
Peer-to-peer Autonomous Agent Communication Network
Lokman Rahmani

Fetch.ai
Cambridge, UK

lokman.rahmani@fetch.ai

David Minarsch
Fetch.ai

Cambridge, UK
david.minarsch@fetch.ai

Jonathan Ward
Fetch.ai

Cambridge, UK
jonathan.ward@fetch.ai

ABSTRACT
Reliable and secure communication between heterogeneously re-
sourced autonomous agents controlled by competing stakeholders
in a decentralized environment is a challenge. Agents require a
means to find each other and communicate without reliance on a
centralized party and participation in the system must be permis-
sionless. We present the Agent Communication Network (ACN), a
peer-to-peer lookup system that provides a distributed overlay to
the Internet and addresses this problem. The ACN enables agents
to find each other and to communicate safely. It achieves this by
leveraging a distributed hash table for agent lookup, maintained by
participating peers and through the use of public-key cryptography.
The paper discusses the properties of the system and its guarantees
as well as its integration with a novel multi-agent system. Prelimi-
nary benchmark results demonstrate the feasibility of the system,
its performance, and its scalability.

KEYWORDS
peer-to-peer; distributed hash table; multi-agent communication

ACM Reference Format:
Lokman Rahmani, David Minarsch, and Jonathan Ward. 2021. Peer-to-peer
Autonomous Agent Communication Network. In Proc. of the 20th Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS
2021), Online, May 3–7, 2021, IFAAMAS, 9 pages.

1 INTRODUCTION
1.1 Motivation
The dominant architecture in Web 2.0 is that of client-server in
which the client is fully reliant on the server and the server deter-
mines whether a client is legitimate. This paradigm is a good fit for
centralized platforms and applications.

With the rise of distributed ledger technology (DLT) multi-agent
systems (MAS) are seeing renewed attention [1, 9, 34]. Unlike their
historic counter-parts, modern agent and MAS implementations
[29, 45] are conceived for multi-stakeholder environments and built
for deployment at scale on the public Internet. For this to become a
reality heterogeneous agents owned by competing entities need to
be able to find and communicate with each other without reliance
on a central party. In particular, the following problem needs to be
addressed:

given the identity of a target agent, how can the orig-
inator agent deliver a message to it whilst certain
properties are guaranteed?

Proc. of the 20th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2021), U. Endriss, A. Nowé, F. Dignum, A. Lomuscio (eds.), May 3–7, 2021, Online.
© 2021 International Foundation for Autonomous Agents and Multiagent Systems
(www.ifaamas.org). All rights reserved.

1.2 Requirements
Any point-to-point communication system between potentially
competing stakeholders on the public Internet must satisfy a num-
ber of requirements to find adoption:

(1) Reliability: there need to be guarantees on message reception
(2) Authentication: it should not be possible for an entity to

impersonate another entity
(3) Confidentiality: there should be no exposure of sensitive

information about the message content to third parties
(4) Availability: the service should satisfy certain liveness guar-

antees
Authentication, Confidentiality and Availability together ensure

(5) Security.
Furthermore, to support a multi-stakeholder multi-agent econ-

omy the following additional design constraints need to be satisfied:
(A) Distributed environment: agents should be able to locate

anywhere in the public Internet
(B) Decentralized environment: agents should not require a cen-

tralized authority for communication and entry to the system
must be permissionless

(C) Resource flexibility: agents should be flexibly deployable in
differently resourced (i.e. CPU, memory, storage, network)
devices

An implication of a decentralized environment is that by default
there should be no requirement for agents to trust other system
participants and agents should process messages asynchronously.

1.3 Contribution
The Agent Communication Network (ACN) addresses the problems
of locating agents and establishing channels for message-based
communication between them (as per section 1.1) in a distributed,
decentralized MAS deployed on the public Internet. To satisfy (A)
and (B), at its core the ACN operates in a peer-to-peer fashion
where equally privileged participants known as peers collectively
maintain a distributed overlay to the Internet and where entry to
the system is permissionless. To satisfy (C), agents can participate
in the ACN in different capacities: operating their own peer or as a
client relying on an existing peer.

The distributed overlay is implemented on top of a distributed
hash table (DHT) [39, 44]. Similar to regular hash tables, a DHT
stores key-value pairs. However, it does so across multiple peers.
Pairs assignment to peers is decided using its consistent hashing
algorithm. For efficient peer routing and pair retrieval, the peers
self-organize following a specific topology as a logical layer on top
of a network one, constructing a structured overlay. Peers’ network
locations are maintained in local routing tables. In the case of the
ACN, the DHT is used to store the associations between an agent’s
id and its peer’s id as key-value pairs. The agent id is the agent’s

Main Track AAMAS 2021, May 3-7, 2021, Online

1037



address (a hash of its public key) and the peer id is a multihash [23]
of the peer’s public key.

To be reachable in the ACN, an agent has to register itself to
the DHT through a participating peer, either already existing or
deployed for the occasion. The peer acts as the agent contact in
the ACN and delivers its incoming messages from other agents.
Likewise, to reach another agent, the initiator agent generates
the message and forwards it to its contact peer which performs
a lookup in the DHT for the corresponding contact peer of the
destination agent. If found, the contact peer of the sending agent
opens a communication channel and delivers the message to the
corresponding peer.

The ACN relies on public-key cryptography [16, 41] as an in-
tegral part of its design. In a trustless environment, public-key
cryptography offers guarantees on communication such as authen-
tication (2), confidentiality (3) and integrity (hence availability (4)).
In the ACN public keys (and addresses derived from them) are used
as identities for both peers and agents. Key agreement protocols
are used for peers to authenticate each other but also for agents
to authenticate their contact peers. Attaching digital signatures
to the stored DHT records guarantees their authenticity, allowing
any participant in the system to verify the association between
a given peer and agent. Both yield confidentiality where no peer
or agent can receive messages of other peers and agents and all
communication is end-to-end encrypted.

Peers and agents are by design two separate entities in order to
obtain (I) separation of concerns conceptually and (II) flexibility
of deployment practically. Agents’ execution environment can be
resources-constrained with limited memory space, CPU power,
and network bandwidth. To accommodate for that, the ACN offers
different types of connections that an agent can have to its contact
peer, each with a varying distribution of roles and workloads. Other
common components of MAS such as service discovery, agent
implementation and agent communication protocols are delegated
to services and frameworks which utilise the ACN.1

The ACN is designed to be used with different transport layers
and independently guarantees service reliability (1). In practice,
TCP is the dominant layer however none of the primitives prevent
utilisation of other transport protocols (e.g. UDP or Bluetooth etc.).

