment that allows us

to consider synchronized robots’ behavior yielding solutions for

problems that are neither bounded by the number of robots nor by

the size of the environment.

Additional approaches and comparison of different methods of

patrol are described in [32]. A recent comprehensive survey of

various patrol models can be found in [21].

3 CONCEPTS AND NOTATIONS
We are given a closed perimeter track that should be monitored

by 𝑘 identical robots. The track is divided into 𝑁 segments, 𝑆 =

{𝑠𝑒𝑔1, . . . , 𝑠𝑒𝑔𝑁 }, and each robot travels through one segment in

one time-cycle. The segments are not required to be of the same

length or the same orientation: Some of them may be longer than

others, and might contain obstructions, turns or other special char-

acteristics, according to the conditions of the target area. However,

all segments are set with proper length and robot velocity such that

a robot traverses each segment in one time-cycle. We presume that

robots travel on a predesignated track and their movement is not

interrupted by passersby.

The robots have directionality associated with their movement.

In each time-cycle, a robot has to decide where it should go - to

either continue in its current direction or to turn around and go

in the opposite direction. Turning around might be costly, i.e. if

the robot decides to change its direction, it takes 𝜏 time-units to

perform the turn and start the patrol in the opposite direction. In

this paper, for simplicity, we demonstrate the movement with 𝜏 = 0

(a realistic scenario for rail-mounted robots, for example), but the

model can be applied for any 𝜏 ∈ N. Other movement models,

including ones with 𝜏 > 0, are presented in [2], along with the

means to convert calculations from one model to another.

The patrol algorithm of the robots is characterized by a probabil-

ity, i.e., in each step a robot continues in its current direction with

some probability 𝑝 , and turns around with probability 1 − 𝑝 . There

are several methods for assigning the probability value to a specific

step and we discuss them below. Finding the optimal value of
𝒑 for each robot step is the essence of the adversarial patrol
problem.

The adversary has to decide its preferred penetration set-up

before time-cycle 0, i.e. which segment is going to be penetrated

based on the location of the robot(s). It may take several time-cycles

for this set-up to form, and the adversary will wait for it to arrive.

At time-cycle 0 the adversary would already be in place, and in time-

cycle 1 the penetration begins. We assume that the time it takes the

adversary to penetrate, penetration time, is not instantaneous: For
each 𝑠𝑒𝑔𝑖 ∈ 𝑆 , penetration of 𝑠𝑒𝑔𝑖 lasts 𝑡𝑖 > 0 time-cycles (𝑡𝑖 ∈ N),

from time-cycle 1 to time-cycle 𝑡𝑖 .

The robots succeed in their mission if (at least) one of them

traverses a segment 𝑠𝑒𝑔𝑖 while the adversary is in this segment.

If 𝑡𝑖 time-cycles have passed since the adversary began its pene-

tration and none of the robots have traversed this segment, then

the penetration is classified as successful and the robots fail. The

adversary does not have another chance, nor is it allowed to stop

the penetration attempt once it has commenced and then retry

later.

We define the Probability of Penetration Detection (PPD) con-
cept as follows: Let 𝑠𝑒𝑔𝑖 be a discrete segment of a track which

is patrolled by 𝑘 robots (𝑘 ≥ 1). The Probability of Penetration

Detection in segment 𝑠𝑒𝑔𝑖 , denoted as PPD𝑖 , is the probability that

an adversary going through 𝑠𝑒𝑔𝑖 is detected by some robot passing

through 𝑠𝑒𝑔𝑖 . In other words, PPD𝑖 is the probability that a patrol

path of any robot will pass through segment 𝑠𝑒𝑔𝑖 during the time

that a penetrator is passing through that segment. Note that PPD𝑖

is a function of the probability values of the track. MinPPD of a

track is the minimal PPD𝑖 , 𝑖 ∈ {1, . . . , 𝑁 }.
In this work we concentrate on assigning optimal probability

values to track segments in order to maximize the minimal PPD𝑖 ,

∀𝑠𝑒𝑔𝑖 ∈ 𝑆 , namely MaxMinPPD of the track. With these values,

the adversary, although knowing all of the patrol parameters and

choosing the weakest point, i.e. the segment 𝑠𝑒𝑔𝑖 with PPD𝑖 ≤
PPD𝑗∀𝑗 ∈ {1, . . . , 𝑁 } as its penetration attempt arena, would have

the minimal probability to succeed in his penetration attempt.