2 ARCHITECTURE
The communication system comprises a peer-to-peer (p2p) network
running the DHT, a set of connections linking agents to peers, and
a set of ACN-specific protocols prescribing interactions between
agents and peers for correct delivery of messages.

2.1 Preliminaries
Identity. Each peer and each agent has a unique identity (id).

The peer id is a public key or a (usually compact) representation
of it. The agent id is an address derived from a public key via a
hashing function. The representation should be unique to each
public key and their association can be independently verified. We
assume that the identified entity is the sole holder of the private
key corresponding to the public key used as its identity.

1Finding other agents in the ACN is not aimed at service discovery, rather it is a
necessary side-effect of DHT routing algorithms and only serves message delivery.

Message. A message consists of metadata and payload.2 The
payload is the content of the message, i.e. encoded data (e.g. [13]).
Metadata are information related to the message. Within the ACN,
for each message, a metadata section includes its originator id, its
destination id, and information related to payload encoding. In
practice we make use of more metadata as discussed in section 2.7.

2.2 Peer-to-peer network
Peers are the core entities of the system. They are functionally
equivalent and collectively constitute the peer-to-peer network.
They run a distributed name service for agents and act as commu-
nication proxies for them. The name service is used to retrieve the
contact peer of any previously registered agent. It is enabled by a
distributed hash table (DHT) maintained by every peer.

2.2.1 DHT. ADHT is a peer-to-peer system that provides a lookup
service similar to a regular hash table. However, the DHT stores
the key-value pairs across multiple peers.

Consistent hashing. To assign responsibility for storage among
peers, the DHT uses consistent hashing [20, 44]. A consistent hash-
ing scheme uniquely maps record keys - the agents’ addresses -
and peers’ ids alike to a virtual space. This produces a set of key
identifiers and a set of peer identifiers respectively. The virtual
space is then partitioned between peers where a record is stored by
the peer whose identifier is the closest to the record’s key identifier,
following a distance metric defined in the virtual space. Consistent
hashing has the property of requiring only a limited movement of
keys when peers join or leave the network. This feature allows to
develop solutions that are robust under changing environments
and imperfect information. The consistent hashing mapping is also
uniform thus each peer stores roughly the same number of keys.
This tends to balance the load over the peers thus reducing hot
spots in the system.

Construction. DHTs are constructed incrementally. The first peer,
also called genesis, defines the virtual space and the mapping (hash)
function and initially is responsible for the entirety of the space.
New peers join the DHT by connecting to at least one of the exist-
ing peers. The new peer then announces itself to the network and
receives from close peers the records that fit within its new respon-
sibility zone. Different peer discovery mechanisms (the process of
joining the network and finding other peers) can be implemented.
The genesis peer can be hard coded in the distributed software or
provided as an argument on launch and acquired via a third-party
service.

Structured Overlay. Since peers only store a subset of all items,
lookups need to be routed whenever a peer receives one for a key
that it is not responsible for. Hence, each peer has to maintain a
local routing table that contains other peers’ identifiers and contact
details in the form of a physical network address (TCP/IP address).
The global graph created by connectivity between peers is called
an overlay network. A peer’s routing table defines its neighbors in
the connectivity graph. For efficient routing, DHTs use specific al-
gorithms to maintain a structured overlay [2] where the links define

2[29] distinguish further between Envelope andMessage. Here, we omit this distinction
for simplicity.

Main Track AAMAS 2021, May 3-7, 2021, Online

1038



a topology such as a tree, ring, torus, or similar. DHTs leverage the
structure of the connectivity graph to guarantee efficient lookup
operation in number of steps, for any key in the system.

Lookup operation. DHTs employ a recursive algorithm for record
lookup. The lookup initiator starts by selecting from its routing
table the closest peers to the record key. The initiator then forwards
the lookup request to the peers it has chosen. Upon the reception of
the request, a peer either returns the corresponding record in case
it stores it, or a set of peers that are the closest to the record key. In
the recursive step, the initiator re-sends the request to peers it has
learned about from previous interactions. The lookup procedure
halts when any peer returns the value or if no more closest peers
are learned about.

2.2.2 Kademlia. Kademlia [28]with its secured addition S/Kademlia
[3] is used for the DHT implementation. S/Kademlia uses 160-bits
as its virtual identifier space and binary XOR as its distance metric.
It uses cryptographic hash functions such as SHA1 to map peer
identity and record keys to the identifier space. In S/Kademlia, the
peers’ connectivity graph takes the form of a binary tree, which
combined with the XOR distance metric ensure efficient routing.
DHTs in general and S/Kademlia specifically have the following
properties:

• Decentralization: DHTs are fully distributed: no node is more
important than any other. This improves robustness and
makes DHTs very appropriate for multi-stakeholders envi-
ronments.

• Scalability: Kademlia lookup grows as the log of the number
of peers, so even very large systems are feasible. Caching is
also possible for hot records.

• Load balance: DHTs act as a distributed hash function, spread-
ing keys evenly over the peers through consistent hashing.
This provides a degree of natural load balancing.

• Availability and fault-tolerance: Kademlia offers high avail-
ability through its self-stabilization protocols and correction-
on-use properties. Kademlia also replicates each record by
storing it over 𝑘 closest peers, where 𝑘 is a system-wide
parameter. Self stabilization maintenance protocols automat-
ically adjusts peers internal routing tables to reflect newly
joined peers as well as peers failures, ensuring that, barring
major failures in the underlying network, a previously stored
record can always be retrieved. Correction-on-use take ad-
vantage of lookup and join operations to proactively correct
a peers view of the system.

• Resilience: S/Kademlia is resilient to most commonmalicious
attacks on the system. Kademlia naturally provides resistance
to Denial-of-Service attacks by not relying on a central entity.
S/Kademlia provides additional resistance to Eclipse attacks
[42] and Sybil attacks [5].