4 TYPES OF TRACKS
The problem of adversarial patrol in symmetric tracks – tracks where
all of the segments have a uniform penetration time value, i.e.

𝑡𝑖 = 𝑡 𝑗 ∀𝑖, 𝑗 ∈ {1, . . . , 𝑑} – was analyzed in [1, 2]. It was shown that

synchronous movement of all of the robots along the track would

yield the best results, namely the highest MinPPD. Synchronous
movement in this sense means that the distance between every

two consecutive robots is uniform, 𝑑 = 𝑁 /𝑘 (𝑑 is assumed to be

an integer), and the robots move in the same direction and at the

same speed (i.e. when it is time to turn around, all of the robots

do so simultaneously). The track is divided into 𝑘 sectors, each of
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Figure 1: (a) A symmetric track with 𝑁 = 20 segments and
𝑘 = 4 robots. (b) A track with 𝑁 = 5 segments and a single
robot. Analysis can be done on this track and yields the op-
timal 𝑝 value for the longer and more complicated track of
(a).

which contains 𝑑 consecutive segments. In symmetric tracks we

note the uniform penetration time value 𝑡 (without index). Fig. 1a

describes a symmetric track with 𝑁 = 20, 𝑘 = 4, 𝑡 = 3. This track

has 4 sectors, each of them containing 𝑑 = 5 segments. At any

moment, there is exactly one robot in each sector. Furthermore, it

was shown in [2] that due to symmetry between all of the sectors

in the track, analysis can be done considering a closed perimeter

track with one robot (Fig. 1b), i.e. in order to calculate the optimal

patrol algorithm, it is sufficient to consider only one section of 𝑑

segments, and not the entire perimeter of 𝑁 segments. Finding the

optimal 𝑝 value for the segments of this single sector track would

also yield the optimal 𝑝 value for every closed track with sectors of

length 𝑑 , no matter what 𝑘 ∈ N is.

It should be noted that in non-deterministic closed perimeter

patrol with a given 𝑑 value, the range of interesting 𝑡𝑖 values is

⌊𝑑/2⌋ ≤ 𝑡𝑖 < 𝑑 . Lower 𝑡𝑖 values mean that the adversary can find a

segment to penetrate with a probability 0 of being detected. Higher

values of 𝑡𝑖 mean that deterministic movement along the track

without turning would detect the adversary with a probability of 1.

In many real world scenarios we encounter asymmetric tracks
– tracks with one or more segments which have a different pen-

etration time value, 𝑡𝑖𝑟𝑟𝑒𝑔 < 𝑡 , compared to the other segments.

This case is common where, for various reasons (lower or weaker

fence, bad visibility by guards, assisting terrain conditions etc.),

the adversary needs less time to penetrate these segments. Natu-

rally, from the adversary’s point of view, these segments present an

opportunity to increase the probability of success in penetration,

hence they require special attention from the defender’s point of

view.

5 DISADVANTAGE OF UNIFORMMODEL IN
ASYMMETRIC TRACK

The use of a uniform probability policy in an asymmetric track is

possible, but is bound to yield weak results, i.e. significantly lower

MinPPD values compared to a symmetric track. We hereby prove

this fact.

Penetration configuration in a single robot track is defined as

the tuple < 𝑠𝑒𝑔𝑎𝑑𝑣, 𝑠𝑒𝑔𝑟𝑜𝑏 , 𝑑𝑖𝑟𝑟𝑜𝑏 >, where 𝑠𝑒𝑔𝑎𝑑𝑣 indicates the seg-

ment through which the adversary is going to penetrate, 𝑠𝑒𝑔𝑟𝑜𝑏 is

the segment in which the robot resides at time-cycle 0 and 𝑑𝑖𝑟𝑟𝑜𝑏 is

the direction of the robot at time-cycle 0. For example, the penetra-

tion configuration < 𝑠𝑒𝑔1, 𝑠𝑒𝑔3, 𝑐𝑙𝑜𝑐𝑘𝑤𝑖𝑠𝑒 > describes the situation

in which the adversary tries to penetrate segment 1, commencing

as the robot is in segment 3 moving clockwise.