2.3 Protocols
ACN protocols augment the peer-to-peer network to suite agents’
communication needs and requirements. They leverage the DHT
by storing agents’ contact information and define rules for interac-
tions between participants. Agent registration, de-registration and
lookup are the main protocols.

2.3.1 Agent registration protocol. To be able to use the system,
an agent has to register itself first. It requires as a preliminary the
information of at least one peer participating in the system. Namely,
the peer’s URI (host and port number) to open a communication
channel and its identity to authenticate it. After establishing the
connection, the agent first generates a signature of the contact
peer’s id and sends it to its peer. The signature acts as a proof of
representation for other peers in the peer-to-peer network. The
peer then advertises the association between itself and the agent in
the DHT as a (key-value) record, thus becoming the agent’s official
contact peer.

The peer adds the agent to its list of agents and listens for out-
going message from the agent side and incoming messages from
the DHT side.

2.3.2 Agent lookup protocol. To send a message, an agent has to
construct it and forward it to its contact peer.

A peer keeps listening for messages from all its registered agents.
Once it receives a message it checks its destination field. If the
destination agent is registered within the same peer it delivers
it directly to it. If not it has to lookup the contact peer of the
destination agent (see section 2.2.1). If a record is registered for the
destination agent the peer opens a direct communication channel
to the destination peer and requests its proof of representation. The
peer uses the destination agent id to verify the authenticity of the
proof and upon success marshals the message to the destination
contact peer. The destination contact peer delivers the message
to its agent. If no record is available for the destination agent the
contact peer returns an error message.

2.3.3 Agent de-registration protocol. Currently, we do not support
explicit agent de-registration. Instead, we rely on a Kademlia fea-
ture where each stored record has a timeout which when reached
means the record is deleted from peers. To keep a record avail-
able, the initial peer who requested its storage needs to republish it
periodically before the timeout.

2.4 Connections
Connections enable agents to use the peer-to-peer network. They
implement the agent’s side of the communication as clients and
rely on corresponding services run on the peers as servers.

We propose different types of connections - a multi-tier architec-
ture - to accommodate for agents’ different requirements on system
resources (CPU, memory, storage, network), confidentiality and
level of trust in the contact peer. Further discussion about the pos-
sible trade-offs between these requirements and their advantages
and disadvantages is provided in section 2.5.

2.4.1 Direct connection. This connection assumes that the agent
and the peer are running on the same machine, and that the agent
stays connected for its full service. This is for the case where an
agent wants to deploy its own contact peer for full control. The peer
participates in maintaining the DHT and must be reachable from
the Internet. The agent can control which services to enable on
the peer. The connection uses inter-process communication (IPC)
mechanisms (i.e. named pipes) to efficiently exchange messages
between the agent and the peer. Figure 1 illustrates an agent using
a direct connection to a peer.

Main Track AAMAS 2021, May 3-7, 2021, Online

1039



Figure 1: Agent using a Direct Connection. Agent and peer
are located on the same machine and the connection relies
on named pipes for communication.

2.4.2 Relayed connection. Similar to the direct connection, the
agent and the peer are assumed to be running on the same machine.
However, the contact peer is not publicly reachable from the Inter-
net, most commonly due to restrictions imposed by network address
translation (NAT). Thus it requires the relay service of another peer.
However, it does not require its trust as the communication with
a third peer can be end-to-end encrypted. This results in a dou-
ble encryption: the communication between the origin and relay,
the relay and target as well as the origin and target is encrypted.
This connection is needed for the case when an agent wants full
control over the peer but does not have a public URI, although it
sacrifices some confidentiality as the relaying peer knows which
agents and peers it is communicating with and the communication
pattern. Figure 2 illustrates an agent using a Relayed connection to
its contact peer.

Figure 2: Agent using a Relayed connection. Both agent and
relayed peer are on the samemachine.When a peer is run in
relayed mode it requests the relay service of one of its entry
peers. If granted, the relayed peer’s presence in theDHT and
all its communication go through the relay peer.

2.4.3 Delegate connection. The Delegate connection allows an
agent to use a remote peer as its contact peer in the ACN. This is
possible through the delegate service that the contact peer can host.
Communication between the agent and its contact peer is done us-
ing secured TCP connections. This connection requires the agent to
trust the peer as it has access to the agents un-encrypted messages.
This approach is most useful for agents on small devices which
can still maintain a TCP connection. The trust requirement can be
relaxed at the cost of performance where the agent can request
its target agent to run a key agreement, or simply use asymmetric
encryption. Refer to subsection 2.5 for further discussion. Figure 3
illustrates an agent using a Delegate connection to its contact peer.

2.4.4 Mailbox connection. All previous connections require the
agent to keep the connection open to receive messages destined to
it. Failure to do so returns an error to the message initiator by the
agent’s contact peer. TheMailbox connection relaxes this constraint
by using a mailbox service offered by a contact peer. If a message
is received for an agent registered with the mailbox service, the

Figure 3: Agent using a Delegate connection. The peer offer-
ing the service can be operating by the same entity manag-
ing the agent but can also be different.

peers store it in a queue.3 At a later stage the agent can query the
peer for messages through HTTP requests.4 This connection is
useful for agents running on resource-constrained devices and that
cannot maintain an open connection with the contact peer. Figure 4
illustrates an agent using a Mailbox connection to its contact peer.

Figure 4: Agent using a Mailbox connection. The agent com-
municates with its contact peer through HTTP requests.
The agent does not maintain an active connection to the
peer, it connects only for the time to achieve the operation
it intends to perform.

2.4.5 Typical deployments. To clarify the usage of the proposed
connections, figure 5 illustrates examples of a typical deployment
of the different connections, the peer-to-peer network, and the
ACN as a whole with participating organization boundaries. By
design, there can be multiple disjoint ACNs. This is the case when
nodes bootstrap against a disjoint set of genesis nodes. To establish
a common public network, a set of public peers should be always
running and their addresses accessible (e.g., P1, P2 and P3 in the
figure). Other peers subsequently join through these peers. Simi-
larly, private organizations which want to be part of the network
can do so as well by deploying their own peers (e.g., Peer A and
Peer B in the figure). Each peer can decide which service to enable
depending on available resources and the incentives to do so. In the
network described in the figure, P3 has the relay service enabled
and is serving P4 for agent PR1. On the other hand, P2 has only
delegate and mailbox services enabled and is serving agents PD1
and PM1. A peer can perfectly disable all the services and only run
DHT operations (e.g, P1). Peers can also use an authorization list for
agents allowed to use its services. In the presented network, Peer A
and B although publicly accessible, serve only agents from within
their respective organization. Importantly, with all these different
configurations and potential restrictions, every agent is still able to
find every other agent and communicate with it securely.
3Similar to the Delegate connection, the Mailbox connection requires that the agent
trusts the peer. However for this connection it can be alleviated only through asym-
metric encryption as key agreement would be very costly or not possible at all. Refer
to subsection 2.5 for further discussion.
4For now, it is assumed mailboxes are centralized, in that they are maintained by one
and only one peer. If the peer goes offline or has a fault the mailbox’s contents are
lost. In the future, a decentralized mailbox service could be implemented where more
than one peer maintains the same mailbox. Thanks to the modular setup this can be
retrofitted.

Main Track AAMAS 2021, May 3-7, 2021, Online

1040



Figure 5: Typical ACN deployment. ACN allows for flexible deployment of agent and peers considering their resources and
affiliations while ensuring that every agent can find every other agent and communicate securely.

2.5 Security, Trust & Performance
This section provides further details about security properties of
connections and their impact on performance requirements.

2.5.1 End-to-end encryption. All point-to-point communication
between entities (peers and agents) is end-to-end encrypted using
TLS [40] with pre-shared public keys. This guarantees authenti-
cation, confidentiality and message integrity security properties.
Unlike previous work [12, 18], the ACN does not require certifi-
cation authorities to distribute public keys. Instead, public keys
are pre-shared in the form of addresses, obtained via hashing the
public key. Peers’ addresses are distributed as part of their contact
information along with their IP addresses and TCP ports. Agents’
addresses are included in the message metadata as its source or des-
tination. Once a connection is initiated between two entities, they
start by exchanging their public keys. Public keys are verified by
computing their hashes and comparing the resulting addresses to
the pre-shared ones. If successful, they proceed to TLS handshake.

Consequently, the above is sufficient to ensure security proper-
ties in a trustless environment for communication between peers
and communication between agent and peer via Direct connection.
The former is true because DHT operations do not require any sen-
sitive information to be exchanged between peers. The later is true
as well because both agent and peer are owned by the same author-
ity. However, communication via the rest of agents’ connections
needs more consideration to ensure all security properties are met
without requiring the trust of the (third-party) intermediary peer
they rely on. This is the case because for Relayed, Delegate, and
Mailbox connections messages are decrypted as they go through
the intermediary peer. To that end, a second TLS channel needs to
be established between communicating parties leading to double
encryption. Double encryption is costly and may not be possible if
a session can not be maintained, i.e., in the case of the Mailbox con-
nection. A trade-off between performance and security properties

is to use asymmetric encryption which ensures only confidentiality.
Figure 6 shows a diagram of communication channels annotated
with the security protocols they use.

Figure 6: All point-to-point communication protocols use
public-key cryptography to ensure security (authentication,
confidentiality, and availability) using TLS handshakes with
pre-shared public keys. The figure shows the different con-
nection configurations and their security model.

2.5.2 Trust. The relationship between the contact peer and the
agent is analogous to a server-client relationship, in particular it is
fully trusted. Agents need to trust peers via which they connect to
provide them a true representation of the DHT. However, this is not
a limiting factor since either the peer is operated by the same entity
as the agent or the peers compete to provide services to agents and
agents can detect when they are being cheated by their contact peer
(as it is not possible for it to forge incoming our outgoing agent
messages).

2.6 Economic model
The operation of the DHT incurs costs (CPU, memory, storage and
networking) for the peers maintaining it. This section discusses the
incentives peers have to participate in its provision as well as the
incentives of agents which do not run a contact peer.

2.6.1 Incentives for participation. By design, agents require a con-
tact peer to use the ACN for communication with other peers and

Main Track AAMAS 2021, May 3-7, 2021, Online

1041



agents. In the absence of alternatives, this incentivises every partic-
ipant to deploy its own peer and help maintain the DHT. Peers are
not charged for participation in the peer-to-peer network as they
contribute to its maintenance through their participation alone.

For agents that do not have the means to deploy a peer or choose
not to, they can either rely on a third party organization to deploy
one on their behalf or use a share of an already deployed peer.

In its current design, the peer-to-peer network does not pose
any restrictions on the number of agents a peer can represent in the
DHT. However, agents who do not maintain their own peer impose
an externality on the peers maintaining the DHT. In particular, they
impose storage requirements. Due to the properties of the DHT
these are uniformly born by all the peers. There are no externalities
from networking on third party peers as all traffic is incurred by the
contact peers of the agent and its target.5 The networking costs for
the agents’ contact peer imposes a direct constraint on the number
of agents a peer can represent in the DHT.

A contact peer can charge its agents for access to the network
using a pricing model of its choosing.6 Since the peers offering Del-
egate or Mailbox connections compete with each other in providing
services to the agents, and since anyone can become a peer, we
expect the service offered by the peers to be priced competitively
and potentially be free. We also expect, for the same reasons, that
the pricing problem faced by peers can be studied largely by taking
the other system components as given.

2.7 Beyond message delivery
As discussed, the communication network addresses agent id-based
message delivery only. To fully address the communication prob-
lem, the agent implementation is required to handle the rest. To that
effect, this work utilises a novel agent framework [29]. The frame-
work’s communication system offers multiplexing of connections
from different sources and protocols to guide the exchange of mes-
sages as dialogues from start to end. Protocols can be user-defined
and generated. The framework is also responsible for setting up
and tearing down the connections as well as configuring them.

The ACN does not address the need of generic service discov-
ery in a MAS. This can be offered by agents or external services
deployed on top of or alongside the ACN following proposals in
the literature [15, 19, 43].

2.8 Related Literature
Peer-to-peer systems are relatively well researched and have seen
growing attention in recent years [11, 25, 28], in particular with
the rise of crypto currencies [8, 31]. The literature acknowledges
the natural connection between peer-to-peer systems and MAS
[9, 21, 37, 45], in particular in multi-stakeholder environments.