In the uniform 𝑝 model, every penetration configuration 𝑐𝑜𝑛𝑓

has a PPD function, PPD𝑐𝑜𝑛𝑓 : [0, 1] → [0, 1], where PPD𝑐𝑜𝑛𝑓 (𝑝)
is the probability that an adversary attempting to penetrate in

penetration configuration 𝑐𝑜𝑛𝑓 , when the robot uses the uniform

policy 𝑝 , will succeed in the attempt. Note that the PPD𝑖 of 𝑠𝑒𝑔𝑖
is the minimal PPD𝑐𝑜𝑛𝑓 of all of the penetration configurations

whose 𝑠𝑒𝑔𝑎𝑑𝑣 = 𝑠𝑒𝑔𝑖 .

Proposition 5.1. If the penetration time of segment 𝑠𝑒𝑔𝑖 changes,
then it may change the PPD functions of penetration configurations in
which 𝑠𝑒𝑔𝑎𝑑𝑣 = 𝑠𝑒𝑔𝑖 , but no other PPD functions in the track change.

Intuitively, the proposition is correct because PPD(𝑐𝑜𝑛𝑓 ) is the
sum of the probabilities of all of the paths of length 𝑡𝑠𝑒𝑔𝑎𝑑𝑣 or less

that start at 𝑠𝑒𝑔𝑟𝑜𝑏 as the robot is heading to𝑑𝑖𝑟𝑟𝑜𝑏 and reach 𝑠𝑒𝑔𝑎𝑑𝑣 .

These probabilities are defined by the 𝑝 value of the track and by

𝑡𝑠𝑒𝑔𝑎𝑑𝑣 (the penetration time of the penetrated segment), but not

by any other penetration time value of other segments in the track.

Theorem 5.2. The uniform optimal 𝑝 policy for an asymmetric
track, with one segment (or more) having a penetration time 𝑡𝑖𝑟𝑟𝑒𝑔 ,
is the same as the uniform optimal policy for a similar environment
where all of the segments in the track have a penetration time 𝑡𝑖𝑟𝑟𝑒𝑔 .

Proof. Given a symmetric track T1 with 𝑁 segments and a

penetration time of 𝑡 in all of the segments, let 𝑝 be the optimal

probability value for all segments as calculated by the uniform

model, and theMinPPD of the track using this 𝑝 value is𝑀 . Let T2

be an asymmetric track with 𝑁 segments, where a single segment

𝑠𝑒𝑔𝑥 has a penetration time value 𝑡 and the rest of the segments

have penetration time values 𝑡 ′ > 𝑡 . Assume, towards contradiction,

that the uniform model finds 𝑝 ′ ≠ 𝑝 that yields aMinPPD𝑀 ′ > 𝑀

in track T2 in 𝑠𝑒𝑔𝑥 . We now change the penetration time of all of

the segments in T2 to 𝑡 (making T2 identical to T1) but use 𝑝 ′ as
the probability value for all segments in T2. Note that PPD𝑠𝑒𝑔𝑥 has

not changed and is still 𝑀 ′
(according to Proposition 5.1). Since

T2 is now symmetric, all of the segments have the same sets of

penetration configurations, thus the MinPPD of the track is𝑀 ′ >
𝑀 , in contradiction to the optimality of 𝑝 .

The same argument also holds for the cases where there are

more-than-one segments with penetration time 𝑡 in T2 (that is,

segments 𝑠𝑒𝑔𝑥1 , 𝑠𝑒𝑔𝑥2 , . . . , 𝑠𝑒𝑔𝑥𝑚 have penetration time values of

𝑡 , and the rest of the segments have penetration time values of

𝑡 ′ > 𝑡 ). □

As a result, using a uniform policy for an asymmetric track results

in a much lower MinPPD in the track than in the symmetric track,

making it significantly easier for the adversary to penetrate. For

example, experimental calculations (described in Section 7 below)

show that a regular (symmetric) closed perimeter with 𝑑 = 8 and

𝑡 = 6 would have a MinPPD = 0.477, but if a single segment in the
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perimeter has 𝑡 = 4 then applying a uniform policy would result in

MinPPD = 0.148.

6 NON-UNIFORM PROBABILITY POLICY
We present a non-uniform 𝑝 policy for a closed perimeter. First we

consider basic configurations of asymmetric tracks, and later we

advance to more complicated configurations.