Through contributions (I) and (II) (cf. section 2.4) the design of
the ACN is agent framework independent (although its usage is
exemplified utilising a specific framework [29]) and hence distinct
to monolithic systems as proposed in [26, 27, 32, 35, 43]. The ACN
allows for point-to-point communication between heterogeneously

5The case of the relay peer is an exception. However, a relay peer is free to ignore
traffic.
6Peers and agents can, for instance, utilise smart contracts [48] deployed on a DLT to
manage payment and staking of funds.

resourced agents and different agent types and implementations
[4, 6, 29, 49]. In particular, anymessage-based agent communication
language is supported (e.g. FIPA ACL [13]).

We consider high performance as a first class criterion for our
system design and implementation to be used at Internet scale. In ad-
dition to the aforementioned, this includes, (i) usage of a structured
overlay (unlike solutions like [26] based on unstructured ones), (ii)
lookup request routing rather than message relaying [27, 35], (iii)
usage of binary format serialization for wire transfer rather than
XML ones [32, 35], and (iv) an efficient implementation utilising
[36].

Building trust and reputation [33, 50] as well as fostering coop-
eration [24, 30] are well-studied topics in peer-to-peer systems and
the ACN lends itself towards extension in these directions.

Kademlia is known to be quite stable against DoS attacks and
some form of Sybil attacks. There is a rich body of research which
shows how to make it more resilient [3, 14, 30, 33, 47].

3 BENCHMARK
The ACN as described is fully implemented except for the Mailbox
connection. A production version is deployed on the public Internet
and exposed to regular use.

In this section, we demonstrate the feasibility of the system and
its performance by benchmarking its main operations on a reference
implementation that excludes certain security features, namely the
signing and verification of a peer’s proof-of-representation when
registering the agent and when looking it up, respectively. The fol-
lowing first describes the reference implementation of the ACN and
benchmarking setup. Then, it presents preliminary benchmark re-
sults of the ACN operations and finally discusses them. We measure
the following operations:

• Agent registration: the time for a peer to register a new agent
address to the network.

• Agent lookup: the time for a peer to get the contact peer of a
given agent address.

• Peer join: the time for a new peer to start and successfully
register its agent.

• Peer echo: the time for a peer to lookup the contact agent
of a given agent address and exchange one message with it,
achieving one round trip.

For reference, we also provide measurement of simple RTT
(round trip time) on non-secure TCP connections as a baseline
for communication performance on the benchmark machine.

3.1 Implementation details
In our reference implementation, peers are implemented in Golang
as nodes and connections are implemented in the Python program-
ming language as components to an autonomous agent framework
[17, 29]. Golang facilitates writing efficient and scalable concurrent
programs thanks to its Goroutines and channels built-in features.
The peers use the go-libp2p [36] implementation of S/Kademlia
DHT. The go-libp2p library has been proven as part of the running
IPFS network [22]. The public-private key pairs are generated from
the elliptic curve as specified by the standard SECP256k1 [7].

Main Track AAMAS 2021, May 3-7, 2021, Online

1042



3.2 Setup details
To eliminate network latency variability, all the benchmarks are
run locally on an AMD64 Linux machine with 12-cores Intel Core
i7-8750H 2.20GHz CPU and 16GB of RAM. Other tests have been
conducted over the Internet but are not reported here.

Each benchmark (cf. [38]) is setup by deploying an ACN network
of a given size in number of peers. It is constructed iteratively where
each new peer is given the previous one as entry to the network.
Once the network is functional, a given operation is executed and
its run time is measured. Measures are repeated at least 20 times and
each benchmark is run 20 times. Varying the size of the network
allows us to test the scalability of the selected operation.

3.3 Results
Figures 7 and 8 present the benchmark results of the defined op-
erations, grouped into atomic (agent registration and lookup) and
end-to-end (peer join and echo) classes. For both figures, the x-
axis shows the size of the network in number of peers and the
y-axis shows the operation execution time in milliseconds. Both
axes are in logarithmic scale. Each plot is labeled with the opera-
tion it measures. Table 1 reports the same measures with standard
deviation.

Figure 7: ACNprimitive operations performance in function
of network size. TCP RTT is 0.040ms.

3.4 Discussion
From figure 7, we can see that for small sized networks of 2 to 8
peers the execution cost of atomic operations is the same or very
close to the TCP RTT baseline. This demonstrates a very low to
non-existent overhead for the peers’ point-to-point communication
implementation. We can also observe that both agent registration
and lookup operations perform similarly. This is expected as they
use the same routing algorithm where one stores the record and
the other fetches it. End-to-end operations follow the same trend
as their atomic counterpart, except for peer join operations where
its cost is order of magnitudes higher. This reflects the overhead
of peer setup and is most noticeable for small size networks as it
gets amortized very quickly with larger networks (e.g., entirely
amortized within networks of 256 peers). All benchmarked opera-
tions scale well, although linearly not logarithmically. This could be

Figure 8: ACN end-to-end operations performance in func-
tion of network size. TCP RTT is 0.040ms.

explained by the benchmark setup running on a local machine with
very low network latencies thus shifting most of the operation cost
on computations. In intended deployments of the ACN over the
Internet, network latency is magnitudes higher making the num-
ber of peers to contact the major part of the operation execution
time. Tuning system configurations is also expected to improve its
scalability, as benchmarks were run with the default configuration.

Above results demonstrate the low execution cost of the system
and its scalability, thanks to go-libp2p’s efficient implementation of
the DHT and minimal overhead of the ACN protocols’ design and
implementation. They demonstrate the system’s feasibility and effi-
ciency. Further tests are needed to practically demonstrate system
properties described in this paper with representative deployment,
especially at larger scale and under faulty conditions.

4 DISCUSSION
The previous sections present in detail the ACN, its architecture,
its components, and initial benchmark results using its reference
implementation. In this section, we elaborate more on topics and
questions that arise from using a DHT as a communication system
for MAS in a distributed decentralized environment.