6.1 Single irregular segment
The basic configuration of an asymmetric track is a track with one

irregular segment - a segment with a different (lower) penetration

time. We denote the irregular segment as 𝑠𝑒𝑔1, and the segments to

its right are segments 𝑠𝑒𝑔2, . . . , 𝑠𝑒𝑔𝑑 respectively. The 𝑑 segments,

from segment 𝑠𝑒𝑔1 to segment 𝑠𝑒𝑔𝑑 , form a sector we denote as

the irregular sector. The track has 𝑘 − 1 regular sectors (sectors in
which all of the segments have a regular penetration time 𝑡 ) and

one irregular sector in which a single segment has 𝑡𝑖𝑟𝑟𝑒𝑔 penetration

time and the rest of the segments have penetration time 𝑡 . Fig. 2a

describes a track with 𝑁 = 20, 𝑘 = 4, 𝑡 = 3 and a single segment

with 𝑡𝑖𝑟𝑟𝑒𝑔 = 2. There are four sectors of length 𝑑 = 𝑁 /𝑘 = 5:

One of them (sector 1) is irregular and the other three sectors are

regular.

As in the symmetric track case, we analyze the track as if it

were built from 𝑘 identical sectors, all of them irregular sectors

like the one original irregular sector. In this way we preserve the

synchronous movement model and, due to the symmetry of sectors,

we can reduce the track to a single irregular 𝑑-segments-long sector

with a single robot (Fig. 2b).

The various PPD functions are calculated with regards to an

irregular sector, and our objective is to find values for the set 𝑃 =

{𝑝1, . . . , 𝑝2𝑑 } (two values per segment: one for clockwise movement

and one for counterclockwise movement) in order to maximize

MinPPD. We hereby explain why it is sufficient to consider only

an irregular sector.

Theorem 6.1. In a closed perimeter track using synchronous mo-
tion, ∀𝑖 ∈ {1, . . . , 𝑑}, PPD𝑖𝑟𝑟𝑒𝑔

𝑠𝑒𝑔𝑖 ≤ PPD𝑟𝑒𝑔
𝑠𝑒𝑔𝑖 .

Figure 2: (a) A track with 𝑁 = 20 segments and 𝑘 = 4 robots.
For all segments 𝑡 = 3, except for a single irregular segment
with 𝑡𝑖𝑟𝑟𝑒𝑔 = 2 in the irregular sector. (b) A single-sector
asymmetric track with 𝑁 = 5 segments and a single robot.
There is one irregular segment in the track – 𝑺𝒆𝒈1.

Proof. In synchronous motion, all of the robots visit segment

𝑠𝑒𝑔𝑖 in each robot’s sector simultaneously. Therefore, PPD𝑟𝑒𝑔

𝑖
=

PPD𝑖𝑟𝑟𝑒𝑔

𝑖
for all 𝑖 values in which 𝑠𝑒𝑔𝑖 (in the irregular sector and

in the regular sectors) have exactly the same properties, including

penetration time 𝑡 , and every robot path that detects the adversary

in the former would also detect it in the latter and vice versa.
However, this is not the case for 𝑖 values in which some of the

segments 𝑠𝑒𝑔𝑖 have penetration time values of 𝑡𝑖𝑟𝑟𝑒𝑔 < 𝑡 : Indeed

every path that intercepts the adversary in the irregular segment

𝑠𝑒𝑔
𝑖𝑟𝑟𝑒𝑔
𝑠𝑒𝑔𝑖 also intercepts it in the regular segment 𝑠𝑒𝑔

𝑟𝑒𝑔
𝑠𝑒𝑔𝑖 , but there

might be paths that intercept the adversary in the regular segment

𝑠𝑒𝑔
𝑟𝑒𝑔
𝑠𝑒𝑔𝑖 yet would not intercept it in the irregular segment 𝑠𝑒𝑔

𝑖𝑟𝑟𝑒𝑔
𝑠𝑒𝑔𝑖

due to the shorter penetration time (𝑡𝑖𝑟𝑟𝑒𝑔 ) in the irregular segment

𝑠𝑒𝑔
𝑖𝑟𝑟𝑒𝑔
𝑠𝑒𝑔𝑖 , hence PPD𝑖𝑟𝑟𝑒𝑔

𝑠𝑒𝑔𝑖 ≤ PPD𝑟𝑒𝑔
𝑠𝑒𝑔𝑖 . Combining the two results,

∀𝑖 ∈ {1, . . . , 𝑑}, PPD𝑖𝑟𝑟𝑒𝑔
𝑠𝑒𝑔𝑖 ≤ PPD𝑟𝑒𝑔

𝑠𝑒𝑔𝑖 . □

Since we are looking for the minimal PPD in the track, it will

suffice to calculate the PPDs of the irregular sector and find their

minimum. As Theorem 6.1 shows, PPDs of other segments would

never be lower than this minimum.