4.1 Resiliency and fault tolerance (DHT)
The S/Kademlia DHT used by the ACN is tolerant to faults and
resistant to most malicious attacks. If a peer fails or disconnects,
after a grace period its neighbours simply remove it from their
routing tables and query the network to update their routing ta-
ble with the next closest peer, effectively bypassing the failed one.
Records stored at the failed peer are not lost as they are already
replicated to its neighbours. For the stability of the network, peers
always privilege long standing ones as neighbours. This also par-
tially mitigates Sybil attacks where an entity joins the DHT with
multiple peers and uses them to gain disproportional influence in
the system that it exploits to its advantage. Because of the use of
cryptographic hash functions for the consistent hashing scheme,
it is very hard to orchestrate a DoS attack where a specific peer
is targeted, as this would require reversing the hash function to
produce keys that have hashes close to the targeted one. Similarly,

Main Track AAMAS 2021, May 3-7, 2021, Online

1043



Table 1: ACN primitive and end-to-end operations benchmark results. Measures are repeated at least 20 times each and each
benchmark is run 20 times.

#peers 2 8 32 128 256
Agent registration 0.03 ± 0.01 0.09 ± 0.01 0.47 ± 0.16 4.65 ± 3.31 13.84 ± 6.9
Agent lookup 0.03 ± 0.01 0.08 ± 0.01 0.45 ± 0.16 4.05 ± 0.76 12.27 ± 4.33
Peer join 0.20 ± 0.04 0.51 ± 0.26 1.00 ± 0.08 5.23 ± 2.03 12.22 ± 1.4
Peer lookup 0.06 ± 0.02 0.12 ± 0.06 0.53 ± 0.11 4.08 ± 0.41 11.57 ± 1.33

it is very hard for an attacker to isolate a target peer by generating
peer ids with hashes close to it. This is known as eclipse attack.
Finally, to limit spamming the network, peers only store pointers to
the DHT records, i.e., only the key of the record and the id of the
peer requesting its storage.

4.2 Name service only vs. message routing
The ACN provides an agent address-based lookup service that is
functionally similar to the Internet’s DNS but distributed and decen-
tralized. Agent lookup requests are routed throughout the DHT by
peers to where its registration record is stored. Once the record is re-
trieved, a direct connection is established between contact peers of
the initiator and target agents. This means that we do not route the
message itself but only the request to find the target agent, as the
message is destined to one agent only in the system. This naturally
consumes less network traffic and better protects communication
confidentiality.

4.3 DHT vs DLT
As part of a multi-stakeholder MAS which includes DLT, the ACN
must be clearly distinguished from the latter set of technologies.
DLT systems operate under the premise that a consensus is to be
reached amongst participants of the systems on some state of the
system at regular intervals. The ACN, does not attempt to establish
consensus about the contents of the DHT at any point. On the
contrary, it is by design that no global state is observed by any
of the system participants. This design feature contributes to the
relative scalability of the ACN in comparison to DLTs.

4.4 Agent mobility
To use the ACN, each agent must associate with a peer participating
in it. This does not prevent agents from switching between contact
peers. Changing to a new contact peer simply involves deregistering
from the current one and registering with the new one. The old
peer may still receive requests to receive messages for the agent
until the old record has been removed from the DHT. Honest peers
decline the message and the agent can enforce this by adding an
expiration date to its contact peer’s proof-of-representation.

4.5 Free-rider problems
As discussed in section 2.6, peers can impose a negative externality
on each other by registering an excess amount of agents. There, we
argue that the design of the ACN naturally dampens some of these
problems. In the future, we might choose to modify the Kademlia
implementation to preempt these problems [30]. Alternatively, or
in addition we can also investigate incorporating smart contracts

deployed on a public DLT to regulate access to the ACN whilst
maintaining its permissionless entry feature.

4.6 Limits to point-to-point message-based
communication

The ACN is designed around a bilateral message-based interaction
paradigm. As such, message broad-casting and flooding is not sup-
ported as a primitive. However, multi-lateral interactions, including
broadcasting to a set of known agents and gossiping [46], can be im-
plemented utilising the bilateral primitives. Feed-based interactions
are equally implementable as a higher level abstraction.

4.7 Advanced Search and Discovery
In principle, a DHT can be used to store arbitrary data. An example
of such usage of a DHT is the IPFS system [22]. In the ACN, the use
of the DHT is limited to recording associations between agent and
peer ids and service discovery is assumed to be provided a separate
service.

For some use-cases it might be useful to express a finite number
of agent types on the DHT level and therefore add a further associa-
tion between agent id and agent type to the DHT. This functionality
would potentially be useful to provide a simplistic discovery ser-
vice. However, it is also open to misuse as agent types cannot be
independently verified.

4.8 Permissioned usage
In principle, the ACN can be operated in a permissioned manner if
peers are endowed with access lists, for instance. Such a permis-
sioned network can serve managed agent economies.

5 CONCLUSION
This work introduces a self-contained system for address-based
agent lookup using a distributed hash table. The system is operated
by peers in a decentralized manner with permissionless entry. Trust
and security are enabled by using public cryptography (TLS/HTTPS
with pre-shared public keys). The solution allows for flexible de-
ployment and control over available resources, using a multi-tier
architecture. It is suitable for use with heterogeneous agent imple-
mentations and applications [9, 10, 29, 34]. The benchmark demon-
strates that the current implementation is performant and scalable
and that the system design is feasible. At the time of publication, the
system is deployed on the public Internet and continuously used
by several thousand agents in production. Preliminary discussions
confirm a largely incentive compatible design. However, further
work needs to be undertaken to ensure the incentives of system
participants are aligned in all cases.

Main Track AAMAS 2021, May 3-7, 2021, Online

1044



REFERENCES
[1] Ilya Afanasyev, Alexander Kolotov, Ruslan Rezin, Konstantin Danilov, Manuel

Mazzara, Subham Chakraborty, Alexey Kashevnik, Andrey Chechulin, Aleksandr
Kapitonov, Vladimir Jotsov, Andon Topalov, Nikola Shakev, and Sevil Ahmed.
2019. Towards Blockchain-based Multi-Agent Robotic Systems: Analysis, Classi-
fication and Applications. arXiv:1907.07433 [cs.RO]

[2] Luc Onana Alima, Ali Ghodsi, and Seif Haridi. 2004. A Framework for Structured
Peer-to-Peer Overlay Networks. In IST/FET International Workshop on Global
Computing - Volume 3267. Springer-Verlag, Berlin, Heidelberg, 223–249.

[3] Ingmar Baumgart and Sebastian Mies. 2007. S/kademlia: A practicable approach
towards secure key-based routing. In 2007 International Conference on Parallel
and Distributed Systems. IEEE, 1–8.

[4] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. 2007. Devel-
oping multi-agent systems with JADE. John Wiley & Sons.

[5] Arpita M Bhise and Shailesh D Kamble. 2016. Review on detection and mitigation
of Sybil attack in the network. Procedia Computer Science 78 (2016), 395–401.

[6] Rafael H Bordini, Jomi Fred Hübner, and Michael Wooldridge. 2007. Programming
multi-agent systems in AgentSpeak using Jason. John Wiley & Sons.

[7] Daniel RL Brown. 2010. Sec 2: Recommended elliptic curve domain parameters.
Standars for Efficient Cryptography (2010).

[8] Vitalik Buterin. 2013. Ethereum Whitepaper. https://ethereum.org
[9] Davide Calvaresi, Alevtina Dubovitskaya, Jean Paul Calbimonte, Kuldar Taveter,

and Michael Schumacher. 2018. Multi-Agent Systems and Blockchain: Results
from a Systematic Literature Review. In Advances in Practical Applications of
Agents, Multi-Agent Systems, and Complexity: The PAAMS Collection, Yves De-
mazeau, Bo An, Javier Bajo, and Antonio Fernández-Caballero (Eds.). Springer
International Publishing, Cham, 110–126.

[10] Davide Calvaresi, Mauro Marinoni, Arnon Sturm, Michael Schumacher, and Gior-
gio Buttazzo. 2017. The challenge of real-time multi-agent systems for enabling
IoT and CPS. In Proceedings of the international conference on web intelligence.
Association for Computing Machinery, 356–364.

[11] NM Mosharaf Kabir Chowdhury and Raouf Boutaba. 2010. A survey of network
virtualization. Computer Networks 54, 5 (2010), 862–876.

[12] Joris Claessens, Bart Preneel, and Joos Vandewalle. 2001. Secure communication
for secure agent-based electronic commerce applications. In E-Commerce Agents.
Springer, 180–190.

[13] IEEE FIPA Standards Committee. 2001. Communicative Act Library Specification.
Technical Report. Foundation for Intelligent Physical Agents.

[14] Zoltán Czirkos and Gábor Hosszú. 2010. Enhancing the Kademlia P2P Network.
Periodica Polytechnica Electrical Engineering (Archives) 54, 3-4 (2010), 87–92.

[15] Elena Del Val, Miguel Rebollo, and Vicente Botti. 2014. Enhancing decentralized
service discovery in open service-oriented multi-agent systems. Autonomous
agents and multi-agent systems 28, 1 (2014), 1–30.

[16] Whitfield Diffie and Martin Hellman. 1976. New directions in cryptography. IEEE
transactions on Information Theory 22, 6 (1976), 644–654.

[17] Marco Favorito, David Minarsch, Ali Hosseini, Aristotelis Triantafyllidis, Diarmid
Campbell, Oleg Panasevych, Kevin Chen, Yuri Turchenkov, Lokman Rahmani,
and Jiří Vestfál. 2019. Autonomous Economic Agent (AEA) Framework.

[18] Qi He and Katia Sycara. 1998. Towards a secure agent society. ACMAA 98 (1998).
[19] Rajaraman Kanagasabai et al. 2013. Semantic Web service discovery: state-of-

the-art and research challenges. Personal and ubiquitous computing 17, 8 (2013),
1741–1752.

[20] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine,
and Daniel Lewin. 1997. Consistent hashing and random trees: distributed
caching protocols for relieving hot spots on the World Wide Web. In Proceedings
of the twenty-ninth annual ACM symposium on Theory of computing (El Paso,
Texas, United States) (STOC ’97). ACM, New York, NY, USA, 654–663. https:
//doi.org/10.1145/258533.258660

[21] Manolis Koubarakis. 2003. Multi-agent systems and peer-to-peer computing:
Methods, systems, and challenges. In International Workshop on Cooperative
Information Agents. Springer, 46–61.

[22] Protocol Labs. [n.d.]. IPFS. https://ipfs.io/
[23] Protocol Labs. [n.d.]. Multihash. https://multiformats.io/multihash/
[24] Kevin Lai, Michal Feldman, Ion Stoica, and John Chuang. 2003. Incentives for

cooperation in peer-to-peer networks. InWorkshop on economics of peer-to-peer
systems. 1243–1248.

[25] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and Steven Lim.
2005. A survey and comparison of peer-to-peer overlay network schemes. IEEE
Communications Surveys & Tutorials 7, 2 (2005), 72–93.

[26] Ziyan Maraikar. 2006. Resource and service discovery for mobile agent platforms.
Master’s thesis, Department of Computer Science, Vrije Universiteit Amsterdam,
Amsterdam, The Netherlands (2006).

[27] Marco Mari, Agostino Poggi, Michele Tomaiuolo, and Paola Turci. 2005. Enhanc-
ing multi-agent systems with peer-to-peer and service-oriented technologies. In
In proc. of 6th International Workshop From Agent Theory to Agent Implementation
(AAMAS).

[28] Petar Maymounkov and David Mazieres. 2002. Kademlia: A peer-to-peer infor-
mation system based on the xor metric. In International Workshop on Peer-to-Peer
Systems. Springer, 53–65.

[29] D. Minarsch, S. A. Hosseini, M. Favorito, and J. Ward. 2020. Autonomous
Economic Agents as a Second Layer Technology for Blockchains: Framework
Introduction and Use-Case Demonstration. In 2020 Crypto Valley Conference
on Blockchain Technology (CVCBT). IEEE, 27–35. https://doi.org/10.1109/
CVCBT50464.2020.00007

[30] Tim Moreton and Andrew Twigg. 2003. Enforcing collaboration in peer-to-peer
routing services. In International Conference on Trust Management. Springer,
255–270.

[31] Satoshi Nakamoto. 2019. Bitcoin: A peer-to-peer electronic cash system. Technical
Report. Manubot.

[32] B. J. Overeinder, E. Posthumus, and F. M. T. Brazier. 2002. Integrating peer-to-
peer networking and computing in the AgentScape framework. In Proceedings.
Second International Conference on Peer-to-Peer Computing,. IEEE, 96–103. https:
//doi.org/10.1109/PTP.2002.1046318

[33] Riccardo Pecori. 2016. S-Kademlia: A trust and reputation method to mitigate a
Sybil attack in Kademlia. Computer Networks 94 (2016), 205–218.