6.2 Multiple irregular segments
The same method of analysis that was applied to a track with a

single irregular segment is also adequate for the following two

more complicated scenarios: (1) A track with two or more irregular

sectors, but all of them are identical, and the rest of the sectors in

the track are regular. The identicality is both with respect to the

location of the irregular segment(s) in the sector, and with respect

to the penetration time values of all of the segments (Fig. 3). (2)

A track with several irregular segments, all of them in one sector,

while the rest of the segments in the track are regular, i.e. there

is one irregular sector in the track and the rest of the sectors are

regular (Fig. 4). Theorem 6.1 can be applied in both cases. Therefore

the track can be reduced to a single-sector track, and the calculation

of the 𝑃 values is done for this reduced track as described above.

A more complex scenario is a track with multiple irregular

segments with various penetration time values, scattered along

Figure 3: (a) An asymmetric track with 𝑁 = 20 segments and
𝑘 = 4 robots. There are 3 identical irregular sectors in the
track (sector 1, sector 2 and sector 4) and one regular sector
(sector 3). (b) The accordant single-sector asymmetric track
with 𝑁 = 5 segments and a single robot.
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Figure 4: (a) An asymmetric track with 𝑁 = 20 segments
and 𝑘 = 4 robots. There is one irregular sector in the track
(sector 1) which contains two irregular segments (𝑺𝒆𝒈1 and
𝑺𝒆𝒈3). (b) The accordant single-sector asymmetric trackwith
𝑁 = 5 segments and a single robot.

the track without symmetry. In this case, for each segment 𝑖 ∈
{1, . . . , 𝑑} in the sector we need to find the minimal value of pene-

tration time of all of the sectors. Denote 𝑡 𝑗,𝑖 as the penetration time

of segment 𝑖 in sector 𝑗 . We build the reduced sector and assign it

penetration time values {𝜏1, 𝜏2, . . . , 𝜏𝑑 } calculated as described in

Algorithm 1.

Algorithm 1 Build reduced sector

1: Divide track into 𝑘 equal sectors {𝑠𝑒𝑐𝑡𝑜𝑟1, . . . , 𝑠𝑒𝑐𝑡𝑜𝑟𝑘 }
2: For 𝑖 ∈ {1, . . . , 𝑑 }:

𝜏𝑖 =𝑚𝑖𝑛 (𝑡 𝑗,𝑖 ) ∀𝑠𝑒𝑐𝑡𝑜𝑟 𝑗 , 𝑗 ∈ {1, . . . , 𝑘 }

The use of theminimal 𝑡 value of all segments 𝑠𝑒𝑔𝑖 in all of the sec-

tors is due to the fact that if a robot detects the adversary in 𝑡 time-

cycles, it will also detect it in 𝑡 + 1 time-cycles. Fig. 5 presents an ex-

ample of a general form of an asymmetric track without any lenient

assumptions (a), and the reduced sector built upon this track by

the algorithm (b). In this case, the uniform 𝑝 model treats the track

as if all of the segments had the minimal penetration time value

Figure 5: (a) The general case of an asymmetric track with
𝑁 = 20 segments and 𝑘 = 4 robots. All of the sectors are
irregular and they are neither identical nor symmetric. (b)
The accordant single-sector asymmetric track with 𝑁 = 5

segments and a single robot.

(2 time-units in this example), thus finds an optimal probability

𝑝 = 0.5 that yields MaxMinPPD of 0.25. The non-uniform 𝑝 model

builds a reduced sector with penetration time values {4, 2, 3, 4, 3}
(using the aforementioned Algorithm 1), thus finds an optimal 𝑃 =

{0.689, 0.518, 0.604, 0.597, 0.707, 0.484, 0.545, 0.868, 0.527, 0.587}
that produces MaxMinPPD of 0.349 (these results were calculated

using the function-optimization method, which is elaborated on in

Section 7.1).

In general, the non-uniform model achieved a higherMinPPD
in all track configurations that were investigated. Fig. 6 shows the

MinPPD achieved by both models in several examples of track with

a single irregular segment. Fig. 7 presents examples of multiple

irregular segment scenarios. The results presented in these figures

and in all of the figures throughout the paper were obtained in

computational experiments performed using the methods described

in Section 7.