[34] Alexander Poddey and Nik Scharmann. 2019. On the importance of system-view
centric validation for the design and operation of a crypto-based digital economy.
arXiv preprint arXiv:1908.08675 (2019).

[35] Agostino Poggi andMichele Tomaiuolo. 2010. Extending the JADE Framework for
Semantic Peer-To-Peer Service Based Applications. In Developing Advanced Web
Services through P2P Computing and Autonomous Agents: Trends and Innovations.
IGI Global, 18–35.

[36] Protocol Labs. [n.d.]. go-libp2p. https://github.com/libp2p/go-libp2p
[37] Martin Purvis, Mariusz Nowostawski, Stephen Cranefield, and Marcos Oliveira.

2003. Multi-agent interaction technology for peer-to-peer computing in electronic
trading environments. In International Workshop on Agents and P2P Computing.
Springer, 150–161.

[38] Lokman Rahmani and David Minarsch. 2020. ACN Benchmark.
https://github.com/fetchai/agents-aea/blob/v0.7.0/packages/fetchai/
connections/p2p_libp2p/dht/dhtpeer/benchmarks_test.go

[39] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Shenker.
2001. A scalable content-addressable network. In Proceedings of the 2001 con-
ference on Applications, technologies, architectures, and protocols for computer
communications. Association for Computing Machinery, 161–172.

[40] E. Rescorla. 2018. The Transport Layer Security (TLS) Protocol Version 1.3. RFC
8446. RFC Editor. https://tools.ietf.org/html/rfc8446

[41] Ronald L Rivest, Adi Shamir, and Leonard Adleman. 1978. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM 21, 2 (1978),
120–126.

[42] Atul Singh, Miguel Castro, Peter Druschel, and Antony Rowstron. 2004. De-
fending against Eclipse Attacks on Overlay Networks. In Proceedings of the
11th Workshop on ACM SIGOPS European Workshop (Leuven, Belgium) (EW
11). Association for Computing Machinery, New York, NY, USA, 21–es. https:
//doi.org/10.1145/1133572.1133613

[43] Sung Keun Song, SeungWokHan, andHee Yong Youn. 2007. A new agent platform
architecture supporting the agent group paradigm for multi-agent systems. In
2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology
(IAT’07). IEEE, 399–402.

[44] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Bal-
akrishnan. 2001. Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications. SIGCOMM Comput. Commun. Rev. 31, 4 (Aug. 2001), 149–160.
https://doi.org/10.1145/964723.383071

[45] Antonio Tenorio-Fornés, Samer Hassan, and Juan Pavón. 2018. Open Peer-to-Peer
Systems over Blockchain and IPFS: An Agent Oriented Framework. In Proceedings
of the 1st Workshop on Cryptocurrencies and Blockchains for Distributed Systems
(Munich, Germany) (CryBlock’18). Association for Computing Machinery, New
York, NY, USA, 19–24. https://doi.org/10.1145/3211933.3211937

[46] Spyros Voulgaris, Márk Jelasity, and Maarten Van Steen. 2003. A robust and
scalable peer-to-peer gossiping protocol. In International Workshop on Agents
and P2P Computing. Springer, 47–58.

[47] Peng Wang, James Tyra, Eric Chan-Tin, Tyson Malchow, Denis Foo Kune,
Nicholas Hopper, and Yongdae Kim. 2008. Attacking the kad network. In Proceed-
ings of the 4th international conference on Security and privacy in communication
netowrks. Association for Computing Machinery, 1–10.

[48] Shuai Wang, Liwei Ouyang, Yong Yuan, Xiaochun Ni, Xuan Han, and Fei-Yue
Wang. 2019. Blockchain-enabled smart contracts: architecture, applications, and
future trends. IEEE Transactions on Systems, Man, and Cybernetics: Systems 49, 11
(2019), 2266–2277.

[49] Michael Wooldridge and Nicholas R Jennings. 1994. Agent theories, architec-
tures, and languages: a survey. In International Workshop on Agent Theories,
Architectures, and Languages. Springer, 1–39.

[50] Bo Zhu, Sushil Jajodia, and Mohan S Kankanhalli. 2006. Building trust in peer-
to-peer systems: a review. International Journal of Security and Networks 1, 1-2
(2006), 103–112.

Main Track AAMAS 2021, May 3-7, 2021, Online

1045

https://arxiv.org/abs/1907.07433
https://ethereum.org
https://doi.org/10.1145/258533.258660
https://doi.org/10.1145/258533.258660
https://ipfs.io/
https://multiformats.io/multihash/
https://doi.org/10.1109/CVCBT50464.2020.00007
https://doi.org/10.1109/CVCBT50464.2020.00007
https://doi.org/10.1109/PTP.2002.1046318
https://doi.org/10.1109/PTP.2002.1046318
https://github.com/libp2p/go-libp2p
https://github.com/fetchai/agents-aea/blob/v0.7.0/packages/fetchai/connections/p2p_libp2p/dht/dhtpeer/benchmarks_test.go
https://github.com/fetchai/agents-aea/blob/v0.7.0/packages/fetchai/connections/p2p_libp2p/dht/dhtpeer/benchmarks_test.go
https://tools.ietf.org/html/rfc8446
https://doi.org/10.1145/1133572.1133613
https://doi.org/10.1145/1133572.1133613
https://doi.org/10.1145/964723.383071
https://doi.org/10.1145/3211933.3211937

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Requirements
	1.3 Contribution

	2 Architecture
	2.1 Preliminaries
	2.2 Peer-to-peer network
	2.3 Protocols
	2.4 Connections
	2.5 Security, Trust & Performance
	2.6 Economic model
	2.7 Beyond message delivery
	2.8 Related Literature

	3 Benchmark
	3.1 Implementation details
	3.2 Setup details
	3.3 Results
	3.4 Discussion

	4 Discussion
	4.1 Resiliency and fault tolerance (DHT)
	4.2 Name service only vs. message routing
	4.3 DHT vs DLT
	4.4 Agent mobility
	4.5 Free-rider problems
	4.6 Limits to point-to-point message-based communication
	4.7 Advanced Search and Discovery
	4.8 Permissioned usage

	5 Conclusion
	References