Figure 6: Comparison between the uniform pmodel and the
variant P model in different perimeter track configurations
with a single irregular segment. A configuration is denoted
by its 𝒅, 𝒕 and 𝒕𝒊𝒓𝒓𝒆𝒈 values (e.g., configuration 5/4/3 means a
perimeterwith sectors of 5 segments each, and a penetration
time of 4 time-cycles for all segments except one which has
𝒕𝒊𝒓𝒓𝒆𝒈 = 3).

Figure 7: Comparison between the uniform p model and
the variant P model in different perimeter track configura-
tions with multiple irregular segments. Each configuration
is characterized by its 𝒅 and {𝒕1, . . . , 𝒕𝒅 } values (e.g., configu-
ration 5/{4, 3, 4, 4, 3} means a perimeter having sectors of 5
segments each, and the 𝒕 values of the segments are 4,3,4,4,3).
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6.3 A note on the use of the non-uniform
policy

There is a distinction between the uniform 𝑝 model and the non-

uniform 𝑝 model regarding the assignment of specific 𝑝 values

to segments: In the uniform model all of the segments are equal,

each and every one of them is assigned the same 𝑝 value, and

there is no actual division into sectors in practise (only virtual

division as a means of analysis). This is not the case in the non-

uniform model: We have to define the sectors and number the

segments for the calculation, and after obtaining the results (a set

of 𝑃 = {𝑝1, . . . , 𝑝2𝑑 }) we must assign each segment 𝑠𝑒𝑔𝑖 with its

specific 𝑝𝑖 , 𝑝𝑖+𝑑 values (one for clockwise movement and one for

counterclockwise movement). Even when having found the optimal

𝑃 values, assigning them to the segments in a different order will

result in different PPD values and a lower MinPPD. All of the
sectors in the track, whether regular or irregular, are assigned the

same 𝑃 values that were calculated using the reduced sector.

6.4 The omniscient adversary assumption
In Section 1 we assumed that our adversary has full knowledge of

the patrolling robots. This assumption might look too strong, but

actually it is rather realistic. The adversary does not have to monitor

the exact locations of all of the patrolling robots at every moment.

In order to decide which segment is optimal to penetrate, it is

sufficient to know the track data (penetration times of the segments)

and to calculate the patrol scheme (𝑝 values of the segments) as

described above, thus finding the segment(s) with the lowest PPD
in the track. Having decided the specific segment it is going to

penetrate, the adversary only needs to knowwhere the two adjacent

robots (one to the left of the penetrated segment and one to its

right) are located in order to initiate the penetration attempt at the

right moment. Furthermore, when approaching a track patrolled by

robots deployed in a synchronous movement, monitoring a single

arbitrary robot of the track indicates the exact locations of all of

the robots. Therefore, the assumption that the adversary knows all

of the locations of the robots at any time-cycle is very realistic.

7 CALCULATING P VALUES
There are major differences between the uniform probability policy

and the non-uniform probability policy regarding the optimization

problems that need to be solved. In the uniform model, due to sym-

metry of the track (as shown in Theorem 5.2), there are 𝑑 possible

penetration configurations, hence we have a set of 𝑑 constraints

with one variable (that is 𝑝). In the non-uniform model there are

2𝑑2 possible penetration configurations, since there are 𝑑 possible

locations for the adversary to penetrate, and 𝑑 possible starting

points for the robot with 2 possible starting directions each. This

sums up to 2𝑑2 constraints with 2𝑑 variables (𝑝1, . . . , 𝑝2𝑑 ). As a

result, methods that are practical for the uniform policy are not

applicable in the non-uniform one. We first describe the methods,

then discuss their adequacy in specific scenarios.

7.1 Function optimization methods
In the first group of methods, function optimization methods, we
compute the PPD probability functions of the track, then use nu-

meric methods to find an optimal solution for them. In order to

compute the PPD functions, we deploy the method described in

[2]: We build a Markov Chain 𝐺 in which, for each segment 𝑠𝑒𝑔𝑖
in the original track, two states of 𝐺 are created – one for moving

clockwise and the other for moving counterclockwise. For each

1 ≤ 𝑖 ≤ 𝑑 , if the robot reaches segment 𝑠𝑒𝑔𝑖 through which the ad-

versary tries to penetrate within 𝑡𝑖 time-cycles, then the adversary

is caught. Fig. 8 demonstrates a Markov Chain of a closed perimeter

track with 𝑑 = 5 segments in the case where the adversary tries to

penetrate segment 𝑠𝑒𝑔2.

FromMarkov Chain𝐺 we derive the respective stochastic matrix.

As explained above, the application of the algorithm as described in

[2] for the use in the non-uniform policy requires adjustments: We

use the algorithm 2𝑑 times, one for every segment through which

the adversary may penetrate in both directions, and each time we

use the relevant penetration time value 𝑡𝑖 . We then combine the

sets of functions we get as a result to form a 2𝑑 × 𝑑 matrix of non-

linear PPD functions, i.e. there are 2𝑑2 non-linear functions with

2𝑑 variables 𝑝1, . . . , 𝑝2𝑑 .

After building the PPD functions we need to find values of 𝑃

to maximizeMinPPD. The algorithms described in former works

[2, 3] to calculate the value of 𝑝 forMaxMinPPD were designed for

the uniform 𝑝 policy (one-variable functions) and are not applicable

here (2𝑑-variable functions). Numerical methods may be used to

find an approximation to theMaxMinPPD, e.g. downhill simplex

(Nelder-Mead) method [26] or sequential quadratic programming

(SQP) method [14]. In our implementationwe used the Nelder-Mead

and the SLSQP methods of the function optimize.minimize() in the

Python SciPy library for scientific computing [19, 24].

7.2 Simulation-based search methods
In the second group of methods, simulation-based search methods,

we "guess" a possible set of 𝑃 values and use simulations to estimate

Figure 8: A Markov Chain for a perimeter track with 𝒅 = 5,
for the case of the adversary trying to penetrate segment 2.
The clockwise (cw) movement states are in the inner circle
and the counterclockwise (ccw) ones are in the outer circle.
Note that both states of segment 2 (red) are absorbing states.
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theMinPPD that these values yield. The simulation is carried out by

going over all of the possible penetration configurations, running

the track using random "coins" with the "guessed" 𝑃 probability

values, and counting the catch/fail ratio.

There are several possible ways to search the 𝑝 values space

and "guess" a set of values for the simulations. For a small search

space, exhaustive search is practical and yields optimal results. If

the space is too big to be exhausted (and in many realistic scenarios

this is the case, as we elaborate in the next section), then random

search algorithms are more appropriate, because in this situation

finding an approximate global optimum is more important than

finding a precise local optimum. We implemented a random-restart

hill-climbing search, which combines iterative hill-climbing search

with recurring runs using arbitrary start conditions, in order to

avoid extensive search around local maxima instead of finding the

global maximum [34].

7.3 Calculation methods analysis
Addressing a specific task of assigning probability values to a given

track, the calculation method should be fitted to the properties of

the task: (a) the number of segments in the track; (b) symmetry

level of the penetration time values of the segments; and (c) the

time-frame given to yield the results. For a theoretical analysis

without critical time bounds, the function optimization methods

are liable to produce the most accurate results. For small values of 𝑑

(𝑑 ≤ 8), calculation times are acceptable (up to 24H), but for higher

values the time needed to get a result soars with the complexity

of the PPD functions (recall that for an asymmetric sector with

𝑑 segments, 2𝑑2 functions with 2𝑑 variables should be evaluated).

Another disadvantage of these methods is the inability to adjust

the calculation to a given time-frame.

The simulation-based search methods are more adequate for

practical use: The complexity of a higher 𝑑 grows linearly, the

resolution of the search space can be adjusted, and the search can

be bounded to the needed time-frame. Moreover, these methods

enable a trade-off between time-performance and result-optimality:

A preliminary result might be provided in a relatively short time

for immediate use in the patrol, and a better result (achieved by

a longer or higher-resolution search) would be supplied later to

improve performance. Exhaustive search is relevant to small search

spaces (e.g. search of all possible 𝑝 values with a resolution of

0.001 in a uniform 𝑝 model), but it is impractical to exhaust larger

search spaces in this way (for example, even if we compromise on a

resolution of 0.01, a non-uniform 𝑝 model for an asymmetric track

of 9 segments has 100
2·9 = 10

36
possible 𝑃 values to consider).

We performed multiple comparative tests of more than 30 sce-

narios in order to establish the above characteristics of the methods.

In order to demonstrate these tests, we herewith present two of

the tested scenarios (Figures 9 and 10). In each of the scenarios the

following five methods have been deployed:

(1) Uniform 𝑝 analysis using the function optimization method

(SQP).

(2) Uniform 𝑝 simulation-based exhaustive search of the range

[0.4, 1.0] with resolution 0.001.

(3) Non-uniform 𝑝 analysis using the function optimization

method (SQP).

(4) Non-uniform simulation-based search using random-restart

hill-climbing, stopping after 100K steps.

(5) Non-uniform simulation-based search using random-restart

hill-climbing, stopping after a pre-set time.

All simulation-based methods (2, 4, 5) used 200K simulation rounds

to check a single result.

Scenario 1 (Fig. 9a) is a triple-robot perimeter with 𝑁 = 21 and

a regular penetration time value 𝑡 = 6, but there are two irregular

segments along the track with 𝑡𝑖𝑟𝑟𝑒𝑔 values of 3 (in sector 1) and

4 (in sector 2). Using the reduction scheme presented in section

4, we need to analyze a track with 𝑑 = 21/3 = 7 segments (Fig.

9b). Fig. 9c presents the results and the time it took to calculate

them (method 5 was set to stop after 3 hours of search): For this

relatively short sector configuration, the function analysis methods

(1 and 3) are comparatively faster and yield better results (that

is, a higher MinPPD) than the simulation-based search methods.

As we expected according to Theorem 5.2 above, the non-uniform

model (methods 3, 4 and 5, colored in blue) produces much higher

results compared to the uniform model (methods 1 and 2, colored

in orange).

Scenario 2 is a dual-robot perimeter with 𝑁 = 24 and a regular

penetration time value 𝑡 = 8, but there are 3 irregular segments

along the track as demonstrated in Fig. 10a. The reduced track (Fig.

10b) has 12 segments. Fig 10c presents the results and their calcu-

lation times in the aforementioned methods (method 5 was set to

stop after 24 hours of search): Both function optimization methods

(methods 1, 3) failed to return a result even after 4 days of calcula-

tion due to the size of the track and the consequent complexity of

analysis. The simulation-based search methods produced results:

Again, as we expected, the non-uniform model (methods 4, 5, blue)

Figure 9: Scenario 1: (a) Triple-robot track with 𝑵 = 21, 𝒕 = 6
and two irregular segments. (b) The accordant single-sector
reduced track. (c)MinPPD values and calculation time in the
various methods: Orange – uniform 𝒑 model, blue – non-
uniform 𝒑 model. Method 5 was set to 3H of search.
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Figure 10: Scenario 2: (a) Dual-robot track with 𝑵 = 24, 𝒕 = 8
and 3 irregular segments. (b) The accordant single-sector re-
duced track. (c) MinPPD values and calculation time in the
various methods: Orange – uniform 𝒑 model, blue – non-
uniform 𝒑 model. Method 5 was set to 24H of search.

yielded a higher MinPPD compared to the uniform model (method

2, orange). Adjusting search parameters to the properties of the

specific task allows for obtaining results in relevant time (basic

results in 24H by method 5, and slightly better results , if needed,

48H later using method 4).

7.4 Practical implementation
Themodel presented in this paper can be implemented in real-world

systems of closed perimeter fence patrol. The various properties of

the task (as detailed in Section 7.3) should be considered, and rule-

based methods or heuristics may be applied to fit the optimal patrol

scheme to the situation (the ATAPS heuristic described in [28] is

such a tool). In reality, given specific track properties and available

patrol resources, the number of scenarios that should be analyzed is

smaller than in theoretical analysis, due to practical limitations and

cost considerations. For example, the number of robots assigned

to the mission is a crucial factor, and it is determined mainly by

the costs of the robots and of their deployment. We may consider

and calculate 𝑝 values for all the theoretically-possible numbers

of robots in the track. But in practice, the available resources (i.e.,

the cost limitation for the patrol) will reduce the set of options

to a few feasible scenarios, and only these scenarios should be

analyzed and compared. Thus finding the preferred scenario can be

done quickly and cheaply. Therefore, implementing a patrol using

the presented non-uniform stochastic model may improve patrol

quality in existing and in future applications.

8 CONCLUSION
In this paper we have presented and discussed the non-uniform 𝑝

model as an improved model for adversarial patrol of asymmetric

perimeter tracks. This model produces higherMinPPD values com-

pared to the uniform 𝑝 model. Though more complex to calculate

by function optimization methods, the 𝑝 probability values can be

efficiently calculated using simulation-based methods, in adjust-

ment to the specific circumstances of each track. The results may be

rapidly applied to real-world patrol tasks, significantly improving

the performance of the patrolling robots.
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